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Abstract

:

In this paper, we evaluate the secrecy performance of multi-hop cognitive wireless sensor networks (WSNs). In the secondary network, a source transmits its data to a destination via the multi-hop relaying model using the transmit antenna selection (TAS)/selection combining (SC) technique at each hop, in the presence of an eavesdropper who wants to receive the data illegally. The secondary transmitters, including the source and intermediate relays, have to harvest energy from radio-frequency signals of a power beacon for transmitting the source data. Moreover, their transmit power must be adjusted to satisfy the quality of service (QoS) of the primary network. Under the joint impact of hardware imperfection and interference constraint, expressions for the transmit power for the secondary transmitters are derived. We also derive exact and asymptotic expressions of secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNSC) for the proposed protocol over Rayleigh fading channel. The derivations are then verified by Monte Carlo simulations.
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1. Introduction


Security is one of the important issues in wireless sensor networks (WSNs) due to the broadcast nature of wireless medium. Conventionally, encryption/decryption algorithms that generate public/private keys are used to guarantee security [1,2]. Recently, a security framework for the physical layer, called the wiretap channel or physical-layer security (PLS) [3,4,5,6,7], has been introduced as a potential solution. In PLS, the difference between the channel capacity of the data link and the channel capacity of the eavesdropping link, named secrecy capacity, is commonly used to evaluate secrecy performance such as average secrecy capacity (ASC), secrecy outage probability (SOP), and probability of non-zero secrecy capacity (PNSC). Hence, to enhance the secrecy performance, the quality of the data and eavesdropping links should be increased and decreased, respectively. To enhance the channel capacity of the data links, diversity transmit and receive methods [8,9,10] can be used. In [8], the transmit antenna selection (TAS) technique is employed at a multi-antenna base station (BS) to maximize the instantaneous signal-to-noise ratios (SNRs) obtained between BS and intended users. References [9,10] considered MIMO secure communication systems, where the transmitter uses the TAS technique, while the legitimate receiver and eavesdropper can use selection combining (SC) or maximal ratio combining (MRC) for reception. In [11,12,13,14,15], cooperative relaying strategies were proposed to improve secrecy performance via increasing the channel capacity for the data links. Moreover, to avoid the eavesdropper combining the data with MRC, a randomize-and-forward (RF) strategy [16] can be employed, where the source and relays generate different code-books to confuse the eavesdropper. For significantly degrading the eavesdropping channels, cooperative jamming (CJ) methods were reported in [17,18,19]. The basic idea of the CJ method is that jammer nodes are employed to generate artificial noises on the eavesdropper. In addition, the legitimate receivers have to cooperate with the jammers to remove the interference appeared in their received signals. However, the implementation of this technique can be a difficult work due to the requirement of high synchronization between the nodes.



Recently, wireless energy harvesting (EH) [20,21] has emerged as a potential solution to prolong the lifetime of WSNs. In wireless EH, the energy-constrained devices can harvest energy from radio frequency signals generated by ambient nodes. In [21], EH amplify-and-forward (AF) relaying protocols were proposed and analyzed, where the relay node harvests energy from the source for transmitting the source data to the destination. The authors of [22] considered both AF and decode-and-forward (DF) relaying schemes employed a hybrid power splitting (PS) and time switching (TS) EH relay. In [23,24,25], power beacons (PBs) are deployed in the networks to charge energy for wireless devices. The PB-aided wireless power transfer models are suitable for large-scale WSNs or wireless ad-hoc networks. Moreover, to avoid causing the co-channel interference to the receivers, channels used for harvesting energy from the wireless signals of PBs are different from those used for the data transmission. In [23,24,25], the authors studied the performance of secondary networks in PB-assisted underlay cognitive radio (PB-UCR), where the transmit power of secondary users was limited by both the harvested energy and the maximum interference levels required by primary users. In [26], a secure communication scenario in cognitive sensor radio networks with an EH eavesdropper was introduced. Reference [27] proposed various path-selection protocols in multi-path multi-hop relaying networks in the presence of active eavesdroppers. Moreover, in [27], all of the terminals whose transceiver hardware is low-cost suffered from hardware imperfection due to phase noise, I/Q imbalance (IQI), amplifier nonlinearities, etc. [28,29,30].



This paper deals with multi-hop secure communication networks in PB-UCR under impact of hardware impairments. In [31], the authors first evaluated the secrecy capacity in the presence of IQI for OFDMA communication systems. Reference [32] proposed a secure massive MIMO system with a passive multiple-antenna eavesdropper and hardware noises. The results in [31,32] showed that the hardware impairments significantly impact of the secrecy performance. Next, unlike [27], our scheme considers the PB-URC networks using the MIMO-based TAS/SC relaying technique. In [33,34,35], cooperative multi-hop full-duplex relaying networks were proposed to enhance the end-to-end secrecy performance. However, it is too difficult to apply these schemes into WSNs due to the complexity of full-duplex operation. References [36,37,38] introduced simple multi-hop secure relaying scenarios in which all of the nodes are equipped with a single antenna. In [39], PLS in downlink MIMO multi-hop heterogeneous cellular networks were investigated. In particular, the data transmission between base stations and mobile users is realized via direct or multi-hop mode. In [40], a multi-hop multicasting secure transmission protocol with multi-antenna DF relays in the presence of multiple eavesdroppers was proposed and analyzed. However, in [36,37,38,39,40], the authors did not consider the cognitive environment as well as the wireless EH technique.



