

 sensors-19-01150

sensors-19-01150

Sensors 2019, 19(5), 1150; doi:10.3390/s19051150

Article

An Emergency Response System: Construction, Validation, and Experiments for Disaster Management in a Vehicular Environment

Kishwer Abdul Khaliq 1,2,*[image: Orcid], Omer Chughtai 3[image: Orcid], Abdullah Shahwani 4, Amir Qayyum 5 and Jürgen Pannek 2,6

1

Department of Production Engineering, University of Bremen, 28539 Bremen, Germany

2

BIBA-Bremer Institut für Produktion und Logistik GmbH, Hochschulring 20, 28359 Bremen, Germany

3

Department of Electrical and Computer Engineering, COMSATS University Islamabad, Wah Campus, Islamabad 45550, Pakistan

4

Department of Physics and Electrical Engineering, University of Bremen, 28359 Bremen, Germany

5

Faculty of Engineering, Capital University of Science and Technology Islamabad, Islamabad 44000, Pakistan

6

Department of Production Engineering, University of Bremen, 28359 Bremen, Germany

*

Correspondence: kai@biba.uni-bremen.de; Tel.: +49-(0)421-218-50191

Received: 31 January 2019 / Accepted: 27 February 2019 / Published: 7 March 2019

Abstract

:

Natural disasters and catastrophes not only cost the loss of human lives, but adversely affect the progress toward sustainable development of the country. As soon as disaster strikes, the first and foremost challenge for the concerned authorities is to make an expeditious response. Consequently, they need to be highly-organized, properly-trained, and sufficiently-equipped to effectively respond and limit the destructive effects of a disaster. In such circumstances, communication plays a vital role, whereby the consequences of tasks assigned to the workers for rescue and relief services may be streamlined by relaying necessary information among themselves. Moreover, most of the infrastructure is either severely damaged or completely destroyed in post-disaster scenarios; therefore, a Vehicular Ad Hoc Network (VANET) is used to carry out the rescue operation, as it does not require any pre-existing infrastructure. In this context, the current work proposes and validates an effective way to relay the crucial information through the development of an application and the deployment of an experimental TestBed in a vehicular environment. The TestBed may able to provide a way to design and validate the algorithms. It provides a number of vehicles with onboard units embedded with a credit-card-size microcomputer called Raspberry Pi and a Global Positioning System (GPS) module. Additionally, it dispatches one of the pre-defined codes of emergency messages based on the level of urgency through multiple hops to a central control room. Depending on the message code received from a client, the server takes appropriate action. Furthermore, the solution also provides a graphical interface that is easy to interpret and to understand at the control room to visualize the rescue operation on the fly.

Keywords:

IEEE 802.11p; VANET; Ad hoc networks; Raspberry Pi; safety applications; disaster management; emergency response; TCP/IP architecture; message dissemination; information exchange

1. Introduction

Forest fires, floods, storms, volcanic eruptions, and droughts left about 606 billion people dead and nearly 4.1 billion injured or homeless around the globe between 1995 and 2015, as specified in a report published by the United Nations Office for Disaster Risk Reduction (UNISDR) [1,2]. It accentuates that such disasters have caused economic damage worth over 2.0 trillion dollars, and that it leaves mankind vulnerable and helpless.

When a disaster occurs, most of the existing infrastructure is either completely destroyed or severely damaged. Thus, making any use of pre-deployed communication services is almost impossible. More often than not, such disasters strike areas which are far from metropolitans, where the facilities are already at a minimal level. In such places, the effectiveness of any underway rescue operation is quite limited. Hence, researchers are constantly seeking methods whereby accurate and timely information could flow among the rescue teams, which can boost work-efficiency and lead to favorable results. The deployment of a cost-effective and reliable communication setup in such areas can make a huge difference. Fortunately, we are witnessing a revival of Vehicular Ad Hoc Networks (VANETs) as a concept that provides a simple and commercially viable solution to the predicament of emergency responses in post-disaster management scenarios [3,4,5]. VANET is superior to other potential technologies because of its readiness, low complexity, and comparably better coverage. It supports road safety, and traffic efficiency and management, as well as infotainment applications [6,7]. In the very near future, the emergence of non-safety applications may generate a big market revenue by virtue of an increase in the number of vehicles that are equipped with sophisticated onboard wireless devices [6,8,9]. Nevertheless, the main applications of VANET, even today, revolve around safety and security.

