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Abstract: The most commonly used methods to electrodeposit nanomaterials on conductive supports
or to obtain electrosynthesis nanomaterials are described. Au, layered double hydroxides (LDHs),
metal oxides, and polymers are the classes of compounds taken into account. The electrochemical
approach for the synthesis allows one to obtain nanostructures with well-defined morphologies,
even without the use of a template, and of variable sizes simply by controlling the experimental
synthesis conditions. In fact, parameters such as current density, applied potential (constant, pulsed
or ramp) and duration of the synthesis play a key role in determining the shape and size of the
resulting nanostructures. This review aims to describe the most recent applications in the field
of electrochemical sensors of the considered nanomaterials and special attention is devoted to the
analytical figures of merit of the devices.

Keywords: electrochemical deposition; electrochemical synthesis; electrochemical sensors;
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1. Introduction

The realization of modified electrodes has been of pivotal importance for the development
of a new generation of electroanalysis devices with enhanced sensitivity and selectivity since the
modifiers confer interesting properties to the support which can lead to a specific recognition and/or
a pre-concentration of the analytes. Fundamental studies of such modified electrodes have been
performed to obtain a better comprehension of the nature of charge transfer and charge transport
processes inside thin films [1].

The methods to modify a conductive surface can involve adsorption, covalent bond formation,
coating with previously synthesized materials, e.g., soluble polymers, or electrodeposition, when the
modifiers can be electrosynthesized.

In recent years, nanomaterials have attracted much attention as suitable materials to modify the
surface of the electrodes due to their intriguing physicochemical properties, which differ significantly
from those displayed by the same bulk materials.

For example, nanomaterials possess exceptional electrical and catalytic properties, large
surface-to-volume ratio (aspect ratio) and large number of adsorption-active sites which make them
particularly suitable for analytical purposes [2]. The properties of nanoparticles strongly depend on
their size and shape, so a synthetic procedure, controlling the growth and the morphology of the
nanoparticles, is critical and appealing [3].

Electrochemical deposition is an efficient procedure to prepare metal nanoparticles but it is usually
less utilized than wet-chemical methods. This approach can sometimes display some limitations as
to the nanomaterial dimensions and the allowed morphologies, but it shows a lot of advantages,
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particularly related to the rapid synthesis time, the absence of chemical reductants or oxidants, and of
undesired by-products [4]. Furthermore, when the modifier film is directly deposited on the electrode
it permits a better adhesion to be obtained [5]. Electrodeposition is widely applied using different
electrochemical techniques, such as cyclic voltammetry, potential step and double-pulse deposition [6].
The possibility of a precise particle size control is achieved by adjusting current density or applied
potential and electrolysis time [7]. Furthermore, combined with a template, electrochemical synthesis
gives the opportunity to produce a variety of 3D networks, e.g., through mesoporous silica films (this
is the case of noble metal nanowires, see Figure 1) [8].
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Figure 1. Schematic showing the formation of 3D continuous macroscopic metal or semiconductor
nanowire networks by a templated electrodeposition technique. (A) 3D cubic mesoporous template,
(B) 3D nanowire/silica nanocomposites, (C) 3D nanowire network. Images reproduced from Ref. [8]
with permission.

With the introduction of colloidal silica, more complex nanostructures, such as sponge-like
and grass-like morphologies, can be synthesized by varying the dimension and shape of the silica
additives [9].

This review aims to describe the most recent applications as electrochemical sensors of supports
modified with electrodeposited nanomaterials or obtained by electrosynthesis, belonging to two
categories: inorganics and organics. In the former case metals, layered double hydroxides (LDHs)
and metal oxides (and hybrids) have been taken into account, in the latter conducting, insulating and
molecularly imprinted polymers (MIPs) have been considered.

2. Metal Nanoparticles

As far as metal nanomaterials are concerned, gold nanoparticles (Au-NPs) will be mainly taken
into account since in the last decades they have been used for the fabrication of a lot of sensors due to
their optimal conductivity, biological compatibility and high aspect ratio.

2.1. Au-NPs Electrosynthesis

From an electroanalytical point of view, Au-NPs show interesting size- and shape-dependent
physicochemical properties. In the macroscopic phase, gold is considered an inert material; on the
contrary, at the nanometer scale its chemical reactivity increases greatly, as a function of the size, shape,
composition, morphology dispersion, and crystalline status [4].

Many chemical methods have been proposed for the preparation of Au-NPs with controlled size
and shape [10], whereas electrochemical techniques are usually less employed [11]. As stated before,
chemical synthesis generally provides NPs of almost any shape and size, while the electrochemical
approach has some limitations as far as the size range and the morphologies that can be realized are
concerned. The main advantages of electrochemical depositions are that the NPs are obtained already
anchored to a surface easily and rapidly, with an inexpensive procedure and without chemical or
binding agents [12], so they are more environmentally friendly than the one produced by chemical
methods. Moreover, the nanomaterials do not need to be stabilized as required if the same materials
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are synthesized in solution. Therefore, ever increasing interest has been devoted to the development of
effective electrochemical methods for the deposition of metal NPs [13].

Many studies have focused on the initial stages of the deposition in order to investigate in depth
the nucleation and crystal growth mechanisms of the metal phase on the conductive support, usually
a glassy carbon electrode (GCE). The steps of the Au-NPs deposition are first the electrochemical
reduction of AuCl4- salt, then the formation of ad-atoms, and, finally, the further growth of nanocrystals
on the GCE. The overall surface area of gold, as well as the size and density of the nanocrystals, and
surface texture can be modulated by changing the deposition conditions such as the salt concentration
and the applied potential or the time of electroreduction [14].

The electrosynthesis of Au-NPs has been also carried out in the presence of additives, with the
aim to control not only the size, but also the preferential crystallographic orientations of the gold
nanoparticles. Au-NPs were electrodeposited on GC electrodes in the presence of two additives, i.e.,
cysteine and iodide ions at 100 µM concentration. The results were that in the former case the NPs were
enriched in the Au(100) and Au(110) facets and displayed a relatively large dimension (300 nm), in
the latter they were enriched in the Au(111) facets and possessed a relatively narrow size distribution
range (10–40 nm) [15].

Hierarchical flowerlike Au microstructures have been synthesized on indium tin-oxide (ITO)
substrates without introducing any template or surfactant. These Au microstructures were composed of
gold nanoplates or nanoprisms as building blocks and their diameter was dependent on the deposition
time or the deposition potential. The electrodeposition process was carried out in 24.3 mM HAuCl4
solution at 0.5 V vs. Ag/AgCl for 30 min. Figure 2 shows SEM images of the as-prepared flowerlike
structures at different magnifications [16].
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Figure 2. Typical FE-SEM images of the hierarchical flowerlike Au microstructures deposited on ITO
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Au-NPs resultiing from electrochemical reduction of AuCl4− and packed within metalloporphyrin
layers were fabricated in situ to obtain 3D multilayer films which showed good electrocatalytic activity
for the two-electron reduction of oxygen. This property could be exploited to develop promising O2

sensors. Furthermore, it was also observed that the electrocatalytic efficiency was dependent on the
number of layers, in particular it increased with the layers number [17].