To the best of our knowledge, there is no published work related to multi-hop secure transmission in PB-UCR under the impact of hardware noises. In the proposed protocol, a secondary source transmits its data to a secondary destination using the multi-hop mode in the presence of a secondary eavesdropper. To support the reliable communication at each hop, the TAS/SC technique is used to forward the source data. Operating on the underlay spectrum sharing method, the transmit power of the secondary source and relay nodes must be adjusted to satisfy the required QoS of the primary network. Moreover, the secondary transmitters have to harvest energy from PB deployed in the secondary network for the data transmission. The main contribution of this paper can be summarized as follows:

	
We propose a simple multi-hop MIMO relaying protocol using the TAS/SC technique for PB-UCR WSNs. The proposed protocol can obtain energy efficiency and spectrum usage efficiency, enhance the reliability of data transmission, and improve the secrecy performance.



	
In almost published works related to EH and UCR (see [23,24,25]), the transmitters adjust their transmit power following the instantaneous channel state information. As a result, the transmit power is a random variable (RV), which is not feasible. In this paper, the secondary source and relay nodes are assumed to transmit the source data at fixed transmit power levels. In addition, we derive an exact closed-form expression of the average transmit power of the secondary transmitters under the joint impacts of the energy harvested, the interference constraint, and the maximum transmit power level.



	
We investigate the impact of hardware impairments on the end-to-end SOP and PNSC of the proposed scheme. Indeed, the obtained results presented that the hardware imperfection has a significant impact on the secrecy performance. Moreover, the analytical results showed that different values of the hardware impairment levels of the data and eavesdropping links lead to different secrecy performance trend. Finally, it is worth noting that the proposed scheme is a generalized case of the existing schemes in which the transceiver hardware is assumed to be perfect [11,41,42,43].



	
We derive new exact and asymptotic expressions of the end-to-end SOP and PNSC over Rayleigh fading channels, which are then verified by Monte Carlo simulations.








The rest of this paper is organized as follows. The system model of the considered protocol is described in Section 2. In Section 3, the expressions of SOP are derived. The simulation results are shown in Section 4. Finally, this paper is concluded in Section 5.




2. System Model


Figure 1 illustrates the system model of the proposed scheme, in which a secondary source T0 wants to transmit its data to a destination TK via K−1 intermediate nodes denoted by T1,T2, …, TK−1. The data transmission between T0 and TK is realized via K orthogonal time slots, exploiting the TAS/SC technique. In particular, at the k+1-th hop, the node Tk selects an antenna to transmit the source data to the node Tk+1, which uses the SC technique to combine the signals received from Tk, where k=0,1,…,K. We assume that all of the nodes including the source, the destination and the relays are equipped with ND antennas. The transmitter Tk has to harvest energy from wireless signals of a single-antenna power beacon (PB) deployed in the secondary network. Moreover, Tk must adjust the transmit power to satisfy a maximal interference threshold (Ith) required by a single-antenna primary user (PU). Also in the secondary network, there exists an NE-antenna eavesdropper (E) who uses the SC technique to decode the source data obtained at each hop. Similar to [16], the secondary transmitters randomly generate code-book to confuse the eavesdropper.



Comment 1: Due to the size limitation and complexity constraint, it is assumed that all of the receivers can only use the SC combiner for decoding the data. In addition, the secrecy performance of the proposed protocol is same with that of the corresponding one with multiple non-colluding single-antenna eavesdroppers [44,45]. Finally, in the case where the eavesdropper can employ the MRC technique, the expressions derived in this paper can be used as bound expressions of the secrecy performance.



Let us denote γX,Y as the channel gain of the link, where X,Y∈Tk,E,PB,PU. Assume that all of the channels are Rayleigh fading; hence the channel gain γX,Y is an exponential RV. The cumulative distribution function (CDF) and probability density function (PDF) of γX,Y can be expressed, respectively, as


FγX,Yu=1−exp−λX,Yu,fγX,Yu=λX,Yexp−λX,Yu,



(1)




where λX,Y is parameter of the exponential RV γX,Y, i.e., λX,Y=1/EγX,Y=1/VarγX,Y, where E is expected operator and VarX is variance of X. To take path-loss into account, we can model λX,Y as λX,Y=dX,Yβ [46], where dX,Y is the distance between X and Y, and β is the path-loss exponent.



We denote γTk,m,Y as the channel gain between the m-th antenna of Tk and Y, where m=1,2,…,ND. Assume that RVs γTk,m,Y are independent and identical, i.e., λTk,m,Y=λTk,Y for all m. Also, let γX,Tk+1,n and γX,Ep as channel gain between X and the n-th antenna of Tk+1, and that between X and the p-th antenna of E, respectively, where n=1,2,…,ND and p=1,2,…,NE. Similarly, γX,Tk+1,n and γX,Ep are independent and identically distributed (i.i.d.) RVs, i.e., λX,Tk+1,n=λX,Tk+1 and λX,Ep=λX,E for all n and p.



