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Abstract: The accuracy of cooperative localization can be severely degraded in non-line-of-sight
(NLOS) environments. Although most existing approaches modify models to alleviate NLOS impact,
computational speed does not satisfy practical applications. In this paper, we propose a distributed
cooperative localization method for wireless sensor networks (WSNs) in NLOS environments. The
convex model in the proposed method is based on projection relaxation. This model was designed
for situations where prior information on NLOS connections is unavailable. We developed an
efficient decomposed formulation for the convex counterpart, and designed a parallel distributed
algorithm based on the alternating direction method of multipliers (ADMM), which significantly
improves computational speed. To accelerate the convergence rate of local updates, we approached
the subproblems via the proximal algorithm and analyzed its computational complexity. Numerical
simulation results demonstrate that our approach is superior in processing speed and accuracy to
other methods in NLOS scenarios.

Keywords: wireless sensor networks (WSN); cooperative localization; non-line-of-sight (NLOS);
alternating direction method of multipliers (ADMM); convex relaxation

1. Introduction

Wireless-sensor-network (WSN) technology has rapidly developed because of its convenience and
prospects. It can significantly improve living quality in many important fields, such as environment
monitoring [1] and surveillance [2], vehicle tracking [3,4], exploration [5,6], and other sensing tasks [7].
According to Reference [1], WSNs extend the human ability “to monitor and control physical world".
This means that WSNs provide a more intelligent way to link the physical world with humans. It is
worth noting that the positions of sensor nodes are key information for WSNs to fulfil various tasks.
Therefore, as a preliminary task, cooperative localization has aroused increasing interest, especially
in indoor scenarios where satellite communications cannot be employed. In general, cooperative
localization has two main categories: rangefree methods and range-based methods [8]. Rangefree
methods are easier to implement, but their accuracy is lower than range-based methods [9]. The
most common range-measurement techniques of range-based localization are based on received
signal-strength indicator (RSSI) [10] and time of flight (TOF) [11]. The RSSI technique has a lower
cost than the TOF technique, but the latter has higher accuracy. In this paper, we mainly study
the localization problem based on range-based technology. Some related work in this field is listed
as follows.
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1.1. Related Work

The maximum-likelihood (ML) problem of sensor cooperative localization is a complicated
nonconvex problem of high dimensionality. It is quite difficult to obtain an optimal solution. Most
existing approaches try to find a feasible solution by applying relaxation methods to the original
nonconvex problem. Among them, the most typical ones are listed. Semidefinite programming
(SDP) relaxation for cooperative localization is proposed in References [12–14]. In Reference [13], the
authors formulated the cooperative localization problem via graph realization theory, and derived
the upper and lower bounds of the SDP objective function. In Reference [14], the authors developed
three relaxations: node-based SDP (NSDP), edge-based SDP (ESDP), and sub-SDP (SSDP). NSDP and
ESDP are weaker than the original SDP relaxation of Reference [12], but they both remain efficient
and accurate. SSDP paves a faster way to efficiently solve a general SDP problem without sacrificing
solution quality. In Reference [15], the authors proposed a novel model by combining angle information
with range measurements, and transformed the model into an SDP problem. This method has
excellent performance, but it also has considerably high computational complexity. The work in
References [16,17] proposes second-order cone programming (SOCP) by relaxing distance constraints.
The work in Reference [16] further applies SOCP to alleviate the computational burden of the standard
SDP problem at the price of performance degradation. The authors in Reference [17] designed a
method suited for both Gaussian and Laplacian noise environments. In addition to the aforementioned
convex relaxations, some other methods also contribute to improving localization performance. In
Reference [18], the authors formulated the problem as a regression problem over adaptive bases. They
utilized the eigenvector of a distance affinity matrix as the initial point and implemented iterations
by conjugate gradient descent. In Reference [19] , the authors derived a majorization–minimization
(MM) algorithm with quadratic objective function. However, all the methods or algorithms above are
implemented in a centralized framework.

The centralized framework is a classical paradigm that transmits data to the central or fusion node
to fulfil entire network tasks. A centralized framework is easy to implement, but the computational
burden becomes extremely heavy for large-scale sensor networks. Centralized algorithms are prone to
data-traffic bottlenecks among sensors around the central node [20]. As the number of sensor nodes
grows, the problem size and the computational complexity in the centralized framework dramatically
increase. Scale limits and time delay brought by the centralized paradigm may affect the engineering
implementation of WSNs. Due to the advent of large-scale networks, it is urgent to find an effective
framework to satisfy the requirements on both processing speed and localization accuracy. Therefore,
the distributed paradigm has become a new tendency in this field.

