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Abstract: This paper presents a novel approach for semantic segmentation of building roofs in
dense urban environments with a Deep Convolution Neural Network (DCNN) using Chinese
Very High Resolution (VHR) satellite (i.e., GF2) imagery. To provide an operational end-to-end
approach for accurately mapping build roofs with feature extraction and image segmentation, a fully
convolutional DCNN with both convolutional and deconvolutional layers is designed to perform
building roof segmentation. We selected typical cities with dense and diverse urban environments in
different metropolitan regions of China as study areas, and sample images were collected over cities.
High performance GPU-mounted workstations are employed to perform the model training and
optimization. With the building roof samples collected over different cities, the predictive model with
convolution layers is developed for building roof segmentation. The validation shows that the overall
accuracy (OA) and the mean Intersection Over Union (mIOU) of DCNN-based semantic segmentation
results are 94.67% and 0.85, respectively, and the CRF-refined segmentation results achieved OA of
94.69% and mIOU of 0.83. The results suggest that the proposed approach is a promising solution for
building roof mapping with VHR images over large areas in dense urban environments with different
building patterns. With the operational acquisition of GF2 VHR imagery, it is expected to develop an
automated pipeline of operational built-up area monitoring, and the timely update of building roof
map could be applied in urban management and assessment of human settlement-related sustainable
development goals over large areas.
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1. Introduction

Urbanization is a process whereby human beings significantly affect the natural environment of
land surfaces. It not only causes changes in land cover and land use, but also has profound effects on the
daily life of our society [1]. Buildings are the essential part of urban environment. They play a vital role
in human life as a basic infrastructure of human settlement [2]. Accurate and timely maps of buildings
are crucial for urban planning, environmental management and sustainable development studies,
especially in areas undergoing rapid urbanization [3,4]. However, the conventional ways of building
roof maps, e.g., field surveys or manual annotation of imagery, are time-consuming and labor-intensive
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endeavors. The widely available Very High Resolution (VHR) satellite imagery is an unique data
source for building roof mapping [5,6]. Many studies were carried out to extract building roofs.
However, most of the methods are based on specific features and rules, and low-level features were
designed for mapping building with VHR images, e.g., histogram of oriented gradients (HOG) [7,8].
In addition, some other studies for building detection also tried use shadow information [9,10],
graph theory [11,12], or a MRF-based approach [13]. The classification methods take advantage of
multispectral information [14,15]. Huang et al. proposed a post-processing framework for building roof
classification using VHR imagery, where the framework relies on a morphological building index (MBI).
It integrated spectral, geometrical, and contextual information for building mapping, and experiments
suggested that the proposed framework achieved good results [16]. However, these methods rely on
the selected features and image types, it is hard to develop a model for operational building mapping
over large areas, especially for dense urban environments with different building types.

As an important machine learning approach, Neural Networks (NNs) are inspired by the process
of the recognition process of brains to perform recognition tasks. Since 2006, a series of techniques
and strategies, e.g., layer-wise training and pre-training, Restricted Boltzmann Machine (RBM),
Recurrent Neural Networks (RNNs) were proposed for NNs with multiple hidden layers for large
scale learning problems [17]. Deep NNs with multiple hidden layers are applied for learning data
representations in recognition tasks, e.g., image classification, scene understanding, speech recognition,
etc. Convolutional Neural Network (CNNs) are designed for feature learning as well as inference in
image classification, segmentation and scene understanding [18]. CNNs take a moving window as
a filter for capturing features in image space, and the features then can be applied for classification
or segmentation [19]. CNNs could reduce the number of weights and bias in NNs by sharing deep
neural network parameters, which provide a solution for pixel level recognition with a reasonable
model size. CNN is also a promising way to combine features from both the spectral and spatial
textural domains for scene understanding and segmentation. Currently, with high performance
GPUs, CNNs have been widely applied in vision recognition tasks, and have achieved state-of
the-art results [18,20–23]. There are many efforts for building mapping with DCNNs. Yuan proposed
automatic building extraction methods in aerial scenes using convolutional neural networks [24].
A network was designed with novel components which are easy to implement, which enables the
network to learn hierarchical features for segmenting buildings. Bittner et al. proposed a method which
automatically generates a full resolution binary building mask using a Fully Convolution Network
(FCN) architecture and achieved promising results for building roof mapping [25]. Sun et al., developed
a two-stage CNN model to detect rural buildings in high-resolution imagery [26]. The experiments
showed that the two-stage CNN model reduced the complexity of the background information and
improved the efficiency, achieving an overall accuracy of 88%. Besides these methods, the building
detection task can also be solved as part of the land use classification problem with deep learning
methods. For example, Maggiori et al. investigated convolutional neural networks for large-scale
remotely sensed image classification, proposing an end-to-end framework for the dense, pixel-wise
classification of satellite imagery with CNNs [27]. Microsoft developed a building footprint data
set for the USA using Bing Map images with DCNN [28]. To promote the state-of-the-art results in
satellite image analysis, the DeepGlobe Satellite Challenge was hosted by Facebook, DigitalGlobe
etc. Commercial VHR images and associated ground truth were provided by DigitalGlobe for road
extraction, land cover classification and building detection, and it provided state-of-the-art algorithms
for satellite image analysis [29].