Let T denote the total transmission time between T0 and TK, and hence the time allocated for each time slot is given as τ=T/K. Considering the k+1-th hop; a duration of ετ is used for Tk to harvest energy, and the remaining duration, i.e., 1−ετ, is spent for the data transmission between Tk and Tk+1, where 0≤ε≤1. Then, the amount of energy that TK can harvest is given by


EHk=ηετPB∑v=1NDγPB,Tk,v,



(2)




where η0≤η≤1 is energy conversion efficiency, and PB is transmit power of PB.



From (2), we can formulate the transmit power that Tk can use in the data transmission phase by


QEH,k=EHk1−ετ=χPBφsum,k,



(3)




where χ=ηε/1−ε and φsum,k=∑v=1NDγPB,Tk,v. Using (Equation (A.7) [25]), we can write the CDF of φsum,k as


Fφsum,kz=1−∑t=0ND−11t!λPB,Tkztexp−λPB,Tkz.



(4)







Considering the data transmission between the transmitter A and the receiver B; under the impact of the hardware impairments, the instantaneous SNR received at B can be expressed as in [30,33,34,47,48]:


ΨA,B=PAγA,BκA2+κB2PAγA,B+σ2=PAγA,BκA,B2PAγA,B+σ2,



(5)




where A,B∈T,E,PB,PU, PA is transmit power of the transmitter A, γA,B is channel gain between A and B, σ2 is the variance of additive white Gaussian noise (AWGN), κA2 and κB2 are constants characterizing the level of the hardware impairments at A and B, respectively, and κA,B2=κA2+κB2 is the total hardware impairment level. The values of κA2, κB2, κA,B2, which depend on the structure of the transceiver hardware at A and B, can be determined by practical experiments.



Moreover, in the URC network, if Tk uses the m-th antenna to transmit the data, the transmit power must satisfy the interference constraint required by PU as in [25,49]:


QIN,k,m=Ith1+κP2γTk,m,PU,



(6)




where κP2 is total hardware impairment level at Tk and PU (see [25,49]).



Let PS denote the maximum transmit power of each antenna; by combining (3) and (6), the transmit power of the m-th antenna at Tk can be formulated by


Pk,m=minQEH,k,QIN,k,m,PS=PSminμ1φsum,k,μ2γTk,m,PU,1=PSminμ1φsum,k,μ2γTk,m,PU,ifminμ1φsum,k,μ2γTk,m,PU<1PS,ifminμ1φsum,k,μ2γTk,m,PU≥1



(7)




where


μ1=χPBPS,μ2=Ith1+κP2PS.











We can observe from (7) that when minμ1φsum,k,μ2/γTk,m,PU<1, then Pk,m=PSminμ1φsum,k,μ2/γTk,m,PU is a RV, which is not feasible (although this assumption was widely used in many published literature, e.g., [23,24,25] and references therein). In practice, the transmit power Pk,m should be fixed at pre-determined levels. Indeed, assume that there are W+1 fixed levels denoted by Lvv=0,1,…,W with Lv=vPS/W. For example, L0=0 is the lowest level, and LW=PS is the highest one. Now, by combining with (7), we can write the expression of Pk,m as


Pk,m=0,ifPSminμ1φsum,k,μ2γTk,m,PU<L1Lv,ifv<W,Lv≤PSminμ1φsum,k,μ2γTk,m,PU<Lv+1LW,ifLW≤PSminμ1φsum,k,μ2γTk,m,PU



(8)







Now, we consider the data transmission between Tk and Tk+1. Employing the TAS/SC technique, the transmit antenna at Tk and the receive antenna at Tk+1 are selected by the following strategy (see [9]):


γTk,b,Tk+1,c=maxm=1,2,…,NDmaxn=1,2,…,NDγTk,m,Tk+1,n,



(9)




where b and c are the selected antennas at Tk and Tk+1, respectively, b∈1,2,…,ND and c∈1,2,…,ND. Since γTk,m,Tk+1,n are i.i.d. RVs, CDF of γTk,b,Tk+1,c can be obtained by


FγTk,b,Tk+1,cx=∏m=1ND∏n=1NDFγTk,m,Tk+1,nx=1−exp−λTk,Tk+1xND2=1+∑v=1ND2−1vND2vexp−vλTk,Tk+1x.



(10)







With the presence of hardware impairments, the channel capacity of the Tk→Tk+1 link is calculated as


CD,k=1−ετlog21+Pk,bγTk,b,Tk+1,cκD2Pk,bγTk,b,Tk+1,c+σ2,



(11)




where κD2 is the total hardware impairment level at Tk and Tk+1, which is assumed to be the same for all values of k.