Compared with the centralized paradigm, the distributed paradigm is an algorithm with all
nodes performing the same type of computation. A number of distributed approaches have been
proposed over the years, such as the distributed gradient descent method [21], multidimensional
scaling method [22], and the sequential greedy optimization (SGO) algorithm [23]. In Reference [24],
the authors developed a parallel distributed algorithm based on SOCP relaxation, but the convergence
property of the algorithm was not established. The work in Reference [25] proposes a sequential
method: the estimated neighbors are regarded as new anchors, which are then used to estimate other
sensors. This process only stops when the whole network is covered. In Reference [23], the authors
applied the SGO algorithm to ESDP and SOCP relaxation formulations. The work in Reference [26]
developed an ESDP relaxation method and designed a distributed algorithm relying on the alternating
direction method of multipliers (ADMM), of which the convergence property was guaranteed and
proven in Reference [27]. Then, in Reference [28], the authors proposed a distributed method based
on ADMM in the presence of harsh nonconvexities. In oder to guarantee that the solution converges
to the optimal point, the authors established the mathematic model to choose penalty parameters.
The work in Reference [20] proposed a tighter convex problem via projection relaxation and put this
problem into the distributed Nesterov framework. A hybrid solution was presented in Reference [29]
by combining the convex relaxations of Reference [20] and the distributed method of Reference [28].
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These distributed approaches are effective and bring a controlled computational burden. Convergence
performance is generally guaranteed.

However, the aforementioned distributed algorithms work only in line-of-sight (LOS) scenarios.
In some practical situations, such as in forests, cities, and indoor places, most connections between
sensors are non-line-of-sight (NLOS) because of the obstacles in the direct paths of signal propagation.
This phenomenon can severely degrade localization accuracy if the NLOS impact is not taken into
consideration. In general, two approaches are applied to alleviate NLOS propagation in localization.
The first approach distinguishes LOS and NLOS connections via prior information [30–32]. This
approach needs other measurement techniques to provide NLOS information, such as Direction of
Arrival (DOA). Hence, its estimation model is less suitable for cooperative localization methods based
on range-based techniques. The second approach modifies the original model by weighting and
adding constraints of range-measurement errors [33,34]. This kind of approach can be applied to
more general scenarios. Some representative work is listed as follows. The work in Reference [35]
is “the first one to address NLOS node localization in WSN". According to three different scenarios,
the authors provided three modified models of the ML estimator by adding the upper and lower
bounds of range measurements. These models were solved in standard SDP problems with heuristic
estimation. The work in Reference [34] proposed an ESDP method and added constraints to improve
robustness. In Reference [36], the authors introduced NLOS bias parameters to the estimation model
for the source-node locations and turned the model into a SDP problem. In Reference [37], the authors
proposed a three-block ADMM algorithm based on the model in Reference [36]. However, this method
does not decrease the size of the original problem, and the authors also mention that “it is hard to
distribute the calculation" because it involves matrix projection. The work in Reference [38] proposed a
distributed algorithm based on the Huber estimation of Reference [39], but it did not provide theoretical
proof for the convergence property.

1.2. Contributions

Up to now, most NLOS mitigation techniques applied to WSN cooperative localization still utilize
centralized optimum algorithms. In this paper, we propose a parallel distributed algorithm based
on a tight relaxation technique to both decrease computational complexity and improve accuracy in
NLOS environments.

First, we propose a modified convex model based on projection relaxation, which relaxes the
original nonconvex problem into its convex envelope. This model can be applied to tough situations
where NLOS connections are unidentifiable in all range measurements. According to the bounds of
range measurements, we formulated the problem in the form of projection distances. Then, we relaxed
this formulation into the projection on convex sets by using Cauchy–Schwartz inequality. Compared
with SDP, this approach improves the decomposition property of the convex model and the accuracy
of the estimation results.

Second, we developed a parallel distributed algorithm to solve the convex model. We designed a
consensus form to decompose the large-scale problem into numerous local subproblems and provide
the relevant theoretical proof. The proposed consensus form is more suitable for an ADMM framework.
It enables each node to solve each subproblem in parallel. We derived the concrete procedure of how
to handle the problem in a parallel way. The distributed algorithm had much lower computational
complexity than that in existing papers about NLOS cooperative localization.

Third, we further improved the convergence rate of local updates. The local subproblems are
convex and nonquadratic differentiable, which makes them less appropriate for the Newton method
and interior-point algorithm. Hence, with the guarantee of Lipschitz continuity, we propose an iterative
algorithm to solve the untypical convex subproblems based on the proximal method.

The paper is organized as follows. Section 2 formulates the cooperative localization problem
and the corresponding convex relaxation. Section 3 presents the consensus form and solves it
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in a distributed way. Section 4 derives the iterative method for local subproblems. In Section 5,
the simulation results are reported. Section 6 concludes the paper.

2. Problem Formulation

2.1. Mathematic Model

The mathematic model of range-based cooperative localization is described as follows. As is
shown in Figure 1, consider a sensor network consisting of N source sensors, of which locations
xi ∈ Rd, i = 1, 2, . . . , N are unknown, and M anchor sensors of which the location xk ∈
Rd, k=N+1, . . . , N+M is known. d is the coordinate dimension. Source nodes are collected in the
set S = {1, 2, . . . , N}, and anchors are collected in the A = {N + 1, N + 2, . . . , N + M} set. We denote
the Euclidean distance between node i and j as di,j, and the noisy range measurement as ri,j. In general,
not every pair of nodes can communicate because the communication distance has an upper limit.
We denoted this distance limit as rµ. The neighbor of node i is denoted as j ∈ Ni if ri,j is available,
i.e., Ni = {j|ri,j ≤ rµ, ∀j ∈ S}, ∀i ∈ S ∪A. We denoted the pairwise of source sensors as (i, j) ∈ ZS ,
and the pairwise between a source sensor and an anchor as (i, k) ∈ ZA. The distance between two
nodes is defined as

di,j = ‖xi − xj‖ (1)

obstacle

anchor

source node

NLOS connection
scattering object

Figure 1. Wireless sensor network (WSN) figuration. Blue circles denote anchors; white circles denote
source nodes. The physical model of non-line-of-sight (NLOS) connections is presented by obstacle and
scattering object.