Although all the above-mentioned applications are significant in their own ways, we must keep in mind that the most critical role of VANETs lies in emergency response and disaster management systems [7,10,11] (these are also the key points of this study). Over the years, natural disasters have exponentially been increased, partly because of the change in global weather conditions and fast-growing industrialization of developing countries. This has put the focus back to the best use of today’s highly-advanced technologies and the availability of solutions to long-standing scientific queries. In our previous study [11], the design of a prototype for a centralized emergency response system was presented, which works fine with the help of a Global Positioning System (GPS) under fixed circumstances using VANET. The challenging part of the current study is to design and develop an application for disaster management using an emergency response system with a user-friendly interface, and to implement the TestBed with the ad hoc configuration. This study would also be useful to the scientific society due to the goals and objectives of the designed applications. Since the proposed study was applied in a vehicular environment, it can be used to represent real-time statistics of an emergency response system, along with the disaster statistics of an affected area. It may prove effective for the scientific society as it shows the round-trip-time with reference to the number of hops along the route from the source to destination. The society may also take advantages to know about the reliability factor in terms of packet delivery ratio based on the hop-count value along the route within the network. Moreover, it might be helpful for the scholars and the scientific society to relate the delay for the emergency messages based on the characteristics of the network. Furthermore, this work proposes a TestBed and provides the flexibility to configure various mobility scenarios in a vehicular environment. Moreover, it carries out the evaluation of the proposed application on the configured TestBed. Furthermore, the proposed prototype application is examined through experimental validation.

The remaining paper is organized as follows: Section 2 briefly looks at the current literature regarding the applications of VANET in post-disaster management scenarios, and describes some solutions on how we can further improve them, especially in terms of the practicality of such propositions. Section 3 presents the implementation of the proposed idea in detail. Section 4 explains the ad hoc configuration of the TestBed and examines the functionality of the designed application, along with the validation of the proposed TestBed. Finally, Section 5 concludes the study, and also discusses future work.

2. Literature Review

The first 72 h after the occurrence of a disaster are the most critical hours, as chances of finding survivors after this time start to swiftly decrease. The authors in [12] thus suggest that communication among the first few responders may play a pivotal role in achieving efficient coordination and may help avoid any additional deaths. Moreover, the authors followed a systematic approach to make readers understand the possibilities offered by various multi-hop ad hoc paradigms and technologies. The paper also discussed the analysis and simulation of different mobility models and suggested that the use of smartphones in post-disaster scenarios is one of the best possible options due to its common use. But although it gives the reader a very good understanding of the current study in a defined scope, it fails to come up with any practical real-world solution. An on-board vehicle-to-vehicle (V2V) multi-hop wireless networking system as a TestBed was developed in [13] to evaluate the real-world performance of telematics applications. The TestBed employs a differential GPS receiver, an IEEE802.11a radio card modified to emulate the Direct Short-Range Communication (DSRC) standard, a 1xRTT cellular-data connection, an onboard computer, and audio-visual-based equipment. The main aim was to evaluate the feasibility of high-speed inter-vehicular communication and to develop routing protocols for highly mobile networks. Vehicles communicate with each other via a magnetic-mounted wireless antenna with line-of-sight (LOS) reception. In essence, this application is suitable for V2V communication in an urban scenario, where vehicles move at a normal speed. However, in our case, mobility is not very dynamic, as vehicles are confined within an immediate disaster area. Moreover, unlike this TestBed, our work does not rely on any Internet support.

The authors in [14] presented DistressNet, a system that addresses the need for search-and-rescue workers after a natural disaster, based on an urban setting. The system integrates inexpensive and heterogeneous battery-powered Commercial Off-The-Shelf (COTS) devices, like smart phones and low-power sensors, into easy-to-deploy architecture. The overall efficiency of the system could be improved by placing sensors at certain optimal locations in the deployment area. Although the authors performed a separate evaluation for different parts of the system, no comprehensive TestBed implementation was carried out. Moreover, the dominant stack used in DistressNet as a networking backbone is IEEE 802.11a/b/g/n with an Independent Basic Service Set (IBSS) mode. Explicitly Parallel Instruction Computing (EPIC) motes were selected as hardware platforms, but IEEE 802.11 support is not widely available for such devices, thus severely restricting their practicality.