Let us consider the eavesdropping link at the k+1-th hop; the channel capacity of the Tk→E link can be obtained by


CE,k=1−ετlog21+Pk,bγTk,b,EgκE2Pk,bγTk,b,Eg+σ2,



(12)




where κE2 is the total hardware impairment level at Tk and E. In addition, since E uses the SC combiner, the channel gain γTk,b,Eg can be written as


γTk,b,Eg=maxp=1,2,…,NEγTk,b,Ep,



(13)




where g∈1,2,…,NE. In addition, CDF of γTk,b,Eg can be expressed by


FγTk,b,Egx=∏p=1NEFγTk,b,Epx=1−exp−λTk,ExNE.



(14)







From (14), we obtain PDF of γTk,b,Eg as


fγTk,b,Egx=NEλTk,Eexp−λTk,Ex1−exp−λTk,ExNE−1=∑u=0NE−1−1uNE−1uNEλTk,Eexp−u+1λTk,Ex.



(15)







Next, from (11) and (12), the secrecy capacity at the k+1-th hop is obtained by


CSec,k=max0,CD,k−CE,k=max0,1−ατlog21+Pk,bγTk,b,Tk+1,cκD2Pk,bγTk,b,Tk+1,c+σ2−log21+Pk,bγTk,b,EgκE2Pk,bγTk,b,Eg+σ2.



(16)







With the random-and-forward strategy, the end-to-end secrecy capacity of the proposed protocol is given as in [37]:


CSece2e=mink=1,2,…,KCSec,k.



(17)








3. Performance Analysis


In this section, we analyze the average transmit power of the secondary transmitters and the secrecy performance of the proposed protocol in terms of SOP and PNSC.



3.1. Average Transmit Power of the Secondary Transmitters


From (8), the average transmit power of Tk can be given by the following formula:


EPk,b=∑v=1W−1PrvW≤minμ1φsum,k,μ2γTk,b,PU<v+1WvWPS+Pr1≤minμ1φsum,k,μ2γTk,b,PUPS,



(18)




where E. is an expectation operator. To calculate EPk,b, we attempt to find CDF of minμ1φsum,k,μ2/γTk,b,PU. Setting Zmin,k=minμ1φsum,k,μ2/γTk,b,PU, the CDF of Zmin,k is obtained by


FZmin,kz=1−1−Fφsum,kzμ1FγTk,b,PUμ2z.



(19)







Substituting FγTk,b,PUx=1−exp−λTk,PUx and (4) into (19) yields


FZmin,kz=1−∑t=0ND−11t!λPB,Tkzμ1texp−λPB,Tkzμ11−exp−λTk,PUμ2z.



(20)







Therefore, the average transmit power of Tk is written by


EPk,b=∑v=1W−1FZmin,kv+1W−FZmin,kvWvWPS+1−FZmin,k1PS.



(21)








3.2. Secrecy Outage Probability (SOP)


The end-to-end SOP of the proposed protocol can be calculated by


SOP=Pr(CSece2e<Cth)=Prmink=1,2,…,KCSec,k<Cth=1−∏k=1K1−PrCSec,k<Cth=1−∏k=1K1−SOPk,



(22)




where CthCth>0 is a predetermined outage threshold, and SOPk=PrCSec,k<Cth is the secrecy outage probability at the k-th hop. Using (8) and (16), we can formulate SOPk by


SOPk=∑v=1WPrPk,b=Lv×Pr1+LvγTk,b,Tk+1,cκD2LvγTk,b,Tk+1,c+σ21+LvγTk,b,EgκE2LvγTk,b,Eg+σ2<ρ︸SOPkLv,



(23)




where ρ=2Cth/1−ετ.



It is noted from (23) that the secrecy outage event is only considered in the cases where the transmit power Pk,b is higher than zero, i.e., Pk,b=Lv and v≥1.



For the probability PrPk,b=Lv in (23), it can be calculated by


PrPk,b=Lv=FZmin,kv+1W−FZmin,kvW,ifv<W1−FZmin,k1,ifv=W



(24)







Next, let us consider the SOP conditioned on Pk,b=Lv as marked in (23); we have


SOPkLv=PrLvγTk,b,Tk+1,cκD2LvγTk,b,Tk+1,c+σ2<ρ−1+LvγTk,b,EgκE2LvγTk,b,Eg+σ2ρ=Prα0γTk,b,Tk+1,c<α1,v+α2γTk,b,Eg+α3,vγTk,b,Tk+1,cγTk,b,Eg,



(25)




where


α0=1−ρ−1κD2,α1,v=σ2ρ−1Lv,α2=ρ−1κE2+ρ,α3,v=Lvσ2ρ−1κD2κE2+κD2ρ−κE2.



(26)







We can observe from (25) that if α0≤0 (or κD2≥1/ρ−1), SOPkLv always equals 1 for all values of k and v.



In the following, we derive the exact expressions of SOPkLv as given in Lemmas 1–3 below.



Lemma 1.

When α0>0 and α3,v>0orκD2>κE2/ρ+ρ−1κE2, the exact expression of SOP can be given as


SOPkLv=1+∑n=1ND2∑m=0NE−1−1n+mβ0∫0α0expβ1yexp−β2ydy.