So far, it has been well addressed that the high resolution satellite could capture VHR imagery that
covers large areas in a timely way with pre-trained CNN models. It is feasible to conduct large built-up
area mapping at an individual building level. However, operational mapping with VHR imagery over
large areas is still a costly task with current commercial VHR images. In addition, we don’t have low
cost or free data sets for developing countries with dense and diverse urban environments. To support
urban planning and management, and sustainable development assessment over large areas, especially
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to provide timely and accurate building information for developing countries, affordable or free VHR
images like GF2 PMS imagery would advance the remote sensing technology to broad domains in
SDGs assessment. Gaofen-2 (GF2) is one of the series satellite missions in China’s High-resolution
Earth Observation System (CHEOS) [30]. It was launched on August 19, 2014 with a panchromatic and
multispectral sensor (PMS) which acquires panchromatic and multispectral images simultaneously.
It is expected to provide a long-term VHR satellite imagery at an affordable cost with global coverage,
especially of developing countries.

This study aims to examine the potential of the GF2 PMS for building roof mapping over large
urban areas, especially in dense and diverse urban environments. It presents our efforts at building roof
segmentation with DCNN over mega-cities in China, using a DCNN model. With the development
of an automatic pipeline for operational building mapping with Chinese GF2 VHR imagery over
large areas, regardless of the location of the areas and the acquisition data of the image it is expected
to provide an alternative solution for supporting sustainable development assessment and urban
planning with VHR imagery at low cost.

2. Materials and Methods

2.1. Data Sets and Study Areas

The GF2 PMS is capable of collecting VHR imagery with a Ground Sampling Distance (GSD) of
of 0.8 m panchromatic and 3.2 m multispectral bands on a swath of 45 km. Table 1 shows the basic
configurations of the sensor.

Table 1. Configuration of PMS.

Sensor Spatial Resolution (m) Spectral Bands (µm)

PMS-panromatic 0.8 0.45–0.90
PMS-multispectral 3.2 0.45–0.52; 0.52–0.59; 0.63–0.69; 0.77–0.89

To cover the diverse urban patterns and building styles in China, typical cities across the country
were selected in different metropolitan regions as study areas, and training and test GF2 PMS images
were collected with manual delineation. Table 2 lists the cities and acquisition date of the images.
With the assumption that imagery acquired during the growing season would provide better visual
effects in both the spectral and spatial domains, we only choose images acquired in the period between
June and September in 2016 with cloud cover of less than 5%, and a total of seven images were selected
in this study for further processing.

Table 2. Area and acquisition date of images.

