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Abstract: The explicit solution of the traditional ROF model in image denoising has the disadvantages
of unstable results and requiring many iterations. To solve the problem, a new method, ROF model
semi-implicit denoising, is proposed in this paper and applied to change detections of synthetic
aperture radar (SAR) images. All remote sensing images used in this article have been calibrated by
ENVI software. First, the ROF model semi-implicit denoising method is used to denoise the remote
sensing images. Second, for the denoised images, difference images are obtained by the logarithmic
ratio and mean ratio methods. The final difference image is obtained by principal component analysis
fusion (PCA fusion) of the two difference images. Finally, the final difference image is clustered
by fuzzy local information C-means clustering (FLICM) to obtain the change regions. The research
results show that the proposed method has high detection accuracy and time operation efficiency.

Keywords: remote sensing image; ROF model semi-implicit denoising; PCA fusion; FLICM;
change detection

1. Introduction

Change detection of remote sensing images quantitatively analyzes image information at different
times in the same area, so as to obtain the change information of the coverage area [1]. Synthetic
aperture radar (SAR) is an active remote sensing technology that can collect ground information at any
time and under any conditions [2,3]. Remote sensing image change detection technology can assist in
updating geographic data, assessing disasters, predicting disaster development trends, and monitoring
land use. The processing steps of change detection mainly include image preprocessing, generation of
the difference image, detection of the change information, and evaluation of the detection result [4].
However, in SAR imaging processing, the coherent interaction between elementary scatterers on the
ground and the electromagnetic waves leads to a multiplicative noise, known as speckle, affecting the
SAR images. The interference noise will inevitably be introduced into a SAR image and affect change
detection in SAR images [5].

In order to obtain more accurate details of the change, an image preprocessing stage is needed
to reduce the noise in the SAR image. There are many methods for image space domain denoising,
such as mean filtering [6], median filtering [7], Wiener filtering [8], and Lee filtering [9] methods.
Furthermore, image transformation domain denoising methods include the Fourier transform [10],
wavelet transform [11], and non-subsampled contourlet transform (NSCT) [12] methods. For change
detection in SAR images, an image change detection algorithm based on wavelet fusion of ratio
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images was proposed in [13], which introduced wavelet domain decomposition into remote sensing
image change detection. However, the wavelet transform can only be decomposed in three directions:
horizontal, vertical, and diagonal. This means that translational invariance and multi-orientations are
not considered, which will cause an image offset error, reducing change detection accuracy. NSCT
has good directional selectivity and translational invariance and can effectively improve detection
accuracy. Unsupervised detection of different SAR images based on an improved NSCT domain image
fusion algorithm was proposed in [14]. The efficiency of the algorithm was greatly improved, but in
terms of the details, NSCT had problems with retention. There was still a high amount of noise in the
detection results, and the detection accuracy is low.

In recent years, emerging mathematical methods for denoising have received more attention from
many scholars. The total variation (TV) model, namely the ROF model, was proposed in [15], and it
can effectively reduce noise and preserve the characteristics of the details. An image denoising method
based on the ROF model, using the convergence of a central difference discretization, was proposed
in [16]. A semi-implicit image denoising algorithm based on the matrix format of the ROF model was
proposed in [17]. An image denoising method based on the ROF model using a wavelet transform
was proposed in [18]. An improved TV-ROF denoising model based on split Bregman iteration was
proposed in [19]. A SAR image change detection method based on an adaptive total variation image
denoising algorithm was proposed in [20]. However, the explicit solution of the traditional ROF
model in the image denoising process has the disadvantages of unstable solution results and requiring
many iterations [21]. To improve the solution of the traditional ROF model, a semi-implicit method is
proposed in this paper and applied to the change detection of SAR images.