(27)









Proof. 

At first, when α0>0 and α3,v>0, we can rewrite SOPkLv as


SOPkLv=Prα0−α3,vγTk,b,EgγTk,b,Tk+1,c<α1,v+α2γTk,b,Eg=PrγTk,b,Eg≥α0α3,v+PrγTk,b,Eg<α0α3,v,γTk,b,Tk+1,c<α1,v+α2γTk,b,Egα0−α3,vγTk,b,Eg=1−FγTk,b,Egα0α3,v+∫0α0/α3,vFγTk,b,Tk+1,cα1,v+α2xα0−α3,vxfγTk,b,Egxdx.



(28)







By substituting the CDF of γTk,b,Tk+1,c in (10), and the PDF of γTk,b,Eg in (15) into (28), after some manipulations, we arrive at


SOPkLv=1+∑n=1ND2∑m=0NE−1−1n+mND2nNE−1mNEλTk,E×∫0α0/α3,vexp−m+1λTk,Exexp−nλTk,Tk+1α1,v+α2xα0−α3,vxdx.



(29)







By changing variable y=α0−α3,vx, we have


SOPkLv=1+∑n=1ND2∑m=0NE−1−1n+mND2nNE−1mNEλTk,Eα3,v×expnλTk,Tk+1α2α3,v−m+1λTk,Eα0α3,v×∫0α0expm+1λTk,Eα3,vyexp−nλTk,Tk+1α1,vα3,v+α0α2α3,vydy.



(30)







With α1,vα3,v+α0α2=ρ, we can rewrite (30) as


SOPkLv=1+∑n=1ND2∑m=0NE−1−1n+mβ0∫0α0expβ1yexp−β2ydy.



(31)




where


β0=ND2nNE−1mNEλTk,Eα3,vexpnλTk,Tk+1α2−m+1λTk,Eα0α3,v,β1=m+1λTk,Eα3,v,β2=nλTk,Tk+1ρα3,v.



(32)







We finish the proof of Lemma 1 here. We note that the integrals in (27) can be easily calculated by computer software such as Matlab or Mathematica. ☐





Comment 2: We can observe from (27) that the exact expression of SOPkLv is still in integral form, which does not provide any insights into the system performance. Therefore, our next objective is to find an asymptotic expression at high transmit SNR as given in Corollary 1 below.



Corollary 1.

When α0>0 and α3,v>0, we can approximate SOPkLv at high transmit SNR PS/σ2→+∞ by a closed-form expression as


SOPkLv≈PS/σ2→+∞1−1−exp−λTk,Eα0α3,vNE.



(33)









Proof. 

At high transmit SNR, we can approximate (25) in this case as follows:


SOPkLv=Prα0γTk,b,Tk+1,c<α1,v+α2γTk,b,Eg+α3,vγTk,b,Tk+1,cγTk,b,Eg≈PS/σ2→+∞Prα0γTk,b,Tk+1,c<α3,vγTk,b,Tk+1,cγTk,b,Eg=PrγTk,b,Eg>α0α3,v≈PS/σ2→+∞1−FγTk,b,Egα0α3,v.



(34)







Substituting (14) into (34), we obtain (33). ☐





Comment 3: Combining (22), (23), (27), and (33), we obtain exact and asymptotic formulas of the end-to-end SOP when α0>0 and α3,v>0. Equation (33) implies that SOPkLv at high transmit SNR only depends on λTk,E,α0, and α3,v. Moreover, SOPkLv (and the end-to-end SOP) increases when PS/σ2 increases.



Lemma 2.

When α0>0 and α3,v<0, an exact expression of SOPkLv can be given as


SOPkLv=1+∑n=1ND2∑m=0NE−1−1n+m+1β0∫α0+∞expβ1yexp−β2ydy.



(35)









Proof. 

Similar to (28), SOPkLv in this case can be written by


SOPkLv=Prα0−α3,vγTk,b,EgγTk,b,Tk+1,c<α1,v+α2γTk,b,Eg=PrγTk,b,Tk+1,c<α1,v+α2γTk,b,Egα0−α3,vγTk,b,Eg=∫0+∞FγTk,b,Tk+1,cα1,v+α2xα0−α3,vxfγTk,b,Egxdx.



(36)







With the same manner as deriving SOPkLv in (28), we can obtain (35). ☐





Corollary 2.

At high transmit SNR, SOPkLv in (35) can be approximated by


SOPkLv≈PS/σ2→+∞1−expλTk,Tk+1α2α3,vND2.



(37)









Proof. 

Similar to the proof of Corollary 1, we have


SOPkLv=Prα0γTk,b,Tk+1,c<α1,v+α2γTk,b,Eg+α3,vγTk,b,Tk+1,cγTk,b,Eg≈PS/σ2→+∞Pr−α3,vγTk,b,Tk+1,cγTk,b,Eg<α2γTk,b,Eg≈PS/σ2→+∞FγTk,b,Tk+1,c−α2α3,v.