City Region of China Acquisition Date

Beijing North 20160827
Shenyang Northeast 20160612
Chengdu Southwest 20160711

Guangzhou South 20160723
Wuhan Central China 20160901

Shanghai Southeast 20160602
Urumqi Northwest 20160625

2.1.1. Image Preprocessing and Training Data Collection

Though the orientation of PMS images is well calibrated, high precision co-registration between
the panchromatic and multispectral images acquired by PMS is performed to keep rigorous geometrical
alignment. With the reference of corresponding panchromatic imagery, visual selection of ground
control points is carried out for georectification of the multispectral images. The overall mean
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registration error for all images is less than 1.0 m. With the panchromatic and the corresponding
rectified multispectral image, pan-sharping is conducted to obtain fused images with spatial resolution
of 1.0 m using a Gram-Schmidt algorithm. Figure 1 illustrates the PMS panchromatic image, the true
color composites of PMS multispectral image, and the true color composites of pan-sharped images.
The images shows that the pan-sharping could enhance the characteristics of the building boundaries
with much higher resolution.
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Figure 1. Sample images captured by GF2 PMS sensors at 27 August 2016: the three images cover the
same area around the National Stadium at Beijing, where the upper left is a panchromatic image with
resolution of 1.0 m, the upper right is the true color composite of a multi-spectral image with resolution
of 4.0 m, and the bottom one is the pan-sharped image of the panchromatic and multi-spectral images.

2.1.2. Collection of Sample Images

With the pan-sharped high resolution imagery, sample data set was collected by manual
delineation, though the basic unit of delineation is individual building, for those closely connected
buildings, neighbour buildings are merged together since it is hard to separate individual buildings.
And the manual delineated polygons are then converted to binary images as building roof mask, i.e.,
the binary image values of 1 and 0 means building roof, rest of land cover types respectively.

2.2. Methodology

In this paper, a DCNN model is developed to perform the feature extraction and per-pixel labeling
for building roof upon the VHR satellite imagery. Generally, a DCNN model consists of convolutional
and pooling layers, where the convolutional layers perform feature extraction and the pooling layers
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summarize the features by aggregating neighbour pixels in imagery, while both convolutional and
pooling layers reduce image size, the deconvolutional layer provide a way to upsample image to
original resolution, the detailed description of the three type operations is well introduced in [31].

2.2.1. Design of DCNN

There are many well-known CNN models for vision recognition tasks, e.g., AlexNet, VGG,
GoogLeNet, RestNet. To develop an accurate model with high computational efficiency, the VGG-16 is
selected as the basic DCNN network for building roof segmentation with GF2 VHR satellite imagery,
according to Occam’s Razor. It provides promising results in different vision tasks with reasonable
model size. The VGG-16 model is defined as a combination of several convolutional and pooling layers.
However, the original VGG-16 model was designed to provide a summarized semantic information
at the image level. Long et al., proposed a fully connected network (FCN) for dense prediction of
images at pixel level, with the use of deconvolutional operation to upsample CNN layers [32], FCN
provides an end-to-end framework for image segmentation at pixel level. Since the building roof
mapping requires dense prediction, the deconvolutional layer is adopted to recover the image size for
dense per-pixel prediction. Figure 2 illustrates the architecture of the DCNN model for the building
roof segmentation with GF2 imagery, with both convolutional and deconvolutional layers. It is well
addressed that the distribution drift of data, i.e., image Digital Number (DN) in this study, between
layers in DCNN may significantly reduce the computational efficiency and segmentation accuracy.
Batch normalization layers, as additional layers in fully convolutional DCNN, are therefore placed to
perform feature normalization between layers. The fully convolutional network perform both feature
extraction with spatial-spectral information of imagery and per-pixel class prediction.
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Figure 2. Architecture of the designed DCNN for building roof segmentation: Conv-N (N = 1–14) and
Deconv-N (N = 1–5) denote the convolutional, deconvolutional fiters, respectively; Pooling-N (N = 1–5)
are max pooling layers; Scale Fusion-N (N = 1–3) denotes the per-pixel addition layer for different
features; FS, NF are filter size and number of filters.
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2.2.2. DCNN Model Training and Inference

To reduce the effect of varied illumination and atmosphere for the images acquired at different
time over different areas, Equation (1) is employed to normalize the original image DN values at the
scene level. This is expected to provide comparable training and test data sets. The normalized images
are then clipped to sample images with a size of 512 × 512 pixels. In total 1460 sample images are
selected, where 80% of the sample images are randomly selected for training, while the remaining 20%
of the samples are selected for validation:

DNT = DNOri −

M•N
∑

i=0
DNi

M•N
(1)

where DNori and DNT are the DN values of original and transformed images, respectively, and M,N are
the image height and width. The DCNN model is implemented upon the open source deep learning
package developed by Google, i.e., Tensorflow. High performance workstation with GPUs, i.e., NVIDIA
TitanX, is employed to perform the DCNN model training and inference, and the batch size in the
training is 8. The dropout rate of 0.5 is set at training stage to prevent the DCNN from over-fitting.