Considering the impact of NLOS propagation on distance estimation, we divided the range
measurements into two sets. We used ZLOS (and, respectively, ZNLOS) to denote the set of pairwise
nodes in which connections between nodes are LOS (and, respectively, NLOS). Hence, the range
measurements are defined as: {

ri,j = di,j + ni,j, (i, j) ∈ ZLOS

ri,j = di,j + εi,j + ni,j, (i, j) ∈ ZNLOS
(2)

where ni,j ∼ N(0, σ2
i,j) is the measurement noise following a zero-mean Gaussian distribution with

variance σ2
i,j, and εi,j is the error of the NLOS measurement that is exponentially distributed with a mean

parameter αi,j = αNLOS. The value of αNLOS depends on the NLOS propagation environment [40–42].
In most cases, prior information of NLOS connections, such as NLOS distribution, is unavailable.

In this paper, our model was designed for such tough scenarios, i.e., NLOS connections being
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unidentifiable among all connections. First, since we could not distinguish which connections were
NLOS, we assumed that all range measurements were NLOS. Model ri,j was modified as

ri,j = di,j + εi,j + ni,j, (i, j) ∈ ZNLOS ∪ ZLOS (3)

2.2. Convex Relaxation

The method in Reference [35] provided two bounds of di,j in NLOS environments. The upper
bound is

ui,j = ri,j + 2σi,j ≥ di,j (4)

the lower bound is
li,j = ri,j − 4σi,j ≤ di,j (5)

For the single-constraint case, the upper and lower bounds provide an annular feasible region.
Heuristic localization estimation lies on the circle with a radius of (ui,j + li,j)/2. Hence, the optimization
problem of cooperative localization in an NLOS environment is modified as:

X̂s = argmin
Xs

∑
(i,j)∈ZS∪ZA

1
2

(
‖xi − xj‖−

1
2

(li,j + ui,j)
)2

(6)

This model takes NLOS impact into account and uses heuristic points (ui,j + li,j)/2 to replace range
measurements ri,j. In severe environments where most connections are NLOS, range measurements
may contain much false information and, thus, cannot directly be used as distance metrics. In
Model (6), the bounds can neutralize most NLOS errors in range measurements. However, Problem (6)
is nonconvex. In this paper, we propose a tight relaxation method rather than SDP. We used projection
relaxation to obtain the convex envelope of the original nonconvex problem. The theoretical derivation
is given as follows.

First, we rewrote the fundamental part of Problem (6) in the form of a squared distance of the
projection on a certain set by using Cauchy–Schwartz inequality.

The proof is given as follows:
If ‖b‖= d0, we have

(‖a‖ − d0)
2 = ‖a‖2 − 2‖a‖‖b‖ + ‖b‖2

≤ ‖a‖2 − 2aTb + ‖b‖2

= ‖a− b‖2

(7)

Then, function
f (a, d) = (‖a‖ − d0)

2 (8)

can be rewritten as
f (a, d) = inf

‖b‖=d0
‖a− b‖2 = dist2(a, B) (9)

where B = {b|‖b‖= d0} is a nonconvex set. Hence, the original problem can be written in a
simpler form:

min ∑
(i,j)∈ZS∪ZA

1
2

dist2(xi − xj, Bi,j) (10)

where set Bi,j is a spherical surface depending on the bounds, i.e., Bi,j = {b|‖b‖= 1
2 (li,j + ui,j)}.
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A feasible approach is to find the convex envelope by relaxing constraint ‖b‖= d0 to ‖b‖≤ d0.
Therefore, we obtained the convex form based on Function (8).

f̃ (a, d) = inf
‖b‖≤d0

‖a− b‖2 = dist2 (a, C) (11)

where C = {b|‖b‖≤ d} is the convex hull of the non-convex set B.
According to Equation (11), we could establish the convex model corresponding to Problem (10):

min ∑
(i,j)∈ZS∪ZA

1
2

dist2(xi − xj, Ci,j) (12)

where Ci,j = {b|‖b‖≤ 1
2 (li,j + ui,j)} is a convex set.

3. Distributed Framework

In order to approach the solution of convex optimization Problem (12) in a distributed way,
we built the consensus form to formulate Problem (12) and design a parallel distributed algorithm
based on ADMM. Problem (12) cannot be directly applied to parallel ADMM because it involves
matrix calculation. We built the consensus form to decompose large-scale Problem (12) into N + M
subproblems with independent variables. Then, we could design the ADMM framework to solve these
subproblems in a parallel way. In this section, we prove the feasibility of decomposing Problem (12)
and provide the concrete procedure of the parallel distributed algorithm.

The consensus form could independently represent the connections between each sensor and its
neighbors in the whole network by duplicating a new vector of each node j at neighbor node i.