(38)







Substituting (10) into (38), we then obtain (37). ☐





Comment 4: Combining (22), (23), (35), and (37), we obtain exact and asymptotic expressions of the end-to-end SOP when α0>0 and α3,v<0. Equation (37) also shows that at high transmit SNR, SOPkLv (and the end-to-end SOP) decreases as PS/σ2 increases.



Lemma 3.

When α0>0 and α3,v=0, SOPkLv is given by an exact closed-form expression as


SOPkLv=1+∑n=1ND2∑m=0NE−1−1n+mND2nNE−1mNEλTk,Em+1λTk,E+nλTk,Tk+1α2/α0exp−nλTk,Tk+1α1,vα0.



(39)









Proof. 

In this case, we have


SOPkLv=Prα0γTk,b,Tk+1,c<α1,v+α2γTk,b,Eg=∫0+∞FγTk,b,Tk+1,cα1,vα0+α2α0xfγTk,b,Egxdx.



(40)







Substituting CDF of γTk,b,Tk+1,c in (10), and PDF of γTk,b,Eg in (15) into (40), after some manipulations, we can obtain (39), and finish the proof. ☐





Corollary 3.

When α0>0 and α3=0, SOPkLv can be approximated by


SOPkLv≈PS/σ2→+∞1+∑n=1ND2∑m=0NE−1−1n+mND2nNE−1mNEλTk,Em+1λTk,E+nλTk,Tk+1α2/α0.



(41)









Proof. 

In this case, we have the following approximation:


SOPkLv=Prα0γTk,b,Tk+1,c<α1,v+α2γTk,b,Eg≈PS/σ2→+∞Prα0γTk,b,Tk+1,c<α2γTk,b,Eg≈PS/σ2→+∞∫0+∞FγTk,b,Tk+1,cα2α0xfγTk,b,Egxdx.



(42)




 ☐





Substituting CDF of γTk,b,Tk+1,c, and PDF of γTk,b,Eg into (42), after some manipulations, we can obtain (41).



Comment 5: Equation (41) shows that SOPkLv, as well as the end-to-end SOP at high transmit SNR, do not depend on PS/σ2. It is worth noting that this paper considers a generalized system model where the hardware impairment levels on the data links and eavesdropping links can be different or the same. Moreover, we can observe from Lemmas 1–3 that the secrecy outage probability of the proposed protocol is only expressed by an exact closed-form formula when α3=0.




3.3. Probability of Non-Zero Secrecy Capacity (PNSC)


In this subsection, we analyze the end-to-end PNSC of the proposed protocol, which can be formulated by


PNSC=Pr(CSece2e>0)=Prmink=1,2,…,KCSec,k>0=∏k=1KPrCSec,k>0=∏k=1KPNSCk,



(43)




where PNSCk=PrCSec,k>0 is the probability of non-zero secrecy capacity at the k-th hop.



Lemma 4.

The exact expressions of PNSCk can be given by


PNSCk=∑v=1MPrPk,b=Lv×∑n=1ND2∑m=0NE−1−1n+m+1χ0∫01expχ1yexp−χ2ydy,ifκD2>κE2∑n=1ND2∑m=0NE−1−1n+m+1χ0∫1+∞expχ1yexp−χ2ydy,ifκD2<κE2∑n=1ND2∑m=0N−1−1n+mND2nNE−1mNEλTk,Em+1λTk,E+nλTk,Tk+1,ifκD2=κE2



(44)




where PrPk,b=Lv is calculated as in (24), and


χ0=ND2nNE−1mNEλTk,Eσ2LvκD2−κE2expnλTk,Tk+1−m+1λTk,Eσ2LvκD2−κE2,χ1=m+1λTk,Eσ2LvκD2−κE2,χ2=nλTk,Tk+1σ2LvκD2−κE2.



(45)









Proof. 

Similar to (23), we can formulate PNSCk as


PNSCk=∑v=1MPrPk,b=Lv×Pr1+LvγTk,b,Tk+1,cκD2LvγTk,b,Tk+1,c+σ21+LvγTk,b,EgκE2LvγTk,b,Eg+σ2>1=∑v=1MPrPk,b=Lv×1−limρ→1SOPkLv.



(46)







Next, by substituting ρ=1, α0=1,α1,v=0,α2=1 into α3,v=LvκD2−κE2/σ2 in (27), (35), and (39), we can obtain (45). ☐





Comment 6: Similar to [37], the end-to-end PNSC can be obtained with three different cases, i.e., κD2>κE2, κD2<κE2, and κD2=κE2. Moreover, when κD2=κE2, we obtain the exact closed-form expression of the end-to-end PNSC. Finally, with κD2=κE2, the end-to-end PNSC value does not depend on the transmit SNR as well as the hardware impairment levels.





4. Simulation Results


In this section, we present Monte Carlo simulations to verify the theoretical results obtained in Section 3 by using MATLAB 2014a. For Monte Carlo experiments, we perform 105–5∗106 independent trials, and in each trial, the Rayleigh channel coefficients for all of the links are generated to obtain the end-to-end secrecy performance. For the theoretical results, the expressions derived in Section 3 are used to present them.