2.2.3. Post-Processing with Conditional Random Field (CRF)

It is well established that the convolutional and pooling operations in image segmentation can
smooth the boundaries of objects [32]. To refine the segmentation results, CRF is employed to regularize
the building segmentation. As a probabilistic graphical model, CRF has been widely applied in image
analysis. It provides a solution for image analysis by connecting pixels with neighbors using a graph,
the graph consists of nodes, which are single image pixels. The nodes, together with edges of the
graph, are utilized to characterize spatial-spectral relationship. The posterior probability of the model
can be characterized by the Gibbs distribution:

P(Y|X) = 1
Z(X)

−
P(Y, X)

P(Y, X) = exp(∑
i

wi ∗ fi(Y, X))

Z(X) = ∑
Y

exp(∑
i

wi ∗ fi(Y, X))

(2)

where P(Y|X) is the normalized conditional probability of the event X and Y, which is characterized
by a Gibbs distribution. P(Y,X) is the joint distribution probability, which is defined as an exponential
function of weighted factors, and the factors are customized model for specific problems. Reference [31]
proposed a fully connected CRF model for image segmentation upon pixel level, the joint distribution
probability is parameterized with the summary of unary and pairwise potentials (Equation (3)):

E(x) = ∑
i

ψu(xi) + ∑
i<j

ψp(xi, xj) (3)

where E(x) is the Gibbs energy, ∑
i

ψu(xi) is the unary term, which is computed independently for

each pixel. ∑
i<j

ψp
(

xi, xj
)

denotes the pairwise potentials, which are designed for characterizing the

relationship between pixels and their neighbors. Detailed definitions of the unary and pairwise
potentials can be found in [33]. With the mean field approximation algorithm, the maximization of the
posterior probability of Gibbs distribution is calculated for inference of the model. In this study, the
fully connected CRF model was employed for building roof map segmentation.
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3. Results and Discussion

3.1. Training of the DCNN Model

The batch size for the training is 8, with 3000 epochs for the optimization of the DCNN model.
Figure 3 shows the change of loss in the training step, it suggest that the loss gradually decreased
during the training stage. The moving average loss is calculated with moving window size of 100,
while the maximum value of moving average error approximately is 1.2, the minimum value of moving
average error is 0.05, and it does not have significant change in the end of training, that means the
DCNN model converges to moving average error of 0.05.
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Figure 3. The change of loss value in model training stage: X axis and Y axis denote the training steps
and the training loss, respectively; the upper figure shows the process with training step of 1–1000.
The bottom figure shows the entire training process; the color of the bottom figure denotes the density
of steps, while the dashed lines are training bounds with loss values of 0.075, 0.005, 0.015, and the blue
line is the moving average of training losses with window size of 1000.

3.2. Qualitative Assessment

Basically, the semantic segmentation of building roof is a binary classification, i.e., image pixels are
labeled as either building roofs or non-building roofs. With the DCNN model trained by the interactive
optimization, the segmentation of building roofs, i.e., the prediction of per-pixel label, is performed
with the trained DCNN model. CRF is also employed to refine the segmentation results in this study.
Figure 4 illustrates the building roof segmentation results with fused GF2 PMS imagery over the
different study areas. Dense urban environments with business buildings, dense urban environments
with apartments, low density environments with apartments, urban environments with single family
houses and sparse urban environments, are selected for qualitative assessment. Colorized labels
which indicate the comparison between prediction and ground truth are applied for visualizing the
segmentation results in details. Visual inspection upon the segmentation results suggests that the
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DCNN could generate a promising building roof map over different urban environments. From the
building roof map with colorized accuracy indicators, we can conclude that many individual buildings
are segmented as connected image objects. While CRF is introduced as an efficient solution for
optimizing the segmentation results, it doesn’t significantly change the building roof map. It is also
observed that the segmented building roofs have smooth boundaries, even after the regularization
operations with CRF.