Ionic liquids (ILs), particularly air and water stable ones, are very appealing due to their
interesting physical properties. ILs allow for electrodeposition of many materials, e.g., Al and Mg,
that cannot be obtained with classical electrosynthetic methods. Moreover, they can control the layer
morphology through the effects of their large cations. A careful choice of IL cations can avoid the
use of traditional templates [9]. As an example, nanocrystalline Cu and Al could be electrodeposited
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in 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium
bis(trifluoromethylsulfonyl)amide, respectively, on classical solid supports without using additives [18].
Moreover, shape specificity can be controlled by changing the IL anions, the applied potential, water
concentration, temperature, and the ratio of the precursor ion to the IL molecules [19].

Taking into account the crystallographic characteristics, high-index planes are particularly
attractive for their higher density of active sites but are difficult to produce due to their lower stability.
Depending on the ppm content of water in the IL bath, high-index faceted particles with star, nanothorn,
and snowflake shapes could be obtained in the Au NPs synthesis. All the shapes showed an improved
activity for the electrocatalytic reduction of hydrogen peroxide if compared to bulk Au, but the
star-shaped NPs displayed a 14-fold higher activity [20].

2.2. Au Nanostructures Electrosynthesis

In order to produce nanoporous metal films, methods based on alloy corrosion have been
proposed. Dealloying of metal alloys such as Ag–Au can produce nanoporous metals with interesting
characteristics. By optimizing the Au content of the alloy, applying a potential below the threshold
value and increasing the temperature of the electrolyte, it was possible to prepare dealloyed membranes
displaying very good mechanical stability [21]. In the case of Au, a nanoporous film (NPGF) on a gold
electrode was produced by applying multicyclic electrochemical alloying/dealloying in an electrolyte
containing ZnCl2 and benzyl alcohol. In the cathodic potential scan, Zn was first electrodeposited
on the Au support, and later an Au−Zn alloy was formed at high temperature. In the following
anodic potential scan, dealloying of Zn occurred, resulting in a nanostructured Au film with nanopores.
The film displayed a much higher surface area, a very high roughness factor, and better electron
transport than the ones exhibited by the bulk Au. It was applied for the selective quantification of
dopamine in the presence of ascorbic acid [22].

For various applications, nanostructures in the form of rods (NRs) or wires (NWs) are
unconventional substitutes for typical nanoparticles, due to their high aspect ratio and very low
mass of material, that are fundamental properties in the field of (bio)sensing. Sensors based on
1D nanostructures display a high sensitivity due to the presence of numerous adsorption sites.
Electrochemical deposition of NRs and NWs generally needs the use of templates, such as porous
membranes to induce the shape of the 1D structures. The template needs to be conductive on one side
so that it can work as a cathode. To this aim a nanometric layer of gold/graphite or other conducting
materials is commonly used. By checking potential or current density to be applied, the reduction
reaction can occur so inducing the growth of the nanostructures inside the templates [23]. The template
which is most frequently used is anodized alumina, but other materials like radiation track-etched
polycarbonate membranes or zeolites, porous silicon, mica, carbon nanotubes, and nanochannels
patterned by photolithography have been also reported. After removal of the template, which is
performed by dissolution with an organic solvent in case of polymeric membranes or with a strongly
basic solution in the case of alumina, the NRs/NWs are released (Figure 3). The advantage of the
template approach is linked to the production of nanomaterials with a perfect shape control and
orientation [24].

Besides the modification of the surface electrode with nanomaterials, the nanostructuration can
be obtained also by surface nanopatterning. This approach exploits the formation of a thick oxide
layer using a repetitive square-wave perturbing potential in 0.5 M H2SO4 solution or by anodizing
the Au electrode at a constant potential of 2.44 V vs. SHE. Later, the oxide layer is submitted to
electroreduction under either a slow potential sweep or a potential step, in the same acid solution [25].
The resulting nanopatterning produces rough electrodes with a large active surface area, which can be
favorably exploited for the preparation of bioelectrodes with improved analytical performance [26].
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in a three-electrode cell. After electrodeposition the hard-template and/or conductive layer can be
removed to obtain free-standing NRs/NWs. Image reproduced from [24] with permission.

2.3. Electrochemical Sensors Based on Au-NPs

The peculiar chemical and physical properties of metal nanomaterials make them extremely
suitable to be employed as electrochemical sensors, mostly supported on the electrode [12,27].
Such modified electrodes generally display reduced overpotentials toward many redox reactions
and even are able to turn into reversible reactions that appear irreversible at classical electrodes.
Furthermore, the small sizes of the NPs causes a very big increase in current in respect to the same
material in the macro form. Au-NPs based electrodes have proven to be highly performant sensors for
heavy metal detection. Most of them are fabricated by electrochemical deposition. The literature reports
that the modification of GC surface with Au-NPs offers further advantages such as the elimination of
memory effect and coexisting ions interferences, and higher sensitivity for the determination of Hg(II)
and As(III) if compared to the bulk Au electrode [28].

A sensitive method for the electrochemical detection of Hg(II) in real environmental samples has
been reported, using a nanocomposite obtained by electrochemical deposition of Au-NPs on a reduced
graphene oxide modified GCE. In addition, thymine-1-acetic acid which displays a high affinity to
Hg2+ was covalently bound to Au-NPs using cysteamine. The sensor was able to detect mercury in
the range of 10 ng/L–1.0 mg/L, and showed a very good selectivity for Hg(II) in respect to many
other heavy metal ions. Furthermore, the developed device was easily reusable through a simple
washing [29].

A GCE was modified with gold nanoparticles, obtained by potential cycling from −0.4 to +1.1 V,
and used as the support for the simultaneous determination of arsenic and selenium in water, by
anodic stripping. The presence of Au-NPs improved both the stripping current and the peak resolution.
The deposition potential, pH and choice of electrolytes were optimized so that detection limits of
0.15 ppb for As(III) and 0.22 ppb for Se(IV) were obtained, and the modified electrode was successfully
applied to the analysis of real water samples [30].

Pb(II), Cd(II), and Cu(II) were detected simultaneously with a GCE modified with small and
size-controlled Au-NPs electrodeposited on carbon nanofibers. The hybrid modified electrode could
determine the three heavy metals at a concentration lower than 0.1 µM [31].

GCEs have been modified with Au-NPs of different sizes (from 3.5 to 21.5 nm) and shape (spherical
and platelets) to investigate the cyclic voltammetric response of various compounds of biological
interest. The results demonstrated a dependence of the electrochemical response on the dimension and
the shape of Au-NPs that could be exploited to fabricate chemical sensors with enhanced selectivity [3].
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Hydrogen peroxide determination in biological systems is important in clinical diagnosis, since a
lot of oxidase enzymes produce H2O2 as a co-product, and in the industrial field it is also a fundamental
intermediate reagent in the textile, paper, food, and pharmaceutical industries.

Metal nanomaterials have gained great attention also for the development of non-enzymatic
electrochemical sensors for H2O2 because of their high stability compared to enzymatic sensors [32].
As far as nano-gold is concerned, a drawback that has been pointed out is related to the aggregation of
Au-NPs which limits their performance, particularly in terms of detection limit which cannot reach
low values. To overcome this problem an electrochemical sensor for H2O2 has been fabricated by
electrodepositing Au-NPs (average size = 12 nm) on an ITO support previously coated with a Co,
Mn-based layered double hydroxide. Electrochemical characterizations proved that the presence of the
LDH support significantly improved the voltammetric response to H2O2 [33]. At a working voltage of
+0.55 V (vs. Ag/AgCl), the sensor displayed a wide linear range (0.1 µM to 1.27 mM), low detection
limit (0.06 µM) and high sensitivity. All these properties are better than the ones displayed by most
previously described electrodes modified with AuNP-based composites.