In the simulation environment, a two-dimensional Oxy plane is considered, where the primary user (PU), the power beacon (PB), the secondary eavesdropper (E), and the secondary node (Tk) are located at (xP,yP), (xB,yB), (xE,yE), and k/K,0, respectively, where k=0,1,…,K. In all of the simulations, we fix the path-loss exponent β by 3, the number of transmit power levels W by 8, the variance of Gaussian noises σ2 by 1, and the block time (T) by 1. Moreover, we assume that PB=2PS=4Ith, and the total hardware impairment level κP2 equals 0. It is noted from figures that simulation results (Sim) are presented by markers, while the theoretical results including exact ones (Exact) and asymptotic ones (Asym) are presented by solid and dash lines, respectively.



In Figure 2, we present the average transmit power of the secondary transmitters as a function of PS. In this simulation, the number of hops (K) is 3, the number of antennas at the node TkND equals 3, the energy conversion efficiency η by 0.25, and the fraction of time spent for the EH phase ε is 0.25. In addition, the co-ordinates of PB and PU are 0.4,0.3 and 0.6,−0.5, respectively. We can observe from Figure 2 that the average transmit power of the source (T0) is highest because the Euclidean distance between T0 and PU is farthest. We also see that the average transmit power of T0, T1, and T2 linearly increases as PS increases. It is worth noting that the simulation results match very well with the theoretical ones, which validates our derivations.



Figure 3 investigates the impact of the positions of PU and PB on the average transmit power of the secondary transmitters. Particularly, we change xB from 0.1 to 0.9, and xP is calculated by xP=1−xB. Moreover, we fix the values of yB and yP by 0.3 and –0.5, respectively. It can be seen from Figure 3 that the average transmit power of T0, T1, and T2 varies with different positions of PB and PU. For example, when xB=0.1, the positions of PB and PU are (0.1, 0.3) and (0.9, –0.5), respectively. In this case, the average transmit power of T2 is lowest because this node is nearest to PU. For another example, xB=0.5, the distances between T1 and PU, and between T2 and PU are the same, and hence the average transmit power of T1 and T2 is almost the same. For the nodes T1 and T2, we see that there exist positions of PB and PU at which their average transmit power is lowest. However, the average transmit power of T0 always decreases as xB increases.



Figure 4 presents the end-to-end SOP as a function of PS with different number of antennas at E. In this simulation, the total hardware impairment levels of the data and eavesdropping links are given as κD2=0.01 and κE2=0, respectively, and hence the conditions in Lemma 1 are satisfied, i.e., α0>0 and α3,v>0. It can be seen from this figure that simulation results match very well with theoretical ones. Moreover, we see that the exact end-to-end SOP converges to the approximate one at high PS values, which verifies the derived expressions obtained in Lemma 1 and Corollary 1. As proved in Corollary 1, the end-to-end SOP at high PS regime increases with the increasing of PS. In addition, Figure 4 shows that there exists an optimal value of PS at which the SOP value is lowest. Finally, we can see that the secrecy performance of the proposed protocol is worse with higher number of antennas at E.



In Figure 5, we present the end-to-end SOP as a function of PS with various number of hops K. In this figure, we assume that the transceiver hardware of the authorized nodes is better than that of the eavesdropper, i.e., κD2=0 and κE2=0.01, which satisfy the conditions in Lemma 2, i.e., α0>0 and α3,v<0. It is seen from Figure 5 that the end-to-end SOP rapidly decreases as PS increases. Moreover, the secrecy performance significantly enhances with higher number of hops. Finally, the simulation results again validate the theoretical results obtained from Lemma 2 and Corollary 2.



In Figure 6, we consider the cases where α3,v=0 or ρ−1κD2κE2+κD2ρ−κE2=0. As proved in Lemma 3 and Corollary 3, we can see from Figure 6 that the exact end-to-end SOP rapidly converges to the asymptotic one which does not depend on PS. It is also seen that the hardware impairment levels κD2 and κE2 significantly impact on the secrecy performance. In this figure, the value of SOP is lowest when the transceiver hardware of the authorized nodes and the eavesdropper is perfect, i.e., κD2=κE2=0.



Figure 7 presents the SOP performance of the proposed protocol as a function of the fraction of time spent for the EH process ε. As illustrated in this figure, the end-to-end SOP increases with higher value of ε. Moreover, when ε is very small, the probability PrPk,b=Lv in (23) (v≥1) converges to zero, and hence the end-to-end SOP also goes to zero. Next, similar to Figure 5, the secrecy performance significantly enhances when the hardware impairment level of the data links κD2 is lower than that of the eavesdropping links κE2.



In Figure 8, we investigate the impact of the number of hops K on the end-to-end SOP. In this simulation, we assume that the number of antennas at the Tk and E nodes is same, i.e., ND=NE, and the transceiver hardware of these nodes is perfect, i.e., κD2=κE2=0. As we can see, the values of SOP almost decrease as increasing the number of hops. However, in the case that ND=NE=1, the end-to-end SOP is highest when the number of hops equals 2. When K≥2, it is seen that the SOP performance in case that ND=NE=3 is best. Moreover, the value of SOP in this case rapidly decreases with the increasing of K.