Let zi =
[
(zi)T

j

]T
∈ R(N̂i+1)d, i ∈ S ∪ A be the local variable, where N̂i represents the length of

Ni. Component (zi)j has the same dimension as xi. Each of these local variables consists of selected

elements of global variable x =
[
xT

1 , xT
2 , . . . , xT

N+M
]T. Mapping from the local variable to the global

variable is {
(zi)1 = xi

(zi)j = xl
i ∈ S ∪A, l ∈ Ni , j = 2, . . . , N̂i + 1 (13)

when we put the elements of neighbor set Ni in corresponding vector Ni in an ascending order, the
relation between (zi)j and xl is l = Ni(j− 1). Ni(j) means the jth element of Ni. In other words, (zi)j is
the duplication of (j− 1)th neighbor node at node i.

Therefore, Problem (12) has an equivalent form:

min
N+M

∑
i=1

N̂i+1

∑
j=2

1
2

dist2((zi)1 − (zi)j, Ci,l)

s.t. zi − x̃i = 0, ∀i ∈ S ∪A
(zk)1 = xk , ∀k ∈ A

(14)

where x̃i is the linear function of x.
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We denoted local objective function as Fi(zi) =
N̂i+1
∑
j=2

1
2 dist2((zi)1 − (zi)j, Ci,l). Obviously, total

objective function F(z) =
N+M

∑
i=1

Fi(zi) is separable. Then, we could rewrite Problem (14) in another,

simpler form:

min
N+M

∑
i=1

Fi(zi)

s.t. zi − Aix = 0, ∀i ∈ S ∪A
z ∈ Rz

(15)

whereRz is a linear space satisfying

Rz = {z|(zk)1 = xk , ∀k ∈ A} (16)

Matrix Ai indicates the linear relation between local variable zi and global variable x , of which
the form is

Ai =

[
e1

(el)∀l∈Ni

]
⊗ Id (17)

where el is the lth unit-row vector in RN+M, Id is an identity matrix of order d, and ⊗ is a
Kronecker product.

By introducing an indicator function Gz(z) of Rz, Problem (14) can be rewritten in a general
consensus form as

min F(z) + Gz(z)

s.t. z− Ax = 0
(18)

where z is the shorthand notation for
[
zT

1 , zT
2 , . . . , zT

N+M
]T, and A = [A1; A2; . . . ; AN+M].

Before deriving the ADMM framework, we needed to build the augmented Lagrangian function
of Problem (18)

L(z, x, λ; c) = [F(z) + Gz(z)] + λT(z− Ax) + ∑
i

1
2

c‖zi − Aix‖2

= ∑
i
[Fi(zi) + Gzi (zi) + λT

i (zi − Aix) +
1
2

c‖zi − Aix‖2]

(19)

where λ is a vector consisting of Lagrangian multipliers, and c is the given penalty parameter.
Indicator function Gz(z) can be written as the sum of numerous subfunctions, namely, Gz(z) = ∑

i
Gzi (zi),

by decomposing linear space Rz as the Cartesian product of (N + M) closed convex sets
Rz1 ,Rz2 , . . . ,RzN+M :

Rz = Rz1 ×Rz2 × . . .RzN ×RzN+1 × . . .×RzN+M

Indicator functions of setsRz1 , . . . ,RzN equal to identity matrices. Convex setsRzN+1 , . . . ,RzN+M

have the affine form of
Rzk = {zk|Tkzk = xk}, ∀k ∈ A (20)

where Tk is a matrix satisfying Tk =

1, 0, . . . , 0︸ ︷︷ ︸
Nk


T

⊗ Id, k ∈ A.

Thus, we can conclude that the objective function, constraints, and penalty term are separable
for each sensor. Distributed optimization could be obtained by applying the ADMM method to
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Problem (18). The local updates are handled in an alternate way that can be separately optimized for
variables z, x, and λ, as follows, for ∀i ∈ S ∪A

zt+1
i ∈ argmin

zi

[
Fi(zi) + Gzi (zi) +

1
2

c‖zi − Aixt + λ̃t
i‖2
]

xt+1 ∈ argmin
x

(
∑

i

1
2

c‖zt+1
i − Aix + λ̃t

i‖2

)
λ̃t+1

i ∈ λ̃t
i + c(zt+1

i − Aixt+1)

(21)

where λ̃i = λi/c is the scaled dual variable.
zi−updates and λ̃i−updates can be independently carried out in parallel for each node i. The

concrete implementation steps are shown as follows.
(1) Initialize variables z0

i , x0, λ̃0
i for all nodes.

(2) Each node updates its local variables zt+1
i according to the first step of Problem (21),

corresponding to the action

zt+1
i ∈ argmin

zi

[
Fi(zi) + Gzi (zi) +

1
2

c‖zi − Aixt + λ̃t
i‖2
]

(22)

If we put indicate function Gzi (zi) in the constraints, Problem (22) can be written in an
equivalent form:

min

 N̂i

∑
j=1

1
2

dist2((zi)1 − (zi)j, Ci,j) +
1
2

cγi


s.t. ‖zi − Aixt + λ̃t

i‖2≤ γi

γi ≥ 0

zi ∈ Rzi

(23)

where γi are the slack variables working as the quadratic penalty in the local cost function.
Obviously, Problem (23) is untypically convex. The gradient of Fi(zi) is discontinuous. Hence,

classical methods such as the interior point method and the Newton method are not appropriate to
solve these problems. In Section 4, we further derive an iterative algorithm to approach the solution of
Problem (23). This iterative algorithm has the same convergence rate with the interior point method.