3.3. Quantitative Assessment

It is well known that quantitative assessment metrics are of paramount importance for land
surface mapping. In the remote sensing community, the metrics were designed from the perspective
of accuracy assessment of thematic maps at pixel level [34,35]. The DCNN model predicts building
roof by labeling binary patches, unlike the pixel-wise classification, the accuracy of the semantic
segmentation need to be assessed at both pixel level and patch level. Firstly, the per-pixel level accuracy
is characterized by overall accuracy (OA), it is defined by Equation (4):

OA =
NTP + NTN

NTP + NTN + NFP + NFN
(4)

where NTP, NFN are the numbers of pixels which are correctly labeled, while NTN, NFP are the numbers
of pixels which are incorrectly labeled. The mean overall accuracy is averaged with OA values of
all test images. The mean intersection-over-union (mIOU) is applied to characterize the accuracy at
segment level, and mIOU is calculated using Equation (5):

IOU = NGT∩NDR
NGT∪NDR

mIOU =

k
∑

i=0
IOUi

k

(5)

where NGT is the total number of pixels of the ground truth, i.e., manually delineated building roofs.
NDR is the total number of pixels of the corresponding building roofs detected by the DCNN model,
and k is the total number of segmentation patches. The quantitative assessment of segmentation results
are given in Tables 3 and 4. The OA values of two results, i.e., DCNN segmented and CRF-refined
building roofs are 94.67% and 94.69%, respectively. This suggests that the DCNN model worked very
well for building roof segmentation using the Chinese GF2 imagery, and the CRF could improve the
segmentation results. It is also suggests that the CRF could refine the results. However, the CRF-based
refinement didn’t produce any significant changes to the original segmentation.

Table 3. Overall accuracy and mIOU of the segmentation results.

Methods OA mIOU

DCNN 94.67% 0.83
DCNN-CRF 94.69% 0.83

Table 4. Confusion matrices for the segmentation results.

Segmentation

Ground Truth Building
(DCNN)

NotBuilding
(DCNN)

Building
(CRF)

NotBuilding
(CRF)

9968092 1902330 9447704 1399396
NotBuilding 2158790 62516836 2679178 63019770
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Figure 4. Visual comparison of the building roof segmentation results in different urban environment:
for each row, images from left to right are true color composite GF2 PMS imagery (512 Pixel × 512 Pixel),
manual delineation of building roof, DCNN segmentation results and CRF-refined building roof
segmentation, respectively; for the images with segmentation results, green mask is True Positive
(TP, building roof pixel was correctly classified), blue mask is False Negative (FN, building roof pixel
was classified as non-building roof) and red mask is False Positive (FP, non-building roof pixel was
classified as building roof).
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4. Conclusions

This paper presents an approach for semantic segmentation of building roofs in dense and
diverse urban environment with Chinese GF2 PMS images. A fully connected DCNN is introduced
to carry out the feature extraction as well as pixel labeling. Experiments are conducted upon VHR
images acquired by the PMS on board the Chinese GF2 satellite. The DCNN could extract features
in both the spectral and spatial domains, and the features are fused together for dense prediction at
a pixel level. The quantitative assessment of the semantic segmentation results suggest that the fully
connected DCNN achieved high accuracy building roof maps. However, the convolutional operation
performs feature extraction with moving window filters, and the pooling operation aggregates
neighboring pixels with summation, so both operations would smooth images and eventually change
the boundaries of buildings. Future work on the algorithm improvement would focus on the fusion of
low level geometrical features, e.g., multi-scale feature fusion with dilated convolutional filter, image
transformation for building edge enhancement.

It is demonstrated that the generation of DCNN models relies on a large volume of positive and
negative samples, and the collection of massive numbers of building roof samples is not only costly,
but it is also difficult to cover all scenarios in the practice of inference, especially in dense and diverse
urban environments spread over large areas. Currently, there are some efforts being conducting to
collect building roofs globally over different areas, e.g., SpaceNet, hosted by DigitalGlobe on Amazon
Web Service (AWS), and the Volunteering Geographical Inventory (VGI) based approach is also being
investigated for sample collection, which would be an alternative for large scale sample collection in
future work.

In summary, the DCNN model performs well on semantic segmentation of building roofs in
dense urban environments using GF2 VHR images. With the advances in high performance computers
and the low cost GF2 imagery, it could be a promising method for operational building roof mapping
over large areas with different building types and distribution patterns, and it offers an affordable data
sources for both urban planning and sustainable development assessment.

Author Contributions: Conceptualization, Y.Q.; Methodology, Y.Q. and M,L.; Validation, M.L.; Investigation, Y.W.
and Y,Q.; Resources, B.L.; Data Curation, S,G. and Y.Z.; Writing-Original Draft Preparation, Y.Q.; Writing-Review
& Editing,Y.Q.; Visualization, Y.Q.; Funding Acquisition, Y.Q.