3D Au nanodendrites were produced on a Pt support by electrodeposition, using a gas bubble
dynamic template procedure in the presence of iodide ions to prevent agglomeration [34]. The modified
Pt electrodes were applied to As(III) detection at ultralow concentration (0.1 ppb) in 0.2 M HCl solution.

2.4. Electrochemical Sensors Based on Nanoporous Au

Porous noble metal nanostructures for electrochemical sensing are appealing due to their higher
specific surface areas and larger pore volumes, which facilitate both electron and mass transfer.
Therefore, they allow the fabrication of sensors with very high sensitivities and very low detection
limits [9].

3D nanoporous Au films, consisting of interconnected filaments and nanopores, were obtained on
a Ni foam by the dealloying method using a simple two-step procedure. First, the Au-Sn alloy film
was galvanostatically electrodeposited on the Ni foam and then the coated support was immersed
into 5 M NaOH and 1 M H2O2 solution for 3 days. The resulting electrodes displayed an increased
activity for the electroreduction of H2O2 in acidic solution, and were stable over time. In particular,
chronoamperometric responses were continuously recorded for 6400 s using the same electrode, soaked
in 0.5 M H2SO4 and 1.5 mM H2O2 and the currents were still constant [35].

A nanoporous gold (NPG) microelectrode, again produced by the electrochemical
alloying/dealloying method, was employed to simultaneously quantitate hydrazine, sulfite and
nitrite by electrochemical oxidation, displaying not only good sensitivity but also improved selectivity
and stability. The three analytes showed well separated peaks centered at 0.05, 0.34, and 0.76 V,
respectively, and the electrode was able to determine hydrazine, sulfite and nitrite within a wide
concentration range (from 5.0 to 4000 µM) with low limits of detection (order of magnitude 10−7 M) [36].
The NPG microelectrode possessed high stability and selectivity. The performance of the sensor was
also demonstrated with real samples such as water, wine, apple cider beer and beef, so to check its use
for applications in food safety and quality control.

An unconventional very thin (100 nm) nanoporous Au leaf produced by dealloying has been
proposed which shows an excellent electrocatalytic activity toward nitrite oxidation [37]. The response
of nitrite ions was found to be independent of pH in the range from 4.5 to 8.0, which is a result
significantly different from that relevant to a planar gold electrode, taken into account for comparison
purposes. The nitrite determination was performed by chronoamperometry and the resulting
calibration graph was linear from 1 µM to 1 mM, with a LOD equal to 1 µM. The nano electrode
displayed good selectivity since it did not exhibit interference from commonly present compounds,
such as sodium sulfate, potassium chloride, ammonium nitrate, glucose and ethanol. The authors
attributed the remarkable improvement in the catalytic current to the increased surface area, the very
easy transport of small compounds within the nanostructure constituted of only two or three layers of
pore channels and Au filaments, and the presence of many low-coordinated surface gold sites.
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The non-enzymatic sensing of glucose based on the direct electrochemical oxidation is a simple
and cheap approach. Noble metals have been considered the most promising electrocatalysts for
such a determination. The greatest advantage of amperometric non-enzymatic glucose sensors with
respect to biosensors is related to the fact that the latter display a poor long-term stability due to the
essential nature of enzymes. The major drawbacks of the direct electrochemical oxidation of glucose
are the slow kinetics, the adsorption of the intermediates on the electrode which causes fouling, and
the poor selectivity towards any other endogenous species that can be oxidized in the same potential
window [38].

The discovery that nano-gold has catalytic activity for many important reactions offers an
alternative strategy for the oxidation of D-glucose to D-gluconic acid with molecular oxygen, and it
has been demonstrated that nano-gold exhibits an intrinsic activity similar to that of glucose oxidase
enzyme [39]. By applying a square-wave potential program, in the presence of surfactant, Pt−Au
alloy films were realized with a controlled composition which displayed a very high electrocatalytic
activity for glucose oxidation, due to the favorable factors resulting from the mesoporous structure of
the sensing material and the Au presence. The composition with the best performances was Pt51Au49
alloy film. Using this material the response to glucose was linear up to 11 mM and the detection limit
resulted 6.0 µM [40].

GCEs modified with Au nanocages, which display a very large surface-to-volume ratio, have been
proposed to develop sensors able to sensitively determine glucose by electrocatalytic oxidation. Taking
into account that ascorbic and uric acids could interfere in the amperometric detection of glucose an
operative potential of 0 V was chosen and the calibration curve resulted linear from 0.2 to 13.4 mM
with a LOD of 5 µM [41]. Uniform Au nanocages could be prepared by using electrodeposition with
Ag nanocubes as templates as already reported by reported by Torimoto et al. [42].

2.5. Biosensors

Biosensing is another important research field where metal NPs have been largely utilized in
the last few years, especially when supported on conductive materials [27]. The NPs act as electrical
wires to establish a direct electrical communication between the biocatalysts and the electrode which is
generally hampered by the thick insulating protein shell that surrounds the enzymes’ active centres.
The development of enzymatic biosensors based on the direct electron transfer (DET) has recently
attracted great interest. Au-NPs functionalized with the cofactor flavin adenine dinucleotide (FAD) and
supported on a gold macroelectrode have been reconstituted with the apo-glucose oxidase exhibiting
excellent electron transfer properties, and the system was found to be a very useful glucose detection
device [43].

In order to develop a cholesterol biosensor, Au-NPs were selectively electrodeposited on
nano-sized carbon interdigitated electrodes by tuning the step-potential and time period, and
cholesterol oxidase was immobilized through the electrochemical reduction of the diazonium cation.
The biosensor displayed high selectivity toward cholesterol and high sensitivity which was ensured by
the use of the efficient redox mediators, ferricyanide and ferrocyanide (Figure 4). In particular, the
sensing range was wide (0.005–10 mM) and the LOD resulted ~1.28 µM [44].
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Figure 4. Schematic diagram of the sensing principle based on the redox cycling of
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Combining electrochemical deposition with the Langmuir−Blodgett technique highly ordered
macroporous Au was synthesized and used to fabricate an amperometric biosensor based on glucose
dehydrogenase and (4-carboxy-2,5,7-trinitro-9-fluorenylidene) malononitrile as a redox mediator. The
electrocatalytic current recorded for glucose oxidation was one order of magnitude higher than the
one recorded at a non-porous Au electrode [45].

3D ordered macroporous Au film was also employed to develop a novel label-free immunosensor
for the determination of C-reactive protein (CRP) using electrochemical impedance spectroscopy
(EIS) [46]. The film consisted of interconnected Au-NPs which exhibited a large surface area (almost
15 times greater than the one of the flat Au electrode) for the immobilization of the protein and
displayed linearly increasing impedance values with CRP concentration (over a linear range from 0.1
to 20 ng·mL−1).

NPG electrodes were also constructed to increase the active surface area in order to produce
advanced electrochemical platforms for DNA detection. As an example, such sensors were used
to amplify the DNA signal and could detect single base mismatches and complementary target
DNA. Ferrocene carboxylic acid (FCA) was covalently attached on the top of probe DNA, which was
hybridized with target DNA, and the electrochemical oxidation signal of FCA was recorded as the
analytical signal [47].