In Figure 9, we present the end-to-end PNSC as a function of PS with various values of κD2 as κE2 is fixed by 0.05. As observed, the PNSC performance is better with the decreasing of κD2. Moreover, as κD2<κE2κD2>κE2, the value of PNSC increases (decreases) with higher value of PS, and in the case that κD2=κE2, this value does not depend on PS. It is worth noting that the simulation and theoretical results match very well with each other, which validates the formulas derived in Lemma 4.



Figure 10 presents the end-to-end PNSC as a function of κD2 with different number of hops (K). As shown in this figure, the PNSC performance significantly decreases when the hardware impairment level of the data link increases. Moreover, at high κD2 values, the end-to-end PNSC is worse with high number of hops.




5. Conclusions


This paper proposed and evaluated the secrecy performance of the TAS/SC-based multi-hop harvest-to-transmit cognitive WSNs under the joint impact of the interference constraint, the limited-energy source, and the hardware impairments. The main contribution of this paper is to derive new exact and asymptotic expressions of the end-to-end SOP and PNSC over Rayleigh fading channel, which can be used to design and optimize the performance of the considered networks, with any hardware impairment levels, as well as other system parameters, in the practical considerations. The interesting results obtained in this paper can be listed as follows:

	
The hardware impairments have a significant impact on the secrecy performance. Particularly, when the transceiver hardware of the authorized nodes is better than that of the eavesdropper, the proposed protocol obtains high secrecy performance. Otherwise, the SOP and PNSC performance is significantly degraded.



	
The secrecy performance of the proposed protocol can be enhanced with higher number of antennas equipped at the authorized nodes.



	
By optimally designing the number of hops and the fraction of time spent for the energy harvesting phase, the secrecy performance of the proposed protocol can be significantly improved.
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Figure 1. System model of the proposed scheme. 
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Figure 2. Average transmit power of the secondary transmitters as a function of PS when K=3, ND=3, ε=0.25, η=0.25, xB=0.4, yB=0.3, xP=0.6, and yP=−0.5. 






Figure 2. Average transmit power of the secondary transmitters as a function of PS when K=3, ND=3, ε=0.25, η=0.25, xB=0.4, yB=0.3, xP=0.6, and yP=−0.5.



[image: Sensors 19 01160 g002]







[image: Sensors 19 01160 g003 550]





Figure 3. Average transmit power of the secondary transmitters as a function of xB when PS=10 dB, K=3, ND=3, ε=0.25, η=0.25, yB=0.3, xP=1−xB, and yP=−0.5. 
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Figure 4. End-to-end secrecy outage probability as a function of PS when K=3, ND=2, ε=0.25, η=0.25, Cth=0.2, xB=0.5, yB=0.3, xP=0.5, yP=−0.5, xE=0.5, yE=0.5, κD2=0.01, and κE2=0. 






Figure 4. End-to-end secrecy outage probability as a function of PS when K=3, ND=2, ε=0.25, η=0.25, Cth=0.2, xB=0.5, yB=0.3, xP=0.5, yP=−0.5, xE=0.5, yE=0.5, κD2=0.01, and κE2=0.



[image: Sensors 19 01160 g004]







[image: Sensors 19 01160 g005 550]





Figure 5. End-to-end secrecy outage probability as a function of PS when ND=2, NE=2, ε=0.25, η=0.25, Cth=0.2, xB=0.5, yB=0.3, xP=0.5, yP=−0.5, xE=0.5, yE=0.5, κD2=0, and κE2=0.01. 
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Figure 6. End-to-end secrecy outage probability as a function of PS when K=3, ND=2, NE=2, ε=0.25, η=0.25, Cth=0.25, xB=0.5, yB=0.3, xP=0.5, yP=−0.5, xE=0.5, and yE=0.5. 
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Figure 7. End-to-end secrecy outage probability as a function of ε when PS=10 dB, K=4, ND=2, NE=2, η=0.1, Cth=0.25, xB=0.5, yB=0.3, xP=0.5, yP=−0.5, xE=0.5, and yE=0.5. 
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Figure 8. End-to-end secrecy outage probability as a function of K when PS=0 dB, ε=0.1, η=0.1, Cth=0.25, xB=0.5, yB=0.3, xP=0.5, yP=−0.5, xE=0.5, yE=0.5, κD2=0, and κE2=0. 
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Figure 9. End-to-end probability of non-zero secrecy capacity as a function of PS when K=3, ε=0.25, η=0.25, xB=0.5, yB=0.3, xP=0.5, yP=−0.5, xE=0.5, yE=0.5, κE2=0.05, ND=1, and NE=2. 
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Figure 10. End-to-end probability of non-zero secrecy capacity as a function of κD2 when K=3, ε=0.1, η=0.25, xB=0.5, yB=0.3, xP=0.5, yP=−0.5, xE=0.5, yE=0.5, κE2=0.2, ND=2, and NE=2. 
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