Based on the above analysis, in this paper a novel change detection algorithm is proposed to
improve the image change detection accuracy. In order to obtain more information about the changed
region, after semi-implicit denoising with the ROF model for SAR images, this paper combines
the advantages of the log ratio method and the mean ratio method to obtain the difference images
comprising the change information. Furthermore, this paper uses PCA (principal component analysis)
fusion to preserve the characteristics of the significant information in the image and to obtain the final
difference image. The fuzzy local information C-means clustering algorithm (FLICM) clusters the final
difference image to obtain the changed regions.

2. The Proposed Algorithm

Consider two co-registered intensity images T1 and T2, acquired of the same scene at different
times, whose sizes are M× N pixels. In order to determine the changed area of the scene over the
elapsed time, a novel change detection method is proposed in this paper. The algorithm steps are as
follows:

1. use the ROF model semi-implicit denoising method to denoise SAR images T1 and T2;
2. following denoising, obtain the difference images by the logarithmic ratio and mean

ratio methods;
3. using the PCA method, fuse the log ratio and mean ratio difference images to obtain the final

difference image; and
4. cluster the final difference image by fuzzy local information C-means clustering (FLICM) in order

to obtain the change regions.

The flow chart of the proposed algorithm for change detection is shown in Figure 1.
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Figure 1. Flowchart of the proposed algorithm for change detection. 
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Figure 1. Flowchart of the proposed algorithm for change detection.

3. Algorithm Introduction

3.1. ROF Model Semi-Implicit Denoising

The traditional display ROF model has disadvantages; the results are unstable and require a large
number of iterations [22]. Therefore, a semi-implicit discrete iterative solution method is proposed in
this paper, with the following steps:

1. establishment of the ROF model; and
2. numerical discretization of the ROF model.

3.1.1. Establishment of the ROF Model

Using the partial differential equation (PDE) for image denoising, a continuous function of slices
can be used to approximate the real signal in the image with the edge of the image as the boundary,
and the noise in the image is suppressed. Since the approximation is performed over the entire region
of the image, it will not cause blurring of the edges of the image. The ROF model is a partial differential
equation model based on the total variational method. Total variational image denoising constructs an
energy function for the image. Afterward, using the principle that the energy function of the noisy
image is larger than that of the original image, the denoised image is obtained by minimizing the
energy function.

The traditional variational method uses modern numerical algebra to solve linear equations by
introducing least squares fitting, but the effect is not satisfactory. Rudin, Osher, and Fatemi propose a
new nonlinear total variation method [15], shown in Equation (1). Then, by solving for the extremum
of the energy function, Equation (2), with the variational method, the corresponding Euler-Lagrange
equation is obtained, as shown in Equation (3):

minimize
∫

Ω

√
u2

x + u2
ydxdy (1)

E(g) =
λ

2

x

Ω

( f − u)
2
dxdy +

x

Ω

ρ
(√

u2
x + u2

y

)
dxdy (2)

0 =
∂

∂x
(

ux√
u2

x + u2
y

) +
∂

∂y
(

uy√
u2

x + u2
y

)− λ1 − λ2( f − u), inΩ (3)

where λ is the scale parameter which controls the similarities between the denoised and the original
images, Ω is the image area, u represents a noisy image, f indicates the original image without noise,
ρ is called the regularized parameter function, which is an incremental function of the gradient and
satisfies ρ ≥ 0. In Equation (2), λ

2
s

Ω

( f − u)2dxdy is used to restrict the approximation between the
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noisy image and the original image, while
s

Ω

ρ
(√

u2
x + u2

y

)
dxdy is used to restrict the smoothness of

the image.
PDE denoising uses a piecewise continuous function to approximate the real signal and suppress

the noise in the image. PDE denoising is a process of image evolution over time. The time parameter t
is introduced as the evolution parameter to solve the parabolic equation. That is, the gradient descent
method is used to solve the following evolution equation. The time parameter t is introduced to
conveniently represent the denoising process of a noisy image, which can convert Equation (3) into
Equation (4). The constraint conditions that satisfy the ROF model are given by Equations (5) and (6):

ut =
∂

∂x
(

ux√
u2

x + u2
y

) +
∂

∂y
(

uy√
u2

x + u2
y

)− λ( f − u), t > 0 (4)

u(x, y, 0) = f (x, y) (5)