An electrochemical DNA biosensor based on NPG electrodes, prepared with repetitive
square-wave oxidation/reduction cycles, was constructed for the determination of promyelocytic
leukemia/retinoic acid receptor α fusion genes in acute promyelocytic leukemia, using methylene
blue (MB) as the electroactive probe [48]. The active surface area of the NPG electrode was about
one order of magnitude greater than the one of a bare flat counterpart. The MB response, studied by
differential pulse voltammetry, decreased when the probe was hybridized with target DNA. The DNA
biosensor was specific for the complementary strand and the obtained response was linear within a
concentration range from 60 pM to 220 pM, with a LOD of 6.7 pM.

Nanostructured Au deriving from the dealloying technique was utilized to construct an
electrochemical biosensor based on glucose oxidase which displayed a very stable enzyme
immobilization and optimum performance for glucose sensing thanks to the uniformly distributed Au
nanostructures [49].

As far as the surface nanopatterning is concerned, a lactate enzyme biosensor was developed
exploiting a nanostructured rough gold surface obtained by electroreduction of a thick oxide layer,
previously pre-formed in acid solution [25]. The nanopatterning process generates a very high
active area that allows for a high lactate oxidase loading and decreases the charge transfer resistance,
as verified from EIS experiments. As a consequence, the biosensor shows a wider linear range
concentration (up to 1.2 mM) and higher sensitivity for lactate determination, if compared to a
polycrystalline gold electrode [50].
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The optimal performances displayed by the lactate biosensor suggested to other researchers
that rough Au electrode surfaces can be considered as promising electrochemical transducers for the
production of other bioanalytical platforms. In fact, DNA biosensors based on nanostructured Au
electrodes have been fabricated for the detection of synthetic short DNA sequences [47], typical genes
fragments and bacterial DNA [26].

Nanopatterned Au was used to develop a novel genosensor for the detection of a characteristic
gene (lacZ gene) of the Enterobacteriaceae family which was usefully applied to detect PCR amplified
real samples, using a simple sample pre-treatment. A synthetic 25-mer DNA capture probe, modified
at the 5′ end with an alkylthiol, able to hybridize with a specific sequence of lacZ gene, was assembled
on the rough Au surface, and the extent of hybridization was electrochemically recorded by using
two different complexes of aminoruthenium (III). The developed genosensor showed a remarkable
long-term stability, a wide linear range for target concentrations, and a higher sensitivity than a non-
nanostructured biosensor [26].

3. LDHs and Other Inorganic Materials

3.1. Electrodeposition

The first authors to report the electrochemical synthesis of LDHs were Indira and Kamath in
1994 [51,52] who described the synthesis of bulk samples of LDHs containing Co(II) or Ni(II) and
Al(III) in the bivalent/trivalent metal ratio equal to 3, by cathodic reduction of nitrate ions and water
to generate the basic environment necessary for LDH precipitation. The one-step process consisted of
a galvanostatic method, applying a fixed current density for 4 h, in a divided electrochemical cell with
a platinum flag (surface area 3 cm2) cathode.

When a cathodic polarization is applied to the working electrode in an aqueous solution containing
nitrates and a bivalent and a trivalent metal of radius compatible with that of a LDH structure, the
following Reactions (1)–(7) occur, with the overall effect of increasing the pH close to the electrode
surface making it suitable for the occurrence of the LDH precipitation:

H+ + e− → Hads (1)

2H+ + 2 e− → H2 (2)

NO3
− + 2 H+ + 2 e− → NO2

− +H2O (3)

NO3
− + 10 H+ + 8 e− → NH4

+ + 3 H2O (4)

2 H2O + 2 e− → H2 + 2 OH− (5)

NO3
− + H2O + 2 e− → NO2

− + 2 OH− (6)

NO3
− + 7 H2O + 8 e− → NH4

+ + 10 OH− (7)

For sensing applications it is desirable to produce thin films well adherent to the electrode surface,
thus, the procedure proposed by Kamath and co-workers had to be adapted and optimized to provide
films of controlled thickness, homogeneously coating the electrode surface.

To this aim, Tonelli’s research group conducted an extensive study to optimize the electrochemical
deposition of a Ni/Al LDH on Pt electrodes [53]. The procedure is based on the potentiostatic
reduction of nitrate ions for a very short time (a full electrode coverage can be achieved within 60 s),
the film thickness being easily tunable by modifying the applied potential and electrodeposition
time. Moreover, since peculiar features of a chemical sensor are the repeatability and reproducibility
of its response, the electrode cleaning procedure before the electrodeposition step was thoroughly
investigated with the aim of enhancing the mechanical adhesion of the coating to Pt surface [5].
The results of Tonelli’s group demonstrated that an electrochemical pretreatment of the Pt surface in
sulphuric acid (consisting of 250 CV cycles between 0.20 and +1.30 V vs. SCE in 0.1 M H2SO4, at a scan
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rate of 1 V·s−1 and a subsequent application of a cathodic potential of −0.90 V for 300 s in 1 M H2SO4),
was the best one to obtain an improved performance of the LDH films.

The textural properties of the LDH films prepared by potentiostatic electrodeposition were
dependent on the duration of the potential pulse. Figure 5 shows the SEM characterization of Ni/Al
LDH coatings coming from pulses of different length, i.e., 60 (A), 100 (B) and 200 s (C). At 60 s, a dense
and homogeneous membrane made of nanoparticles with an average size lower than 50 nm, and
connected in a gel-like manner was obtained. When the electrodeposition lasted longer, nanoparticles
having a larger mean dimension were formed, still retaining the sand rose morphology typical of LDHs.
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Also the thickness of the LDH films clearly depended on the electrodeposition time: generally
films of about 150 nm were obtained for a deposition time of 60 s, and this thickness was the most
suitable to obtain LDH films suitable for sensing applications.
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3.2. Electrochemical Sensors Based on Redox Active LDHs in Basic Solution

Electrodes coated with Ni/Al and Co/Al LDH thin films can be used as chemical sensors for a
wide range of analytes thanks to the capability of the bivalent metal (Me = Ni or Co) to act as a redox
mediator following the reaction scheme:

Me(II)LDH + OH−
 Me(III)-OHLDH + e− (8)

Me(III)LDH + reduced analyte→ oxidized analyte + Me(II)LDH (9)

The reaction needs a basic environment to occur effectively (OH− ions that diffuse inside/outside the
LDH layers play a key role in the electrocatalytic process) and this fact limits the pH range of Ni or Co
based LDH thin films applications, being the required pH higher than 10.

The nature of the bivalent metal and its redox potential affect the nature of detectable analytes:
actually, Ni has an electrocatalytic activity for the oxidation of alcohols, polyhydric compounds and
amines [54,55]. The substitution of Ni with Co induces a selectivity in the electrooxidation of molecules
containing hydroxyl groups, due to the lower redox potential of Co, and thus Co-based LDHs do
not display electrocatalytic activity towards monohydric compounds. Consequently, only molecules
containing more than one hydroxyl functional group (e.g., glycerol, monosaccharides, polysaccharides,
salicylic acid, etc.) can be oxidized at electrodes modified with Co-based LDHs [56,57].