The authors in [15] proposed a Radio-Frequency Identification (RFID)-based Indoor Localization System (ILS) for the first few responders in emergency scenarios. The authors performed various tests under different scenarios to assess the capabilities of their proposed system. However, the system turns out to have a high dependency on metrics like the number of RFID tags, the minimum read distance of RFID tags, installation angles of tags, and the RFID reader positioning on the rescuer. Therefore, the proposed system is less effective in unpredictable environments. The authors in [16] suggested a server-less peer-to-peer communication network (P2Pnet), which is based on a Mobile Ad hoc Network (MANET) to support temporary group communication and an information-sharing network. According to the authors, if some of the nodes in the network are acting as gateways required to access the Internet service through some satellite communication capability, the service is passed to all the other nodes in the network. Additionally, the paper suggested the use of Walkie-Talkie hand-held devices, or WiFi-ready mini-notebook PCs as communicating nodes, which shall rely on portable generators to supply power. Although it might work in cases where the severity of the disaster is not high, it will probably not be a feasible solution in most disaster scenarios. The authors also proposed a Rescue Information System for Earthquake Disasters (RISED), which aids in disaster assessment through seismic-related information. The objective of RISED is to provide up-to-date and accurate rescue-related information, such as disaster locations, possible damage to lives and construction, available rescue-and-relief resources, and the shortest way to disaster spots, etc. This system, however, was not practically deployed.

For local communication and information collection, authors in [17] proposed and deployed an Integrated Emergency Communication System (IECS) for disaster-struck areas using a Wireless Sensor Network (WSN) and MANET. However, for remote communication, the satellite gateway is used in disaster-safe areas. Furthermore, they proposed an Integrated Emergency Service System (IESS) to provide a variety of emergency management services to people involved in disaster relief missions. MANET is formed using an IEEE 802.11s wireless mesh network, which is comprised of Mesh Access Points (MAPs) and Mesh Clients (MCs). Based on the network conditions and service requirements (local or remote), the mobile end-user can select a communication path either through MANET or through the cellular network (if available), or by using a satellite network. Although it appears feasible in theory, however, neither any practical work nor any actual implementation has been carried out in this regard. In [18], the authors proposed a post-disaster emergency response system using a MANET TestBed. They shared some files from one laptop to another and demonstrated their proposed system. In spite of the fact that the implementation proposed in [18] confirms the feasibility of systems developed for real-world scenarios, it does not accomplish much in terms of a concrete prototype configuration and implementation. Since there is no exchange of relevant information—for instance, they either used geographical coordinates of the disaster area or consolidated the request of any relief-related resource, thus meaning that the scope of this TestBed is extremely limited.

In [19], the authors proposed a reconfigurable TestBed development using a Field-Programmable Gate Array (FPGA). They simulated behavioral models for different VANET classifications—for example, the Xilinx ISE (Integrated Synthesis Environment) Suite was used as a simulation tool to extract results by generating and implementing a Verilog code. According to the authors, using dedicated software applications like SUMO (Simulation of Urban MObility) or GrooveSim with VANET are inefficient in terms of time, as these applications have their own limitations. Moreover, they suggest that in their proposed FPGA-based approach, the same chip can be reprogrammed very easily for upgradation purposes if the user wants any additional feature in a customized vehicular network. The motivation to implement an FPGA-based TestBed rather than a regular microcontroller-based TestBed was to achieve higher performance due to FPGAs’ parallel-processing mechanism, optimized power requirements, cost reduction, remote access, and runtime hardware reconfigurability for real-time applications. Like the ideas described earlier, this system is also limited to simulations only. Any real-world TestBed implementation of the aforementioned system is yet to be carried out. In [20], the authors discussed an open TestBed that integrates an ad hoc V2V communication and a wireless mesh back-haul, which is based on MobiMESH (Wireless Mesh Network and Mobility Project) hardware/software solutions.

The above-mentioned research is based on theoretical analysis, design, and/or simulations being carried out to interrogate various applications and multi-hop ad hoc routing of VANETs in post-disaster emergency response situations. However, these ideas have no practical implementations to assist in real-world cases of post-disaster rescue-and-response efforts. Therefore, in this paper, we intend to provide a test-bed application along with the configuration and implementation of VANET, through dynamic multi-hop ad hoc routing without any dependency on the Internet backbone. This is achieved through a suitable combination of software and hardware components that work together to form a comprehensive system for emergency response in disaster management operations. The proposed application has the ability to support the communication need of the first 72 h to reduce post-disaster effects and help disaster relief operations. The design is simple and user-friendly. Further details on application design, selected hardware, and implementation are given in Section 3.