∂u
∂n

= 0, onΩ (6)

When the constraints in Equations (5) and (6) are satisfied, the parameter λt can be obtained from
Equations (4) as shown in

λt = −
1

2σ2

x √
u2

x + u2
y −

 fxux√
u2

x + u2
y

+
fyuy√

u2
x + u2

y

dxdy (7)

3.1.2. Numerical Discretization of the ROF Model

The purpose of the numerical discretization of the ROF model is to optimize the solution of the
equation. In time, we adopt a preceding difference scheme, and in space, we use the semi-implicit
solution method. The semi-implicit solution method introduces the method of additive operator
splitting to numerically discretize the ROF model [23]. The two-dimensional image is computed
in the direction of two coordinate axes, and the problem is then transformed into a sum of two
one-dimensional problems. The convergence speed is increased by parallel computing.

For images T1 and T2, whose size are M× N pixels, where i = 0, 1, . . . , N, j = 0, 1, . . . , M, let the
positions be xi = ih, yi = jh, Nh = 1. Furthermore, the partial derivatives in the spatial directions
are defined as ∆x

± = ±(ui±1,j − ui,j) and ∆y
± = ±(ui,j±1 − ui,j). Let un+1 = u(xi+1, yj+1, tn+1) be the

n + 1th iteration result and un = u(xi, yj, tn) be the nth iteration result, where tn = n∆t. The image
boundary conditions are set to un

i0j = un
iN = un

i,M−1 = un
i,N−1, un

Mj = un
M−1j, un

Nj = un
N−1j, and

u0
ij = u0(xi, yj) + σϕ(xi, yj). With these definitions, Equation (4) is numerically approximated by

Equation (8):
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where



Pn
i,j =

√
(∆x

+un
ij)

2 + (minmod(∆y
+un

ij, ∆y
−un

ij))
2

Pn
i−1,j =

√
(∆x

+un
ij)

2 + (minmod(∆y
+un

i−1,j, ∆y
−un

i−1,j))
2

Qn
i,j =

√
(∆y

+un
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2
+ (minmod(∆x

+un
ij, ∆x

−un
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2

Qn
i,j−1 =

√
(∆y

+un
i,j−1)

2
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−un
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2

(10)

Equation (8) is semi-implicit and is expressed in matrix format as

un+1 =
1
2∑

l
[I− 2

∆t
h

H(un)l ]
−1

un − ∆tλn( f − un) (11)

where I is the identity matrix, and H = [aij] is an M × N matrix. H(un)x is the coefficient matrix
obtained by differentiating with respect to x, and H(un)y is the coefficient matrix obtained by
differentiating with respect to y, which have the following components:

aij(un)x =



1
Pn

i,j
, j = i + 1

1
Pn

i−1,j
, j = i− 1

−( 1
Pn

i,j
+ 1

Rn
i−1,j

), j = i

0, else

and aij(un)y =



1
Qn

i,j
, j = i + 1

1
Qn

i−1,j
, j = i− 1

−( 1
Qn

i,j
+ 1

Qn
i−1,j

), j = i

0, else

(12)

It can be seen that aij(un)x and aij(un)y are diagonally dominant tridiagonal matrices [24], and
the solution of Equation (11) can be realized in the X-axis and Y-axis directions simultaneously with
parallel processing, to reduce the time needed for the image denoising processing.

3.2. Generation of the Difference Images

The ways to generate a difference image include the difference and ratio methods, which involve
subtracting and dividing the corresponding pixels in the two images, respectively [25]. The difference
and ratio methods are simple to calculate but sensitive to noise in the images, which reduces the
accuracy of the detected changes. The difference image constructed by the logarithmic ratio method
can enhance the contrast of the changed region by nonlinear stretching on a logarithmic scale, while
the unchanged region of the difference image is smoother, which is beneficial for classification [26].
The mean ratio method can effectively enhance the borders of the changed area and small regions of
change in the images, and can also prevent the loss of change information [27]. The difference image
constructed by the mean ratio method depends only on the relative change in image intensity. It can
truly reflect changes in the images and retain more details.