Sensors exploiting thin films of LDHs have been proven very useful also in the detection of simple
analytes that usually cause problems of fouling at the electrode surface, such as phenol [5], or in
the detection of more complex compounds of environmental concern, such glyphosate (Glyp) and
gluphosinate (Figure 6A) [54]. Their response is very stable, lifetime being typically of about 15 days
and the mechanical stability is so good that the sensors can effectively operate both in batch and in
flow conditions (Figure 6B).

All these results point out the role of the bivalent metal in determining the electrocatalytic features
of the LDH thin films, but recent studies have shown that the presence of a redox active trivalent metal,
such as iron, in the brucite structure causes an enhanced performance of the modified electrodes due
to a higher number of Me(II) electrochemically active sites [58].
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Figure 6. Examples of I vs. t curve obtained (A): at a Ni/Al LDH coated Pt electrode in batch for seven
successive additions of 0.125 mM Glyp, inset shows the LOD of Glyp (Eappl = +0.49 V vs. SCE) in
0.1 M NaOH; (B): at a Co/Al LDH coated Pt electrode in FIA, by injecting fructose solutions at different
concentrations (1.0 × 10−4, 2.0 × 10−4, 3.0 × 10−4 and 4.0 × 10−4 M). Eluent: 0.01 M NaOH containing
0.1 M KNO3, flow rate: 1 mL min−1; Eapp: + 0.50 V vs. Ag/AgCl. Images reproduced from [59,60]
with permission.

All the modified electrodes described so far exploit an electrocatalytic oxidative process occurring
in the anodic potential range. A different transduction mechanism was proposed by Qiao et al. for the
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detection of antracene in 1 M KOH solution [61]. The authors used the electrodeposition approach to
prepare Cd/Al-LDHs-coated GC electrodes. The proposed sensor was based on the redox reaction
Cd(II)+2e− → Cd which requires the loss of OH− ions from the LDH structure to maintain neutrality.
The presence of anthracene in the solution hindered such a loss since the organic compound adsorbed
on the surface of the LDH, thus influencing the Cd peak signal. This property allowed the detection of
the analyte in real samples of cloud-rain water [61].

3.3. Analytical Applications of LDHs in Non Basic Environment

Besides the analytical applications of the above described LDHs, materials not containing a redox
active metal can also be employed for the development of sensors. As an example, the capability of
the LDH to preconcentrate the analyte can be exploited to produce amperometric sensors displaying
very low LODs. Li et al. developed a dihydroxy-benzene sensor by electrochemical potentiostatic
deposition of a Zn/Al LDH film on glassy carbon electrode (LDH/GCE). The LDH/GCE was used
for the sensitive and simultaneous determination of catechol (CA), and hydroquinone (HQ), in the
presence of resorcinol (RE), through differential pulse voltammetry (DPV) [62].

Under the optimized conditions, the DPV response of the modified electrode to CA (or HQ)
showed a linear concentration range from 0.6 µM to 6.0 mM (or from 3.2 µM to 2.4 mM) and the
calculated limit of detection was 0.1 µM (or 1.0 µM).

GCEs coated with a Zn/Al LDH synthesized by electrodeposition were also employed for the
detection of phenolic, gallic and caffeic acids. The results indicated that after the electrode modification,
the oxidation currents of the analytes were greatly enhanced due to the preconcentration performed
by the LDH [63].

Among the applications of LDHs as electrode modifiers to fabricate devices able to operate in a
non-basic environment the use of LDHs as a matrix to support enzymes is noteworthy. The approach
to immobilize the glucose oxidase enzyme during the electrodeposition step of a Ni based LDH was
proposed by Tonelli et al. obtaining in a very reproducible and fast way a glucose biosensor [64]. The
same procedure was also employed to immobilize lactate oxidase, with the aim of realizing a lactate
biosensor [65].

3.4. Composite Systems Layered Double Hydroxides-Metal NPs

Metal nanoparticles and LDHs can be coupled to obtain, by electrodeposition, composite materials
able to confer an enhanced performance to the device. Xu et al. prepared a nanocomposite made of
Au-NPs and Co/Mn LDH on an ITO electrode to fabricate a hydrogen peroxide sensor that displayed
good stability and optimum electrocatalytic activity toward H2O2 oxidation. The excellent performance
of the sensor can be attributed to the multiple synergetic effects between Au-NPs and the Co/Mn
LDH support that reduce the size of the nanoparticles and improve the conductivity of the composite
material [33]. A sensor for H2O2 was also developed exploiting a composite material made of Ag
dendrites and LDH, obtained by electrodeposition of the nanostructures on a GCE previously coated
with a Mg/Al LDH [66].

The authors demonstrated that the presence of the LDH significantly enhanced the electrocatalytic
performance of the sensor. The Ag-NPs/LDH coated electrode showed a linear response in a range
from 10 µM to 20 mM and a LOD of 2.2 µM, whereas in the absence of the LDH the sensor showed a
limited linearity range (from 0.1 to 10 mM) and a higher LOD (46 µM). The LDH substrate induced the
formation of more Ag dentrites with smaller size, resulting in a higher surface area which, in turns,
leads to a higher electrocatalytic activity. The SEM characterization of the modified electrode using
ITO glass as a substrate is shown in Figure 7.
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Besides the application for H2O2 detection, nanocomposites made of metal NPs/LDH can be
utilized in other fields. Cui et al. developed a sensor for nitrite based on the electrodeposition
of Au-NPs on a GCE modified with a copper calcined layered double hydroxide (Cu-CLDH).
Electrochemical experiments showed that Au-NPs/CLDH composite film exhibited excellent
electrocatalytic activity for nitrite oxidation due to the synergistic effect of the Cu-CLDH and Au-NPs.
The superior electrocatalytic response to nitrite was mainly attributed to the large surface area,
minimized diffusion resistance, and enhanced electron transfer of the Cu-CLDH and Au-NPs composite
film [67].
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GC or graphite electrodes modified by electrodeposition of Pt-NPs on which a Ni/Al LDH was
electrochemically deposited also showed enhanced performance for glucose and ethanol detection; in
particular the presence of Pt-NPs allowed to achieve a wider linearity range. When the support was
GC the upper limit of concentration for ethanol determination was 65 mM [68].

A similar composite was proposed by Gong et al., who intercalated Pt nanoparticles inside the
interlayer of a Ni based LDH to develop a sensor for organophosphate pesticides (OPs) detection.
The resulting composite matrix facilitated the preconcentration of methyl parathion (MP), chosen as
a model compound of OPs, through solid-phase extraction and made possible a sensitive stripping
determination by square wave voltammetry, with a LOD of 0.6 ng mL−1 [69].

The authors proposed a new electrochemical sensing protocol (Figure 8) which involves the
one-step electrosynthesis of a thin Ni/Al-LDH film onto a GC electrode (A), subsequent incoming of
PtCl62− (B), followed by electrochemical reduction to form the assembly of NanoPt and Ni/Al-LDH(C),
then the intercalation of MP into the interlayer space (D), and finally the electrochemical stripping
detection of the adsorbed MP (E).
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3.5. Metal Oxide Nanoparticles

Several transition metal oxides NPs can be used as electrode modifiers to build electrochemical
sensors. Among the most used transition metals are iron, copper, cobalt, nickel, manganese, titanium,
silver, vanadium, zirconium, zinc, and tungsten. Metal oxide nanoparticles can be prepared by means
of different methods and a comprehensive review has been recently published [70]. Among them,
electrochemical deposition plays an important role, mainly to synthesize copper or nickel oxide NPs.