(3) Broadcast local variables zt+1
i to all nodes of neighbor sets.

(4) Each node computes variables x̃t+1
i according to

xt+1 ∈ argmin
x

(
∑

i

1
2

c‖zt+1
i − Aix + λ̃t

i‖2

)
(24)

Problem (24) is actually easy to solve by averaging all components of zk+1
i of which the local

indices correspond to global index l. The x-update step has a simpler solution:

xt+1
l =

1
kl

(
(zl)

t+1
1 + ∑

(i,j)∈Zxl

(zi)t+1
j

)
(25)

where kl is the number of local variable components corresponding to global components zl and
Zxl = {(i, j)|Ni(j− 1) = l}.

(5) Each node updates dual variables λ̃t+1
i according to

λ̃t+1
i ∈ λ̃t

i + c(zt+1
i − Aixt+1) (26)
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A summary of the proposed parallel algorithm is illustrated as Algorithm 1 and Figure 2:

Algorithm 1 ADMM_Projection (ADMM_P) algorithm for Problem (18).
Input: number of anchors M, location of anchors xk ∈ R2, k ∈ A, number of source
sensors N, range measurements {ri,j , (i, j) ∈ ZNLOS ∪ ZLOS} ;
Output: (zi)1, i ∈ S

1.Initialization: t = 0;
(1)Initialize local location of sensors x0 and set dual variables λ0

i to zero;
(2) According to x0

i and λ0
i , compute the initial values:

z0
i = Aix

0

2. Updating iteration: t + +
(1) Update local location variables zt

i at each node: ∀i ∈ A ∪ S

zt+1
i ∈ argmin

zi

[
Fi(zi) + Gzi (zi) +

1
2

c‖zi − Aix
t + λ̃t

i‖
2
]

(2) Broadcast local variable zt+1
i to its neighbors Ni;

(3) Update variable x according to Problem (25);
(4) Update the local dual variable λ̃t+1

i according to Problem (26).

Update the global 

variables 

Update      via (23) 

and Section 4 

x

Initialization 

Allocate 

corresponding value 

to each local variable 

1

t
z

Node 1

Node 2

  Update   
1

t
λ

  Update   
2

t
λ

Node N

  Update   t
Nλ

Parallelly compute

Output

Satisfy 

the stop 

criterion

otherwise

…

Update      via (23) 

and Section 4 
2

t
z

Update      via (23) 

and Section 4 

t

Nz

Figure 2. Flow chart of the ADMM_P algorithm.

4. Solution to the Subproblem

Section 3 implies that the ADMM_P algorithm is an iterative method. Reference [27] guarantees
that our algorithm converges to the same minimum as that in the centralized framework because its
original counterpart (12) is convex. The algorithm summary indicates that the total computational
complexity of ADMM_P almost relies on the local z−update (22). To satisfy the requirements on
processing speed, we needed to design an effective algorithm that had both a fast convergence rate
and low complexity. The Newton method and interior point method have these properties, but they
were designed for smooth optimization problems [43]. Unfortunately, Problem (22) is a nonquadratic
differential. Hence, we designed an iterative method based on the accelerated proximal algorithm,
which is an analogous tool for nonsmooth optimization problems [21,44]. Given the structure of WSNs,
we derived the proximal algorithm for source nodes and anchors, respectively.
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4.1. Lipschitz Constant

The proximal algorithm needs the guarantee of Lipschitz continuity. First, we prove the premise
in this subsection. To simplify notations, we defined the functions:

h(zi) =
1
2

dist2(Hizi , Ci) =
N̂i+1

∑
j=2

1
2

dist2((zi)1 − (zi)j, Ci,l)

g(zi) =
1
2

c‖zi − Aixt + λ̃t
i‖2

(27)

where Ci is Cartesian product of balls Ci,l , l ∈ Ni, and Hi has the form of[
1Ni ,−INi

]
⊗ Id (28)

Function g(zi) in Functions (27) is convex and differentiable, and its gradient is

∇g(zi) = c
[
zi − (Aixt − λ̃t

i )
]

(29)

Obviously, this gradient is Lipschitz-continuous, and we could obtain its Lipschitz constant
as follows

‖∇g(x)−∇g(y)‖ = ‖cx− cy‖
≤ kg|c|‖x− y‖

⇒ ‖∇g(x)−∇g(y)‖
‖x− y‖ ≤ kg|c|= Lg, ∀x, y ∈ Rd(N̂i+1)

(30)

where kg ≥ 1 is a constant.