In addition, a single difference image cannot fully represent the difference information. In order
to obtain more information about the change regions, this paper combines the advantages of the log
ratio and mean ratio methods to obtain difference images containing the change information. The log
ratio and the mean ratio difference images are obtained by using Equations (13) and (14), respectively,
for images A1 and B1:

ds1(i, j) =
∣∣∣∣log2

(A1(i, j) + 1)
(B1(i, j) + 1)

∣∣∣∣ (13)

ds2(i, j) = 1−min(
u1(i, j)
u2(i, j)

,
u2(i, j)
u1(i, j)

) (14)

where u1(i, j) and u2(i, j) represent the mean value of pixel (i, j) in images A1 and B1, respectively.
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3.3. Principal Component Analysis Fusion (PCA Fusion)

Principal component analysis (PCA) was first proposed by Karhunen and Loeve, and is also called
the K-L transform in mathematics [28]. It is a multi-dimensional orthogonal linear transformation
based on statistical properties. The PCA fusion method is mainly based on K-L transformation of
the two difference maps and re-projection onto the original coordinate system, so as to transform the
gray-scale features of the original image into new features. Finally, the optimized features are used
for change detection. The projected features are irrelevant, which suppresses the noise caused by the
internal correlations of the image and compresses the original large amount of information into several
feature directions. Quantitatively, components of the changed areas are enhanced, components of the
non-changed areas are suppressed, and the separability of the changed and the non-changed areas
is increased.

In this paper, PCA can be used to preserve the significant information in the image, by applying
it to the logarithmic ratio and mean ratio difference images after denoising, and constructing the
covariance matrix of the difference image. The eigenvalues and eigenvectors of the covariance matrix
are solved, thereby determining the weight coefficients and the final fused image in the difference
graph fusion algorithm.

The steps of PCA fusion are as follows:

1. For N images to be fused, treat each image as a one-dimensional vector xk, k = 1, 2, . . . , N.
Construct a data matrix X from the N images to be fused:

X = (x1, x2, . . . , xN)
T (15)

2. Solve for the covariance matrix Cov of X:

Cov =


σ11 . . . σ1j . . . σ1N
. . . . . . . . . . . . . . .
σi1 . . . σij . . . σiN
. . . . . . . . . . . . . . .
σN1 . . . σNj . . . σNN

 (16)

where σ2
ij is the variance X, and xi is the average of the ith vector, that is, the average gray value

of the ith image.
3. Solve for the eigenvalues λ1, λ2, . . . , λN of the covariance matrix Cov and the corresponding

eigenvectors u1, u2, . . . , uN . Here, λ1 > λ2 > . . . > λN and the newly obtained feature
vectors Y = (y1, y2, . . . , yN)

T satisfy Y = UTX, where U = (u1, u2, . . . , uN)
T , and Cy =

diag{u1, u2, . . . , uN}. At this time, y1, y2, . . . , yN are the 1, 2, . . . , n principal components, and
y1 has the largest variance, which contains a large amount of important information about the
difference graph.

4. Determine the weight coefficient ωi:

ωi =
λi

N
∑

i=1
λi

(17)

5. Find the final fusion image F:

F =
N

∑
i=1

ωiSi (18)

3.4. Fuzzy Local Information C-Means Clustering (FLICM)

A fuzzy local information C-means clustering algorithm (FLICM) was proposed in [29], and
the objective function of the traditional FCM algorithm was modified in [30]. The FLICM uses the
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optimization criterion function Jm to calculate the membership of each sample point to the class center.
The fuzzy factor Gki is introduced, and the trade-off between image detail information and image
noise is done automatically. The neighborhood pixels in the local window have a very flexible effect on
the center pixel. The local spatial information is mainly represented by the spatial Euclidean distance
between the neighboring pixels and the central pixel. This property can enable the fuzzy factor Gki
to better reflect the damping degree of the neighborhood information. This feature can balance the
classification tendency of each pixel in the neighborhood window and enhance the robustness of the
FLICM algorithm in the presence of noise. The FLICM clustering algorithm uses the optimization
criterion function Jm shown in Equation (19), and the fuzzy factor Gki shown in Equation (20):