The most extensively used metal oxide nanostructures for electrochemical sensing applications
are CuO and Cu2O. Different morphologies have been obtained using chemical or electrochemical
protocols [71–74] on various electrode materials, mainly carbon-based, such as graphene, carbon
nanotubes or carbon fibers, since these supports have been demonstrated to enhance the charge
transfer and, consequently, the device performance [75–77]. The most important application in the
field of electrochemical sensing of electrochemically deposited copper oxides is glucose oxidation, in
basic solution, which exploits the capability of copper to act as a redox mediator.
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As an example, Yang et al. prepared a non-enzymatic glucose sensor based on a composite
Cu2O/TiO2 [78]. The first step of the electrode preparation was the electrodeposition, by anodic
oxidation, of helical TiO2 nanotubes array with a diameter of about 105 nm, followed by a second
step in which a layer of a Cu and Cu2O mixture was deposited, with an approximate thickness of
several hundreds of nanometers. The authors obtained an electrode with excellent electrocatalytic
activity toward glucose oxidation (Figure 9). The linearity between the response current and the
glucose concentration was demonstrated in the range from 0.1 to 2.5 mM with a sensitivity of
4895 µA cm−2 mM−1. Such a high sensitivity was attributed to the synergistic effect of the small
Cu−Cu2O grain size and the large surface area of the helical TiO2 nanotube arrays as well as to the
fast electron transfer.Sensors 2019, 19, x FOR PEER REVIEW 15 of 28 
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Cu2O nanoparticles of controlled size were also prepared by electrodeposition in the presence of
ethylenediamine (EDA) in the electrolytic bath. Through this procedure, a precise control of the size
and morphology was demonstrated, obtaining Cu2O NPs from 54 to 966 nm [79].

Among metal oxides, Ni oxide modified electrodes are also very interesting for chemical sensing,
and they exhibit a remarkably high catalytic activity for glucose oxidation due to the formation
of the Ni(OH)2/NiOOH redox couple in alkaline medium, involving an electrochemical process
similar to that described for LDHs. Recently, a number of Ni oxide-based glucose biosensors has
been investigated [80–86]. Actually, to improve the performance of the sensors, many fabrication
processes, such as electrodeposition, have been investigated as well as composites with graphene
and/or polymers, and alloying with other metals. Electrodeposition is particularly attractive and
the process can be simply controlled by adjusting the applied current, scanning potential window,
number of cycles and duration of the process, but the low sensitivity and narrow linear range are
the major drawbacks for the electrodes modified with electrodeposited Ni oxide or hydroxide [80,85].
To overcome this problem, recently, Ni/NiO core–shell NPs were obtained on a GCE using a simple
potentiodynamic method. The Ni/NiO–GCEs exhibited a high sensitivity and selectivity for the
detection of glucose in a wide concentration range, from 2 µM to 14 mM and a very low detection limit
of 0.4 µM [87].

NiO nanoparticles electrochemically synthesized on multi-walled carbon nanotubes (MWCNTs)
were also used for the modification of glassy carbon electrodes to achieve lactose detection in NaOH.
The authors used a pulsed potential electrodeposition process to accumulate nickel oxide (NiO) on
the nanotubes and the NiO particles size was controlled by the number of potential pulses, becoming
larger if the pulses increased [88].

Liu et al. [89] reported the simultaneous electrodeposition of nickel oxide NPs together with
electrochemically reduced graphene oxide (ERGO) onto GC electrodes for the acetaminophen detection.
The developed sensor showed excellent electrocatalytic activity toward the oxidation of acetaminophen
owing to the synergic effect of Ni2O3/NiO particles and ERGO, the latter contributing to the increase
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of the accessible reactive area. The sensor displayed a low value of LOD (0.02 µM) and a wide linearity
range for acetaminophen determination (from 0.04 µM to 100 µM) by DPV, and was satisfactorily
applied to pharmaceutical products and urine samples.

4. Polymers

4.1. Electrosynthesis of Conductive Polymers

Electrosynthesis of conductive polymers is usually carried out by an oxidative polymerization
of a suitable monomer. The most important polymers that can be produced with this approach
belong to the classes of polythiophenes, polypyrroles and polyanilines. The cathodic polymerization
is less used and the main applications concern the production of poly(p-phenylenevinylenes) and
poly(p-xylylenes) which are used in the fabrication of light emitting devices. For these reasons, only
the anodic polymerization is described in this review.

The overall reaction is:

(n + 2)HMH→ HM(M)nMH(nx)+ + (2n + 2)H+ + (2n + 2 + nx)e− (10)

where HMH and HM(M)nMH are the monomer and the polymer, respectively. The polymerization
is induced by applying a potential to the electrode that is enough anodic to oxidize the monomer to
form the radical cation. The coupling of radical cations followed by the elimination of two hydrogen
ions leads to the formation of species with a higher molecular mass. Ideally, both the reaction of
radical cations coupling and proton elimination are fast, but the experimental evidences suggest that
the rate determining step is the H+ removing. For example, the addition of 1% water to acetonitrile
significantly increases the rate of the polymerization by helping the extraction of one hydrogen ion
because H2O acts as a base [90]. Since the higher is the number of the repetitive units in the polymer,
the lower is the oxidation potential, the process can proceed by the formation of radical cations of the
dimeric and oligomeric species that can react together to increase the molecular weight. The formation
of polymer can be described by three stages. The first step is the production of soluble oligomers in
the diffusion layer, mainly due to dimerization reactions. When the oligomers chain is long enough,
the macromolecules are not anymore soluble in the solvent and, consequently, they precipitate on the
electrode surface with nucleation and growth processes. Finally, the polymerization takes place in
solid phase to produce longer chain molecules. It is worth noting that the polymeric species are more
easily oxidizable than the monomeric one, therefore, a fraction of the charge that flows through the
electrode is consumed to oxidize the polymer. For this reason, the polymer is produced in an oxidized
form and nx electrons must be added to the reaction stoichiometry (reaction (10)). x represents also the
fraction of charge for each repetitive unit in the polymer.

The polymerization can be performed either by exploiting a potentiostatic or a potentiodynamic
approach. Both electropolymerization modalities offer advantages, but exhibit also disadvantages that
are clearly described by Janákya and Rajeshwar [91].

The electrosynthesis of conductive polymers generally leads to a morphology characterized by
a cauliflower-like structure. Such a kind of materials is widely used for sensing, but this review
aims to describe the sensing applications obtained with more complex nanostructures. The most
employed approach to obtain nanostructures exploits a template that is removed after electrochemical
polymerization. A template can be used to obtain the desired morphology or to produce interaction
sites for the analytes in order to have a molecularly imprinted polymer (MIP). Finally, also template-free
syntheses have proposed in literature.

4.2. Electrochemical Polymerization of Insulating Polymers

The oxidative polymerization above described can be performed also for insulating polymers
wherein the repetitive unit has an aromatic ring. The main difference with the synthesis of conductive
polymers is due to the nature of the electrode modifier that cannot conduct current and, consequently,
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the film growth leads to the passivation of the electrode surface. On one hand, it is useless for the
development of sensors that require a charge transfer to work. On the other hand, the insulating
nature of the materials hinders the polymer growth and, consequently, this can be exploited to obtain
film with a controlled thickness. For example, Gualandi and Tonelli have used this feature to produce
reproducible polyphenol thin films which were used for the detection of OH radical by means of an
aromatic hydroxylation [92]. This feature is widely utilized for the fabrication of MIP based sensors,
because they require a very fine control of polymer thickness.