4.2. Source Nodes

For source nodes, local Subproblem (22) has the equivalent simpler form

min h(zi) + g(zi) (31)

the proximal mapping of function h(zi) = 1
2 dist2(Hizi , Ci) is

proxµh(vi) = H†
i

[
Hivi +

µ

1 + µ

(
PCi (Hivi)− Hivi

)]
(32)

where µ = 1/Lg is the step size, H†
i is the pseudoinverse of Hi, and PCi (Hizi) is the orthogonal

projection of point Hizi onto the convex set Ci, i.e.,

PCi (Hizi) ∈ arg min{‖x− Hizi‖ |x ∈ Ci} (33)

Hence, we can obtain the accelerated proximal algorithm for local Subproblems (31), as follows,
for k ≥ 1:

ω
(k−1)
i = ξ

(k−1)
i − µk∇g(ξ(k−1)

i )

= ξ
(k−1)
i − µkc

[
ξ

(k−1)
i − (Aizt − λ̃t

i )
]

η
(k)
i =

1
1 + µk

ω
(k−1)
i +

µk
1 + µk

H†
i PCi (Hiω

(k−1)
i )

ξ
(k)
i = η

(k)
i +

k− 1
k + 2

(η(k)
i − η

(k−1)
i )

(34)
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This iterative procedure stops when the stopping criterion is satisfied. µk is the step size. Here,
we used the fixed step size µk = µ = 1/Lg. We used the estimation results of the last loop as the initial
point of this subupdate, i.e., ξ

(0)
i = zt

i . The subupdate outputs ξ
(k)
i = zt+1

i as the local estimation result.

4.3. Anchor Nodes

For anchor nodes (zi)1 = xi , i ∈ A, Problem (22) becomes an equality-constrained optimization
problem for i ≥ N + 1,

min h(zi) + g(zi)

s.t. Tizi = xi
(35)

Our approach solving this problem was to eliminate the equality constraint via the equation

{zi|Tizi = xi} = {Qiβi + ẑi|βi ∈ RNid} (36)

where ẑi =

xT
i , 0, . . . , 0︸ ︷︷ ︸

Nid


T

, Qi has the form of

Qi =

[
ed

1 − ed
2 01

02 INid

]
(37)

where ed
i , i = 1 or 2 is the ith unit vector in Rd, INid is an identity matrix with orderNid, and 0i , i = 1 or 2

is a zero matrix.
With Equation (36), we form eliminated optimization problem

min ĥ(βi) + ĝ(βi)

⇒min h(Qiβi + ẑi) + g(Qiβi + ẑi)
(38)

which is an unconstrained problem with variable βi. Then, we could derive the solution of
equality-constrained Problem (35) according to Equations (34).

Introducing the affine structure does not change the convexity and continuity of the functions.
The gradient of the ĝ(βi) function is still Lipschitz-continuous. The gradient of ĝ(βi) is

∇ĝ(βi) = c
[

QT
i Qiβi + QT

i (ẑi − Aixt + λ̃t
i )
]

(39)

Hence, the new Lipschitz constant could be obtained by the following inequality:

‖∇ĝ(x)−∇ĝ(y)‖ = ‖cQT
i Qix− cQT

i Qiy‖
= |c|‖QT

i Qi(x− y)‖
≤ |c|νmax(QT

i Qi)‖x− y‖

⇒ ‖∇ĝ(x)−∇ĝ(y)‖
‖x− y‖ ≤ |c|νmax(QT

i Qi) = Lĝ, ∀x, y ∈ RdN̂i

(40)

where νmax(QT
i Qi) is the maximal eigenvalue of QT

i Qi.
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By using the conclusion of Equation (32) to Equation (34),the accelerated proximal algorithm for
the local subproblem of the anchor nodes is presented as follows:

ω
(k−1)
i = ξ

(k−1)
i − µkc[QT

i Qiξ
(k−1)
i + QT

i (ẑi − Aixt + λ̃t
i )]

η
(k)
i =

µ̂k
1 + µ̂k

(ω(k−1)
i + Q†

i ẑi) +
µ̂k

1 + µ̂k
(HiQi)†PCi (Hi(Qiω

(k−1)
i + ẑi))

ξ
(k)
i = η

(k)
i +

k− 1
k + 2

(η(k)
i − η

(k−1)
i )

(41)

5. Numerical Simulations

In this section, we present the simulation results to demonstrate the strengths and weaknesses of
the ADMM_P algorithm. We considered the worst case, where NLOS connections are unidentifiable
and the probability of these NLOS connections is up to 95%. We preliminarily considered a network that
had 10 anchor nodes and 40 source nodes randomly distributed in a [−50 m, 50 m] × [−50 m, 50 m]
square. Noisy range measurements were available when distances ri,j ≤ 30 m. The coordinate
dimension is d = 2. Range measurements were generated according to Equations (1) and (2),where
NLOS error εi,j is exponentially distributed with mean parameter αNLOS. For a noisy environment,
we assumed that the measurement noise was independent and identically distributed, i.e., σi,j = σn.

We compared the accuracy of ADMM_P with four state-of-art algorithms, which are named:

(1) SDP: SDP method of Reference [36] designed for NLOS environments;
(2) SDPH: SDP model based on a heuristic solution [35];
(3) EDM: EDM model based on three-block ADMM [37];
(4) ADMM_SF: the parallel algorithm of Reference [20], which was only designed for LOS

environments.

It is worth noting that ADMM_P is an iterative algorithm working in the parallel distributed
framework, and that there are few authoritative publications about distributed algorithms for NLOS
localization. Therefore, we only analyzed the convergence property for our algorithm. In the
convergence analysis, we provide the estimation results of SDPH of Reference [35] as references.