Jm =
N

∑
i=1

C

∑
k=1

[µn
ki‖χi − vk‖2 + Gki] (19)

Gki = ∑
j=Ni

1
dij + 1

(1− µkj)
n‖χj − vk‖2 (20)

where χi is the local window center pixel; χj is a neighboring pixel near the center pixel i of the local
window; dij is the spatial Euclidean distance of pixel i and neighboring pixel j; vk is the cluster center
of class k; µkj is the membership of the jth pixel χj to the kth class; µki is a fuzzy membership matrix.
vk and µki are as defined in Equations (21) and (22):

vk =

N
∑

i=1
µn

kiχi

N
∑

i=1
µn

ki

(21)

µki =
1

C
∑

j=1
( ‖χi−vk‖2+Gki
‖χi−vk‖2+Gji

)( 1
n−1 )

(22)

4. Experimental Study

In order to verify the effectiveness and to illustrate the practicality of the proposed method,
we selected three sets of SAR images, which are well known and often used for comparison.

4.1. Description of the Experimental Data

(1) The Bern Dataset

The Bern dataset (Figure 2) is composed of two SAR images from the Bern region of the Swiss
capital, acquired by the ERS-2 remote sensing satellite in April 1999 and May 1999. These images have
sizes of 301 × 301 pixels, and gray values in the range of 1–256. Figure 2c is a change reference image.
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(2) The Coastline Dataset

The Coastline dataset is composed of images of the Yellow River coastline, acquired by the
Radarsat-2 remote sensing satellite in June 2008 and June 2009 (Figure 3). These images have sizes of
175 × 147 pixels, and gray values in the range 1–256. Figure 3c is a change reference image.Sensors 2018, 18, x FOR PEER REVIEW  9 of 19 
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(3) The Yellow River Dataset

The Yellow River dataset is composed of images of the Yellow River estuary, acquired by the
Radarsat-2 remote sensing satellite in June 2008 and June 2009 (Figure 4). These images have sizes of
356 × 233 pixels, and gray values in the range 1–256. Figure 4c is a change reference image.
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4.2. Experimental Parameters

In the semi-implicit denoising process of the ROF model, the parameters of the algorithm design
are the scale parameter λ, the number of iterations N, and the window size ω. The scale parameter
λ is mainly used to control the level of denoising. If the image contains a significant level of noise,
λ should be a smaller value, while if the image contains a lower level of noise, then λ should be a larger
value [31]. On the other hand, N is a very difficult value to determine. If the number of iterations is
set too small, the denoising will be insufficient. If the number of iterations is set too large, not only
will the denoising time be increased, but the details will also be lost. At the same time, the size of
filtering window directly affects the effect of SAR image filtering. The effect of filtering is poor when
the window is too small, and the running time of the algorithm is increased when the window size is
too large.
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(1) The Scale Parameter λ

First, the influence of the scale parameter λ will be assessed, based on the percentage of correct
classifications (PCC), the kappa coefficient (K), and the change detection time (T) for the change
detection results [32]. Other employed objective quantitative indexes include the number of false
negatives (FN), the number of false positives (FP), and the overall error (OE), which is the sum of
FN and FP. A higher PCC represents a better change detection performance. K is an objective index
that is usually used to measure the similarity between the change detection result and the reference
image. The ideal value is one, which means the change detection result and the reference image are in
complete agreement [33].