3. System Design and Implementation

Within the scope of current study and its implementation as a TestBed, we comprehensively deploy the developed prototype application and the ad hoc network implementation, along with its configuration in order to understand the actual outcomes and certain constraints offered by VANET. This section discusses the proposed arrangement and the hardware used for successful TestBed implementation.

3.1. Preamble

An ad hoc network with flat configuration typically bypasses the need of an external router or an access point and provides a direct path to the endpoints in a network. When we consider emergency situations in far-flung areas, traditional networks become very expensive and are difficult to deploy. In contrast to this, medical or rescue teams may utilize IEEE802.11 radio adapters that are available in their laptops or Personal Digital Assistants (PDAs) as soon as they arrive at the scene.

An ad hoc network may be utilized in so many ways—for example, if there is a fire in a big forest, it would be much easier for the team of fire-fighters to deploy an ad hoc network, instead of building an entire infrastructure in such an area. To a certain limited extent, it has been established that nodes in an ad hoc network are usually not powerful enough and contingent on the transmission range [21]. However, when we combine these transmission ranges together, we can form a sustainable network based on a larger geographical area. The communication between nodes within the network can then be achieved through a routing protocol. Consequently, the nodes would create a transmission-cloud to exchange information among themselves, through some sort of structured routing algorithm.

3.2. Proposed System

The proposed prototype mainly includes two entities—a server and a client. The client part is integrated on the On-Board Unit (OBU) that is basically deployed in a vehicle or in a hand-held device which is used by a volunteer during rescue operations. The server part is the control room which is primarily a central entity to visualize all the statistics that are being collected in the affected area. It has a user-friendly interface for data visualization and a concurrency-based Python code that generates response against specific requests initiated by the rescue team members from their hand-held devices, hence achieving bi-directional communication based on the Transmission Control Protocol/Internet Protocol (TCP/IP) suite of the Open Systems Interconnection (OSI) model. The received information comprises a structured data format, which includes the coordinates of the exact location acquired from a GPS sensor attached with the transmitting node. All of this will be explained in detail in the sections to follow.

The proposed emergency response plan is illustrated in Figure 1. A volunteer who is moving around the affected area generates a peremptory request in a message for certain need at the incident location of a seriously injured patient. The OBU transmits a message by encapsulating the GPS coordinates of the location of interest through several hops to the destination, i.e., the Control Room. Here, the Raspberry Pi module, in addition to the GPS sensor, is used as a processing unit. The Control Room receives the message through a wireless interface, and processes the request according to its severity. Just as in a real-world scenario, as some messages can be more critical for life-saving measures than others, they shall be treated accordingly. Control room then performs the desired action by either sending the message to another entity such as a mobile hospital, or provides a notification on the user interface with messages that are less urgent. Since small-size packets like safety/alert messages move quickly and reliably in the network as compared to large-size packets, such as multimedia, safety/alert messages are mapped into codes. The alert messages, their types, and respective codes are shown in Table 1.

Now, instead of sending the whole text message, only the message code is sent, as shown in Table 1, which is routed within the network. A typical example of how a message is formatted and sent is shown in Figure 2 using a keypad.

In order to use the application, a user is required to press a button according to the need—for example, a button with code 4 followed by a # sign, which is used as a separator, indicates the requirement of water or food at a certain location. Another button can then be pressed if a fixed quantity is desired—for example, a button with code 20 indicates food packages or water bottles. More than one message can also be concatenated in one go by pressing more buttons each time with a # separator between them. When the entire message is compiled, D is pressed to indicate the end of a message. This entire formatted text is then wrapped in a JavaScript Object Notation (JSON) wrapper and sent to the destination.

Since the central server at the Control Room is constantly coordinating and interacting with various departments involved in rescue operations to provide post-disaster management services, its actions can be mapped according to the user requests it receives. This can be seen in Table 2.

The front-end Graphical User Interface (GUI) at the Control Room shows the map of the disaster area, the list of departments collaborating in the rescue activities, the log of all the operations underway, and the status of resources at disposal. This data visualization makes it easier for the authorities to make effective and timely decisions based on accurate and up-to-date information. The GUI of the server-side application is developed in Python using the Tkinter module in Python.