All simulations were carried out in MATLAB. Local convex Problems (22) were handled via
the MATLAB Optimization Toolbox with f mincon solver. Algorithm performance was evaluated via
Cumulative Distribution Function (CDF), Root Mean Square Error (RMSE), and objective Function
Value (FVAL):

RMSE =

√√√√ ∑
i∈S
‖(zi)1 − pi‖2

N

FVAL = ∑
i∈S

[
Fi(zi) +

1
2

ci‖zi − Aix + λ̃i‖2
] (42)

where pi is the true position, and (zi)1 is the estimated location of node i.

5.1. Performance Comparison

In this part, we verify the superiority of our method in the aspects of localization accuracy and
computational complexity, respectively. We fixed the number of source nodes and anchors as N = 40,
M = 10. The mean parameter of NLOS propagation is αNLOS = 3. Sensor nodes (including anchors)
were randomly distributed in the square of [−50 m, 50 m]× [−50 m, 50 m]. To show the simulation
results more precisely, we compared the ADMM_P algorithm with three other state-of-art methods in
the same simulation environment.
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5.1.1. Accuracy Comparison

Figures 3 and 4 show the simulation results of the four available methods. As is shown, ADMM_P
had higher accuracy than other three methods. In Figure 3, the CDF curve of ADMM_P is in the
leftmost side of the three other methods. This means that the estimation results of ADMM_P were more
concentrated around lower errors. Especially at point Error = 2.5 m, the CDF of our method improved
by up to 50% compared with the ADMM_SF, which did not utilize any NLOS mitigation techniques.
In Figure 4, we further analyzed the performance of the four methods in varying environments with
different σn and αNLOS, respectively. The simulation results show that ADMM_P has higher accuracy,
and performance is more stable in different environments.

0 5 10 15 20
Error(m)

0

0.2

0.4

0.6

0.8

1

C
D

F

ADMM_SF
SDPH
ADMM_P
SDP

Figure 3. Cumulative Distribution Function (CDF) comparison of the four aforementioned methods
for a M = 10, N = 40 sensor network. Anchors were randomly distributed. Probability of NLOS
connections was set to PNLOS = 95%.
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Figure 4. Performance comparison in varying environments with a M = 10, N = 40 sensor network.
Probability of NLOS connections was set to PNLOS = 95%. (a) Root Mean Square Error (RMSE)
comparison in varying noise environments; (b) RMSE comparison with different NLOS parameters.

5.1.2. Complexity Analysis

We compared computational complexity in Table 1, in which we used Nc to represent the
connective numbers of pair nodes (i, j) ∈ ZS ∪ ZA. We could find that ADMM_P is more suitable for
practical situations because it has much lower computational complexity and smaller problem size.
The parallel distributed framework plays a key role in decreasing complexity.

The SDPH method in Reference [35] and the SDP method in Reference [36] were implemented in
the centralized framework. The problem sizes of SDPH and SDP were, respectively, dN + 1/2 ∗N(N + 1)
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and dN + 1/2N(N + 1) + N2, both depending on the whole scale of the WSN N. The EDM method in
Reference [37] applied a three-block ADMM, but problem size also depends on N. According to Table 1,
we can see that the problem size of the ADMM_P algorithm was determined by the decomposed local
minimization and could be reduced to d(N̂i + 1) + N̂i, where N̂i represents the number of neighbors.
Because of the limitation of rµ, the size of the neighbor set was much smaller than the whole scale of
the WSN, i.e., N̂i � N. This conclusion can theoretically prove that our method can drastically reduce
the precessing burden, no matter the problem size or computational complexity.

Our method decomposes the original large-scale problem into N + M small-scale subproblems
via consensus form, and handles these subproblems in a parallel way. Hence, when compared
with the centralized algorithm, our method can dramatically decrease computational complexity.
In Sections 3 and 4, we could find that the total complexity of the proposed algorithm almost depends
on solving the subproblems. Section 4 provides an iterative method to solve the subproblems, which
are nonquadratic differentials. In this iterative method, with the guarantee of objective-function
convexity, the optimal value is finite and attained at z∗i . The derived method is known to converge at a
rate of O(1/k2) [44]:

Fi(z
(k)
i )− F∗i ≤

2
(k + 1)2µ

‖z(0)
i − z∗i ‖2 (43)

Subupdates require very simple operations, no matter if they are at anchor nodes or at source
nodes. The inversion of matrix Hi and HiQi is easy to precompute because Hi and Qi only consist of
identity matrices and unit vectors. Projection on set Ci can be decomposed into projections on sets
Ci,j, j ∈ Ni, which involves very limited dimension d ≤ 3 and is easy to compute. Therefore, the local
update given by Equations (34) and (41) has much lower complexity than the three other algorithms.
However, because every node shares the processing burden and plays the same role in the parallel
framework, the communication cost of each node is higher than that of centralized frameworks.

Table 1. Complexity comparison of available algorithms.