For the Bern SAR images, we fixed the number of iterations to N = 2; for the Coastline SAR images,
we fixed the number of iterations to N = 4; for the Yellow River SAR images, we fixed the number of
iterations to N = 12. The relationship between the scale parameter λ for the three datasets and the
objective evaluation indexes are shown in Figure 5. It can be seen that, for the Bern SAR images, λ has
little effect on the PCC and K; for the Coastline and the Yellow River SAR images, for small values of
λ, PCC and K are similar. Therefore, in order to balance the values of PCC, K, and T, λ is set to 0.4 for
the Bern SAR image and to 0.01 for the Coastline and Yellow River SAR images.
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(2) The Number of Iterations N

The objective evaluation indexes of each dataset as a function of the number of iterations N
is shown in Figure 6. It can be seen from Figure 6 that, for the Bern SAR images, if 0 < N < 8,
the corresponding PCC and K are large, while for the Coastline and Yellow River SAR images,
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the value of N has little effect on the objective indexes PCC and K. The influence of N on T is shown in
Figure 6, and the larger the value of N, the longer the processing time. Therefore, in order to balance
the values of PCC, K, and T, for the Bern SAR images, we fixed N = 2; for the Coastline SAR images,
we fixed N = 42; for the Yellow River SAR images, we fixed N = 12.
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(3) The Window Size ω

For the fuzzy local information C-means clustering algorithm (FLICM), we next verified the
influence of the window size ω on the objective indexes PCC, K, and T for the detection results.
The relationships between the window size ω of each dataset and the objective evaluation indexes are
shown in Figure 7. It can be seen that, for the Bern, Coastline, and Yellow River data, the corresponding
PCC and K are greatly improved for the window ω = 3 × 3, and the detection run time T(s) is reduced.
In order to balance the relationship between the size of the window ω and PCC, K, and T, the selected
window size for the algorithm was fixed at ω = 3 × 3.
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4.3. Experimental Results and Analysis

In order to evaluate the effectiveness of the proposed algorithm, denoted (f) in the following,
it was compared with algorithms (a) LEE-FLICM [9], (b) DWT2-FLICM [34], (c) NSCT-FLICM [14],
(d) TV-KMEANS [20], and (e) N-FLICM. Among them, we applied the Lee-med filter in algorithm (a)
LEE-FLICM instead of the proposed denoising method. On the basis of the proposed algorithm (f),
the semi-implicit denoising step of the ROF model was removed in the contrast algorithm (e) N-FLICM.
The purpose is to prove that the proposed algorithm (f) can reduce noise and improve the performance
of change detection. The paper analyzes both subjective and objective evaluations of the algorithm
performance, and its universal applicability.

(1) Subjective Evaluation of Algorithm Performance

The subjective evaluation of the performance of the algorithm is performed by visually analyzing
the texture details and noise residuals in the test results shown in Figures 8–10. It can be seen from
Figures 8–10 that, although algorithm (a) LEE-FLICM reduces noise, significant details are lost, and
the real change area is not well reflected; algorithm (b) DWT2-FLICM has more missed and false
detections, and the change region is not accurately reflected; for algorithms (c) NSCT-FLICM and (d)
TV-KMEANS, the change detection image retains the details of the change better, but there is still
noise; algorithm (e) N-FLICM contains a high amount of noise and the image details are missing. In all,
the proposed algorithm (f) of this paper results in less noise and more details being retained.
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(2) Objective Evaluation of Algorithm Performance

In this paper, six objective indicators of change detection are assessed, which are FP, FN, OE, PCC,
K and T. The data analysis of the test results is shown in Table 1.

Among the six objective indicators in Table 1, it can be concluded that compared with the
algorithm (a) LEE-FLICM, algorithm (b) DWT2-FLICM, algorithm (c) NSCT-FLICM, algorithm (d)
TV + Kmeans and algorithm (e) N-FLICM, the algorithm (f) reduces the OE of detection based on
the number of FN and FP, which makes the PCC and Kappa coefficient improved; the algorithm not
only improves the detection accuracy of the change region in the process of change detection, but also
reduces the change detection time, while balancing the detection accuracy and change detection time.
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Table 1. Objective indicators of different detection methods.