Funding: This research was funded by the 100 Talents Program of the Chinese Academy of Sciences and the
National Key R&D Program of China (2018YFC0506901).

Acknowledgments: The authors would like to thank the anonymous reviewers for the constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization
Prospects: The 2014 Revision. Available online: https://population.un.org/wup/Publications/Files/
WUP2014-Report.pdf (accessed on 2 March 2019).

2. Alshehhi, R.; Marpu, P.R.; Wei, L.W.; Mura, M.D. Simultaneous extraction of roads and buildings in remote
sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2017, 130, 139–149.
[CrossRef]

3. Xie, Y.; Weng, Q. Updating urban extents with nighttime light imagery by using an object-based thresholding
method. Remote Sens. Environ. 2016, 187, 1–13. [CrossRef]

4. Seto, K.C.; Golden, J.S.; Alberti, M.; Nd, T.B. Sustainability in an urbanizing planet. Proc. Natl. Acad. Sci. USA
2017, 114, 8935–8938. [CrossRef] [PubMed]

5. Sohn, G.; Dowman, I. Data fusion of high-resolution satellite imagery and lidar data for automatic building
extraction. ISPRS J. Photogramm. Remote Sens. 2007, 62, 43–63. [CrossRef]

6. Awrangjeb, M.; Zhang, C.; Fraser, C.S. Automatic extraction of building roofs using lidar data and
multispectral imagery. ISPRS J. Photogramm. Remote Sens. 2013, 83, 1–18. [CrossRef]

https://population.un.org/wup/Publications/Files/WUP2014 -Report.pdf
https://population.un.org/wup/Publications/Files/WUP2014 -Report.pdf
http://dx.doi.org/10.1016/j.isprsjprs.2017.05.002
http://dx.doi.org/10.1016/j.rse.2016.10.002
http://dx.doi.org/10.1073/pnas.1606037114
http://www.ncbi.nlm.nih.gov/pubmed/28784798
http://dx.doi.org/10.1016/j.isprsjprs.2007.01.001
http://dx.doi.org/10.1016/j.isprsjprs.2013.05.006


Sensors 2019, 19, 1164 11 of 12

7. Zhang, Y. Optimisation of building detection in satellite images by combining multispectral classification
and texture filtering. ISPRS J. Photogramm. Remote Sens. 1999, 54, 50–60. [CrossRef]

8. Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm.
Remote Sens. 2016, 117, 11–28. [CrossRef]

9. Ok, A.O. Automated detection of buildings from single VHR multispectral images using shadow information
and graph cuts. ISPRS J. Photogramm. Remote Sens. 2013, 86, 21–40. [CrossRef]

10. Ngo, T.T.; Mazet, V.; Collet, C.; Fraipont, P.D. Shape-based building detection in visible band images using
shadow information. IEEE J. Select. Topics Appl. Earth Obs. Remote Sens. 2016, 99, 1–13. [CrossRef]

11. Kim, T.; Muller, J.P. Development of a graph-based approach for building detection. Image Vision Comput.
1999, 17, 3–14. [CrossRef]

12. Sirmacek, B.; Unsalan, C. Urban-area and building detection using sift keypoints and graph theory.
IEEE Trans. Geosci. Remote Sens. 2009, 47, 1156–1167. [CrossRef]

13. Grinias, I.; Panagiotakis, C.; Tziritas, G. MRF-based segmentation and unsupervised classification for
building and road detection in peri-urban areas of high-resolution satellite images. ISPRS J. Photogramm.
Remote Sens. 2016, 122, 145–166. [CrossRef]

14. San, A.D.K.; Turker, M. Support vector machines classification for finding building patches from ikonos
imagery: The effect of additional bands. J. Appl. Remote Sens. 2014, 8, 6836–6894.

15. Sumer, E.; Turker, M. An adaptive fuzzy-genetic algorithm approach for building detection using
high-resolution satellite images. Comput. Environ Urban Syst. 2013, 39, 48–62. [CrossRef]

16. Huang, X.; Yuan, W.; Li, J.; Zhang, L. A new building extraction postprocessing framework for high-spatial-
resolution remote-sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 654–668.
[CrossRef]

17. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
18. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.