SDPH [35] SDP [36] EDM [37] ADMM_P

Convex problem size dN + 1/2N(N + 1) dN + 1/2N(N + 1) + N2 N + M(M− 1)/2 + Nc d(N̂i + 1)
Computational complexity O(N3) O((2N)3) O(N3 + N2) O(d3 + (dN̂i)2)
Type of framework Centralized SDP Centralized SDP Three-block ADMM Parallel ADMM
Communication cost N N N d(N̂i + 1)

5.2. ADMM_P Properties in Different Noisy Environments

In this scenario, we fixed the number of anchors and the distribution parameter of NLOS errors
to show localization accuracy and convergence property in different noisy environments. The mean
parameter of NLOS error was fixed as αNLOS = 3. Ten anchors were randomly deployed in the region
of 100 × 100 m. As is shown in Figure 5a,b, we present the simulation results with σ2

n = 0.01 × 100
and σ2

n = 0.1× 100. We found that ADMM_P mitigates the effect of NLOS range measurements and
provides better estimation accuracy. SDPH is solved with the interior-point method under a centralized
framework, so its simulation results are only provided as accuracy references in Figure 5. From the
figure, we can see that ADMM_P has good convergence performance in different noisy environments
and higher accuracy than SDPH. In Figure 5b, we further analyzed the convergence performance of
ADMM_P. Given that the local objective functions are based on heuristic solutions,the function value
cannot converge to an extremely low level. Hence, the curve tendencies in Figure 5b still demonstrate
a stable convergence of ADMM_P.
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Figure 5. Estimation results with different σ2
n for N = 40, M = 10 sensor network versus

iteration number t. Probability of NLOS connections was set to PNLOS = 95%. (a) RMSE;
(b) convergence properties.

5.3. ADMM_P Properties in Different NLOS Environments

In this scenario, we fix the number of anchors and the noise level to study ADMM_P performance
with different NLOS error distributions. The measurement noise variance was fixed as σ2

n = 0.01× 100.
Other simulation settings were the same as those in Scenario B. In Figure 6a,b, we compared the
performance of ADMM_P with αNLOS = 3, 4, 5. As we can see, although RMSE slightly increased as
mean parameter αNLOS grew, the accuracy of ADMM_P is still better than SDPH. This also indicates
that the proposed algorithm effectively mitigates NLOS error. Simulation results in Figure 6b verify
the stable convergence performance of ADMM_P as varying NLOS error distribution.
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Figure 6. Estimation results with different αNLOS for N = 40, M = 10 sensor network versus
iteration number t. Probability of NLOS connections was set to PNLOS = 95%. (a) RMSE;
(b) convergence properties.

5.4. ADMM_P Algorithm Properties with Different Anchor Placements

5.4.1. Anchor Placement

In this scenario, we deployed the anchors at the perimeter of the region. We set σ2
n = 0.01× 100

and αNLOS = 3. We compared localization accuracy when the anchor placement was random or fixed.
In Reference [13], the author proposed that an appropriate anchor-placement deign could further
improve localization accuracy. Hence, we placed the anchors around the perimeter of the region to
avoid getting crowded points, so that the higher dimensional projection of anchors could contain more
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sensor nodes. The corresponding simulation results are shown in Figure 7b, from which we can see that
the fixed anchor placement improves the localization performance of the ADMM_P algorithm in the
same NLOS environment. Furthermore, in the scenario of fixed anchors, the accuracy of the ADMM_P
algorithm is higher than that of the SDPH algorithm, even if the former employs the less anchors.
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Figure 7. Estimation results of a sensor network with 10 fixed anchors and 40 randomly distributed
sensors. (a) Estimation locations. Red asterisks *: anchor locations; black circles ◦: true sensor locations;
blue stars ?: estimation results; (b) RMSE comparison.

5.4.2. Varying Numbers of Anchors

Simulations in the last subsection show that a predesigned placement of anchors has a positive
influence on localization performance. In this scenario, we evaluated the performance of the
ADMM_P algorithm by varying the number of anchors. Taking the simulation results of Figure 7 into
consideration, we fixed 10 anchors on the region boundary and randomly deployed the remaining
anchors inside the region. Other simulation settings were the same as those in the last subsection. Node
distribution is shown in Figure 8a, and the corresponding simulations are shown in Figure 8b, which
shows that proper anchor placement and an increase in anchor number both lead to an improvement
of localization performance.
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Figure 8. Estimation results of sensor network with 10 fixed anchors, five randomly distributed anchors,
and 40 randomly distributed sensors. (a) Estimation locations. Red asterisks *: anchor locations; black
circles ◦: true sensor locations; blue stars ?: estimation results; (b) RMSE comparison.
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6. Conclusions

In this paper, we proposed an efficient distributed algorithm for NLOS cooperative localization.
We employed tight convex relaxation for the heuristic model, and approached it in a parallel ADMM
framework to offer powerful computation ability. The distributed framework can drastically reduce
the computational burden since it decomposes a large-scale problem into numerous small-scale
problems, which similarly retains computational time when the number of sensors grows. Furthermore,
we derived the accelerated proximal gradient method to improve the convergence rate of local
subproblems. Simulation results demonstrate that our method efficiently alleviates the influence
of NLOS propagation and has fairly good convergence performance.

In future works, we plan to study the level of influence that step size and penalty parameters
could have on the performance of local subproblems and an ADMM framework. How to establish
the mathematic model to find the optimal parameters needs further study as well. Moreover, the
lower and upper bounds of range measurements provide a good feasible region, which is nevertheless
nonconvex. We are interested in finding better convex relaxation rather than utilizing a heuristic
solution as the optimal solution.
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