Datasets Method FP FN OE PCC/% Kappa T/s

Bern

LEE-FLICM 34 307 341 99.62 0.8307 14.63
DWT2-FLICM 107 194 301 99.67 0.8620 9.66
NSCT-FLICM 106 173 279 99.69 0.8740 5.49
TV-KMEANS 130 149 279 99.69 0.8767 2.99
N-FLICM 120 168 288 99.68 0.8710 3.74
Proposed 100 172 272 99.70 0.8769 4.42

Coastline

LEE-FLICM 88 2 90 99.65 0.9222 5.92
DWT2-FLICM 189 18 207 99.19 0.8328 4.19
NSCT-FLICM 159 38 197 99.23 0.8345 4.17
TV-KMEANS 169 5 174 99.32 0.8582 2.43
N-FLICM 201 42 243 99.05 0.8019 2.12
Proposed 74 5 79 99.69 0.9307 2.54

Yellow
River

LEE-FLICM 905 284 1189 98.54 0.7703 14.27
DWT2-FLICM 173 826 999 98.78 0.7489 7.87
NSCT-FLICM 439 473 912 98.88 0.8001 8.53
TV-KMEANS 2087 2232 4319 95.88 0.7399 8.23
N-FLICM 805 409 1214 98.51 0.7555 4.81
Proposed 608 237 845 98.97 0.8290 7.01

(3) Universal Applicability of the Algorithm

In order to evaluate the general applicability of the method, the above six algorithms were used in
data experiments on 30 groups of SAR images, and each group of data was run 20 times to verify the
stability of the results of the algorithm. The objective indicators for each algorithm on the 30 groups of
SAR images are shown in Figure 11. The average indicators for each algorithm are shown in Table 2.
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Table 2. Average objective indicators of different detection methods.

Method FP/% FN/% OE/% PCC/% Kappa T/s

LEE-FLICM 0.80 1.08 1.84 98.02 0.7860 15.78
DWT2-FLICM 0.65 2.04 2.70 97.29 0.6707 17.96
NSCT-FLICM 1.33 1.22 2.56 97.36 0.7567 21.67
TV-KMEANS 1.45 0.69 3.07 96.63 0.8547 12.78

N-FLICM 1.36 1.27 2.67 97.36 0.7575 5.92
Proposed 0.68 0.88 1.56 98.38 0.8385 6.89

Among the objective indicators in Figure 11, it can be concluded that, compared with algorithms
(a) LEE-FLICM, (b) DWT2-FLICM, (c) NSCT-FLICM, (d) TV-KMEANS, and (e) N-FLICM, algorithm
(f) better reduces the false negative rate (FN/%), the false positive rate (FP/%), and the total error
rate (OE/%), which further improves the PCC and kappa coefficients. Compared with the previously
mentioned algorithms, the fluctuation range of each objective index of the proposed algorithm is
smaller, so it has good robustness.

From the analysis of the six average objective indicators in Table 2, compared with the results of the
other six algorithms, the proposed algorithm reduces the average total error, OE/%, of detection, which
improves the PCC and kappa coefficients. The proposed algorithm (f) achieves a good balance between
detection accuracy and algorithm run time, and is more suitable for SAR image change detection.

5. Conclusions

In this paper, a new method using semi-implicit denoising of the ROF model is applied to the
change detection of remote sensing images. The method can preserve the image texture details and
reduce noise. The logarithmic ratio method is combined with complementary information from the
mean ratio method in order to obtain a difference image with the change information. PCA is then
used to determine a weighted fusion of the two difference images. Finally, the difference image
is clustered by fuzzy local information C-means clustering (FLICM) to obtain the change region.
The algorithm not only improves the detection accuracy of the changed region, but also balances the
change detection accuracy and time. There are many aspects of the proposed methodology that need
to be improved. For example, the accuracy of the algorithm can be improved, and the complexity of
the algorithm can be reduced. In our future investigations, additional work will be conducted towards
these improvements.
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