In Proceedings of the International Conference on Neural Information Processing Systems, Lake Tahoe, NV,
USA, 3–6 December 2012; pp. 1097–1105.

19. LeCun, Y.; Kavukvuoglu, K.; Farabet, C. Convolutional Networks and Applications in Vision. In Proceedings
of the IEEE International Symposium on Circuits and Systems (ISCAS’10), Paris, France, 30 May–2 June 2010;
pp. 253–256.

20. Ross, G.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and
Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 24–27 June 2014; pp. 580–587.

21. Ren, S.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks.
IEEE Trans. Pattern Anal. Mach. Intel. 2017, 39, 1137–1149. [CrossRef] [PubMed]

22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 21 June–1 July 2016;
pp. 770–778.

23. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference
on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

24. Yuan, J. Automatic building extraction in aerial scenes using convolutional networks. arXiv 2016,
arXiv:1602.06564.

25. Bittner, K.; Cui, S.; Reinartz, P. Building Extraction from Remote Sensing Data using fully convolutional
Networks. Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. 2017, XLII-1/W1, 481–486. [CrossRef]

26. Sun, L.; Tang, Y.; Zhang, L. Rural building detection in high-resolution imagery based on a two-stage cnn
model. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1998–2002. [CrossRef]

27. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional neural networks for large-scale remote-sensing
image classification. IEEE Trans. Geosci. Remote Sens. 2016, 55, 645–657. [CrossRef]

28. Microsoft. Building Footprints for the United States. Available online: https://github.com/Microsoft/
USBuildingFootprints (accessed on 2 March 2019).

29. Ilke, D.; Koperski, K.; Lindenbaum, D.; Pang, G.; Huang, J.; Basu, S.; Hughes, F.; Tuia, D.; Raska, R. Deepglobe
2018: A challenge to parse the earth through satellite images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June
2018; pp. 1721–1781.

http://dx.doi.org/10.1016/S0924-2716(98)00027-6
http://dx.doi.org/10.1016/j.isprsjprs.2016.03.014
http://dx.doi.org/10.1016/j.isprsjprs.2013.09.004
http://dx.doi.org/10.1109/JSTARS.2016.2598856
http://dx.doi.org/10.1016/S0262-8856(98)00092-4
http://dx.doi.org/10.1109/TGRS.2008.2008440
http://dx.doi.org/10.1016/j.isprsjprs.2016.10.010
http://dx.doi.org/10.1016/j.compenvurbsys.2013.01.004
http://dx.doi.org/10.1109/JSTARS.2016.2587324
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.5194/isprs-archives-XLII-1-W1-481-2017
http://dx.doi.org/10.1109/LGRS.2017.2745900
http://dx.doi.org/10.1109/TGRS.2016.2612821
https://github.com/Microsoft/USBuildingFootprints
https://github.com/Microsoft/USBuildingFootprints


Sensors 2019, 19, 1164 12 of 12

30. Tong, X.; Zhao, W.; Xing, J.; Fu, W. Status and development of China High-Resolution Earth Observation
System and application. In Proceedings of the IEEE Symposium on Geoscience and Remote Sensing, Beijing,
China, 10–15 July 2016; pp. 3738–3741.

31. Ian, G.; Yoshua, B.; Aaron, C. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
32. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3431–3440.

33. Krähenbühl, P.; Koltun, V. Efficient inference in fully connected crfs with gaussian edge potentials. Adv. Neural
Inf. Process. Syst. 2011, 24, 109–117.

34. Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201.
[CrossRef]

35. Salk, C.; Fritz, S.; See, L.; Dresel, C.; McCallum, I. An Exploration of Some Pitfalls of Thematic Map
Assessment Using the New Map Tools Resource. Remote Sens. 2018, 10, 376. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0034-4257(01)00295-4
http://dx.doi.org/10.3390/rs10030376
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data Sets and Study Areas 
	Image Preprocessing and Training Data Collection 
	Collection of Sample Images 

	Methodology 
	Design of DCNN 
	DCNN Model Training and Inference 
	Post-Processing with Conditional Random Field (CRF) 


	Results and Discussion 
	Training of the DCNN Model 
	Qualitative Assessment 
	Quantitative Assessment 

	Conclusions 
	References