4.3. Analytical Applications of Nanostructured Conductive Polymers

Conductive polymers can be synthesized with a well-defined morphology by electrosynthesis [93]
by the use of a template or by setting the electrosynthesis conditions. The general aim is the
improvement of sensor performance by increasing the surface area. Nevertheless, this approach
may hinder the charge transport in the polymer with a loss of performance.

Bai et al. [94] have thoroughly studied the effect of the parameters employed in
template-free electrochemical polymerization of 3,3-bithiophene, 1,3,5-tri-(thiophen-2-yl)benzene,
and tris(4-(thiophen-2-yl)phenyl)-amine on the morphology of the thin films. Nanovesicles, nanorods,
nanocauliflowers and nanotubes can be obtained only by controlling finely the electrosynthesis
conditions. The authors exploited these structures as active materials to develop a sensor for
the detection of nitro-analytes by cyclic voltammetry. Similarly, Wu et al. [95] have studied
the electrochemical polymerization of aniline in solutions containing different macromolecules,
thus obtaining different nanostructures. The modified electrode has been used for hydrogen
peroxide detection.

Anodized aluminum oxide and track etched polycarbonate membranes are the templates usually
employed for the preparation of nanotubes and nanowires. Figure 10 shows a sketch of the fabrication
step to obtain PEDOT nanowires using a nanoporous alumina membrane [96]. Since these materials
are insulating, a conductive layer, in the form of gold film, must be deposited on the template so that it
acts as working electrode during the electropolymerization. The nanotubes morphology is obtained
because the polymer is formed in the pores of the structure that is solubilized with a proper solvent
after the synthesis.
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Hajian et al. [97] used a porous alumina template to electrosynthesize polythiophene nanotubes,
that were released by dissolving the template in 0.1 M NaOH solution. The nanotubes were
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suspended in ethanol and drop casted on a glassy carbon support. The modified electrode was
used to electrochemically detect riboflavin. Salgado et al. [98] proposed PEDOT nanowires covered
with polydopamine as electrode modifier for the detection of dopamine by cyclic voltammetry.
The nanowires were produced by exploiting a silica template that was generated in situ on the
Pt electrode. The nanowires derived from two steps electrochemical polymerization in order to obtain
a core of PEDOT:PSS covered by a polydopamine layer, allowed reaching higher sensitivities than
simple PEDOT nanowires.

For the above described sensors the signal transduction is based on the intrinsic electrocatalytic
proprieties of the conductive polymer, but it is possible exploiting also the sensing features of an
element that is co-deposited. Gokhale et al. [99] performed the electrosynthesis of PEDOT/nitrate
reductase nanowires using a polycarbonate membrane and they utilized the chemically modified
electrode for nitrate determination. Moreover, polypyrrole nanotubes have been electrodeposited
together with glucose oxidase to fabricate an amperometric sensor with enhanced performance for
glucose determination [100].

An intriguing approach is the use of conductive polymer nanotubes as components in an electronic
circuit. Polypyrrole nanofibers for sensing were also produced by template-free electrodeposition on
Si 100 in the presence of L-camphorsulfonic acid [101]. The interface between Si and nanofibers was
exploited to produce a Schottky junction that can detect m-dihydroxybenzene thanks to the variation
of electrical conductivity. The limit of detection was 1.51 mM, a value that is higher than the ones
which can be obtained with the most common electrochemical techniques.

Conductive polymer nanotubes can be prepared by template electrodeposition and, after that,
inserted between two electrodes to fabricate a chemoresistor sensor. Tolani et al. [102] used this
approach to produce an immunosensor for human serum albumin detection in liquid samples.
Moreover, polypyrrole and polyaniline have been used for H2 [103] and NH3 [104] sensing in
gas matrix, respectively. A chemoresistive immunosensor has been even produced using only one
polypyrrole nanowire [105]. Polypyrrole nanowire suspension was dispensed on 16 pairs of gold
interdigitated electrodes with a separation of ~70 µm, while an alternating current field was applied
between each pair of electrodes to induce an alternating current dielectrophoretic alignment. After
completing the evaporation, excess nanowires were manually removed using a probe tip under a
1000×magnification optical microscope. The nanowires were anchored to the electrodes thanks to a
gold electrodeposition that incorporates their extremities. After the modification with cancer antigens
(CA 125), the sensor could detect cancer biomarkers in human blood samples.

Nanonetworks of conductive polymers can be obtained using a suitable template. A network
of polyaniline was obtained by using polystyrene beads deposited on the electrode surface.
The porous substrate was modified with a suitable antibody to produce an immunosensor for
alpha-fetoprotein [106] (Figure 11). Nanonetworks can be also produced by exploiting the natural
oxygen evolution that takes place at the anodic potentials applied for the electrochemical synthesis.
The polymer is deposited between the bubbles and a porous structure is formed. Ma et al. have
utilized this approach to obtain an electrode modified with a polypyrrole network functionalized with
glucose oxidase for amperometric sensing of glucose [107]. Moreover, a methanol gas sensor has been
fabricated by exploiting a nanostructured polypyrrole film obtained by electrochemical polymerization
on interdigital electrodes, in the presence of perchlorate as dopant [108].
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4.4. Molecularly Imprinted Polymers

Molecular imprinted polymers have a structure that is characterized by synthetic receptors that
are prepared by the molecularly imprinting process [109–111]. The polymerization is performed in
the presence of the target molecules that act as a shape around which the recognition sites are formed.
For sensing applications, MIPs outperform biological receptors in term of durability, low cost and
chemically stability. The size of target molecules varies from less than 1 nm for the smallest ones, such
as ascorbic acid [112], to about 10 nm for proteins or other high molecular weight biocompounds. If it
is difficult to define a recognition site smaller than 1 nm as a nanostructure, certainly an imprint of a
macromolecule of 10 nm can be considered a nanostructure. For this reason, this review is focused on
MIPs for large molecules or with a nanostructured morphology. Figure 12 shows the main strategies
for the electrochemical synthesis of MIPs suitable for protein detection.

Sensors based on MIPs exploit a signal transduction that is mainly electrochemical, though
surface plasmon resonance and quartz microbalance have been also reported. Anyhow, a thin film
of polymer must be usually deposited on a surface and, for this reason, electrosynthesis offers some
intrinsic advantages in addition to the ones previously described in the Section 4.3. Electrochemical
polymerization does not need an initiator, and this is a key point when the synthetic receptor must be
built around a huge biological molecule, such as a protein [113]. In fact, several initiators are reactive
compounds that can modify the ternary structure of biological molecules during polymerization,
and, consequently, the resulting recognition sites would take a wrong shape. In addition, the film
thickness is a key parameter for the synthesis of some MIPs for protein detection synthesized based on
different electrochemical techniques. In addition, the film thickness is a key parameter for the sensor
working and the electrochemical polymerization is the best approach to finely control it [114,115], e.g.,
by varying the number of cycles during a potentiodynamic synthesis. Table 1 reports the synthesis of
some MIPs for proteins detection based on different electrochemical techniques.

The electrochemical polymerization is usually performed in water to preserve the ternary structure
of biomolecules and, at the same time, the template removal should be carried out in a way that does
not alter the structure of the recognition sites. The formation of a prepolymerization complex can
help the synthesis, and it can be obtained by simply dissolving the target molecules in the monomer
solution [110,116]. Moreover, different strategies can be followed to increase the number of active sites
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in the polymer. The analytes can be concentrated on the electrode surface by applying a potential that
is the opposite one of the target molecule [117]. However, applying an anodic potential can lead to a
depletion of template molecules close to electrode surface. A pulsed potential ramp can overcome this
issue. Another possible solution is anchoring the target compound to the electrode surface through a
self-assembled layer which leads to a significant enhancement of analytical performance [118].
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Table 1. MIPs for protein detection.

Polymerization Monomer Analyte Detection Ref.

PT +0.9 V EDOT Avidin Microgravimetric chip [114]

PD 0–+1.2 V 50 mV·s−1 p-bis(2,2′-Bithien-5-yl)methyl-alanine-5,5
′,5′ ′-methanetriyltris(2,2′-bithiophene)

Human serum
albumin DPV, EIS [119]

PD −0.7–+0.6 V 0.1 V·s−1 Methylene green Thrombin EIS [120]

PD −0.2 V–+1.2 V 100 mV·s−1 Pyrrole Bovine hemoglobin DPV [121]

PD 0–+1.1 V 50 mV·s−1 o-Phenylenediamine Troponint CV, DPV [122]

PD 0–+1.1 V 50 mV·s−1 o-Phenylenediamine Troponint CV, EIS [116]

PD −0.2–+1.2 V Pyrrole Bovine hemoglobin DPV, EIS [123]

PD −0.45–+0.55 V 50 mV·s−1 Dopamine Immunoglobulin G QCM [124]

PD 0–+0.9 V Phenol Ovarian cancer
marker DPV [125]

PT = potentiostatic synthesis, PD = potentiodynamic synthesis, DPV = differential pulse voltammetry, CV = cyclic
voltammetry, QCM = quartz crystal microbalance, EIS = electrochemical impedance spectroscopy.
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The current research trend is to increase the surface area of MIP-based sensors because it
is strictly linked to binding capabilities. However, the requirement of a thin film is maintained
because a high accessibility to the synthetic receptor is mandatory to have a quick sensor
response [114]. The electrochemical polymerization can be carried out with a sacrificial scaffold
to obtain ordered nanostructures in the form of nanotubes, nanowires or nanoparticles, as above
reported. The nanostructured MIPs exhibit higher performance than thin film materials in terms of
binding ability. Suriyanarayanan et al. [126] clearly show the advantages of nanostructured MIPs
when the transduction is based on quartz microbalance. The sensitivities for a MIP nanowire is about
20 times higher than that of a sensor based on a MIP thin film. Table 2 reports some information about
nanostructured MIPs found in the literature.

Table 2. Nanostructured MIPs for sensing.

Polymerization Monomer Template Structure Nanostructure Analyte Detection Ref.

PD (from 0 to +1.4 V
vs. Ag/AgCl,
50 mV·s−1)

2,2′-Bithiophene-5-carboxylic
acid

Porous crystalline
Metal−Organic

Framework

Molecular
cavities Lipocalin FET [127]

PD from 0.0 to +0.8 V Pyrrole No template Nanowires Dopamine DPV [128]

PD from −0.4 to
+1.6 V at 50 mV·s−1

3-Thienyl-boronic acid (3-TBA)
and 3-thiophene acetic acid

(3-TAA), and thiophene

Micelle deposition,
alumina template

Nanoparticles,
nanowires Aspirin QCM [126]

PD from 0 to +1.2 V
100 mV·s−1 Pyrrole Deposition on ZnO

nanorods Nanorods Epinephrine DPV [129]

PD from −0.4 V to
+1.0 V (vs. Ag/AgCl,
scan rate 50 mV·s−1

Aniline Nanoporous alumina
membranes Nanowire Catechol CV [130]

PD from 0 V to +1.1 V
at a scan rate of

100 mV·s−1

Terthiophene-based monomer
with an acetic acid moiety

Polystyrene
microbeads Nanonetwork Aspartame QCM [131]

PT +1.3 V 2,3′-Bithiophene Nanoparticles Nanonetwork Human serum
albumin EG-FET [132]

PD from −0.2 to +1.2
V 100 mV·s−1 Pyrrole SiO2–CHO

microsphere Nanonetwork Bovine
hemoglobin DPV [123]

FET = field effect transistor, EG-FET = extended-gate field effect transistor.

5. Conclusions and Future Perspectives

In this review the main electrochemical techniques employed to synthesize nanomaterials to be
used as coatings of conductive surfaces for the development of electrochemical sensors have been
described. When the electrodeposition is feasible the adhesion of the coating is better than that
achievable with other modification techniques, and the nanostructures are already anchored to a
support without the use of chemical or binding agents that could interfere with subsequent sensing
applications. However, electrochemical depositions produce a low amount of material on the electrode
surface making the characterization more complex. For example, the determination of size distribution
for chemically synthesized metal NPs can be easily obtained with dynamic light scattering, a technique
that cannot be used for coating investigations. In the same way, the structural and elemental analysis
is difficult to accomplish for LDHs unless the electrosynthesis is repeated several times on the same
electrode. Moreover, the molecular weight distribution is rarely determined for electrodeposited
polymers. The research efforts should be devoted to the progress of characterization tools, in order to
better identify the correlation between sensing performance and structural/chemical properties.

The major advantage in the use of nanomaterials, independently of the kinds of chemical modifiers
employed, is the big increase of the electrochemically active area and the better accessibility of the
analyte to the electrode surface, as demonstrated by the improvement of both sensitivity and limit
of detection. The available larger area is also beneficial for the immobilization of biomolecules and,
therefore, in the fabrication of biosensors. Moreover, the features of the nanostructure can lead to an
increased selectivity of the sensors which is generally the major drawback of the electrochemical ones.
As an example, a different morphology and preferential crystalline faces of Au nanomaterials are able
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to induce selectivity for the detection of chemically similar analytes. In case of LDHs the different
standard potential of the redox active metal makes possible the discrimination between oxidizable
molecules containing only one or more hydroxyl groups. As to polymeric modifiers, MIPs can be
considered the most attractive materials to increase selectivity due to their recognition sites.

As far as metal nanomaterials are concerned the research could be especially focused on multiple
metal composites so to improve the stability and the selectivity of the (bio)sensors thanks to the
different electrochemical reactivity.

As to LDHs the increase of electrical conductivity and accessible area which can be obtained with
the insertion of carbon based nanomaterials should address the research towards new electrochemical
procedures for the one-step deposition of the composites.

At present, MIPs are particularly employed as electrode modifiers for the detection of stable
macromolecules. In the next future, their use will be probably expanded to the determination of
proteins with unstable ternary structure.

All these facts lead to the conclusion that the combination of electrochemistry with nanotechnology
will find more and more applications for sensing in the next future. Although the fascinating features
of electrochemical syntheses, their large use is hindered for mass production as it is very hard to
perform if compared to other methods such as inkjet printing, spin coating or roll-to-roll production.
Research efforts should be devoted to scale up the electrochemical syntheses of those devices that offer
sensing ability that can be hardly reached with other approaches.
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