3.3. Implementation

At Bremer Institut für Produktion und Logistik GmbH, we deployed the implemented ad hoc network. The deployed setup forms a network that comprises of Raspberry Pi (a low-cost micro-computer with an open-source operating system) nodes, which can either transmit their own packets or forward packets generated by other Raspberry Pies, hence acting as Relay Nodes (RNs). GoPiGo (General Purpose Input Output) robot cars fabricated by Dexter Industries, which comes with their motherboards and can be assembled manually, are used to provide motion to the Raspberry Pi nodes. Each GoPiGo robot car has a D-Link Nano USB Adapter Dongle that provides support for routing or forwarding the received contents. The node acting as an OBU, additionally has a GPS sensor and a keypad for user input.

The hardware and software had to be chosen carefully to meet the necessary requirements of the task. Therefore, the following hardware was used for successful TestBed implementation:

3.3.1. Go-Pi-Go Robots

To encompass mobility in Raspberry Pi-based nodes, GoPiGo robots by Dexter Industries were used, as shown in Figure 3A.

3.3.2. Raspberry Pi 2

The choice of hardware technology plays a significant role because of its usefulness and commercial availability; however, it is also constrained by the cost. For the specified reasons, we chose Raspberry Pi 2 model B, a credit card-sized microcomputer with basic hardware processing, as shown in Figure 3B. It is relatively cheap, consumes less power compared to other microcomputers, and is widely available [22,23,24]. Raspberry Pi acts as a processing unit that acquires user data through a keypad and the data about the location from a GPS sensor. It then passes the acquired data to the client application, which is running on a Linux Debian operating system. It is equipped with a powerful application processor [25,26,27]. The client-end sends 4 × 4 keypad’s user-data and the GPS sensor’s location data serially to the General Purpose Input/Output (GPIO) pins of the Raspberry Pi. This data then gets manipulated through a client application, whereas the server receives this data using web sockets.

3.3.3. Grove GPS Sensor

For accurate and timely emergency response services, it is assumed that the exact location of the victims or a collapsed building or similar medical emergencies is known. We used the Grove GPS Breakout board, as shown in Figure 3C, to identify the desired location. It is a cost-efficient and field-programmable gadget, and uses satellite signals to determine the current position, time, and velocity of the OBU. To test the system in an indoor environment, the external antenna needs to be attached with the GPS receiver—otherwise, the GPS receiver may receive deteriorated signals.

3.3.4. USB Adapter Dongle

Several adapters have been tested with Raspberry Pi, but the ad hoc support was not available. Therefore, we selected the DWA-131 (D-link Wireless N Nano USB Adapter) as shown in Figure 3D, which is a convenient wireless connectivity solution for microcomputers, PDAs (Personal Digital Assistants), and desktop or notebook PCs. It comes with the stable driver for Raspberry Pi, which needs to be installed prior to use.

3.3.5. 4 × 4 Matrix Keypad

A small 4 × 4 matrix keypad, as indicated in Figure 3E, provides the most basic user-input capability which serves the main messaging task for the TestBed implementation.

3.4. Client Server Model

In a dynamic ad hoc network that we have used in our proposed TestBed, these OBUs in vehicles make service requests to the Control Room, which acts as a central “server”. As the network is wireless and the server is a singular entity, all clients cannot reach it directly—they might have to traverse a long path before their message reaches the server; thus comes the concept of “multi-hopping”, where message might have to pass through multiple nodes to eventually reach the destination.

In such a scenario, the most efficient approach is to handle each aspect of the implementation separately. For this purpose, two parallel applications were developed:

	
The server-side application communicates with multiple clients and sends a response to their individual needs, all at once.

	
The client-side application communicates with server and sends a request message in which a rescue team member inserts a message code indicates the required service at a specific location.

3.4.1. Python—A High-Level Programming Paradigm

The entire application is built on Python, which is an elegant open-source, cross-platform, high-level, dynamic interpreted language [28]. Being a multi-platform-supported language, it runs equally well on Windows and Linux. Debian, the Raspberry Pi operating system, contains a Python application out-of-the-box. Python is a very powerful, yet flexible and widely-used procedural language that serves various purposes, such as web and desktop application development, system administration tasks, scientific research, data analysis and management, and event-driven applications.

Henceforth, both client-side and server-side applications are briefly explained, along with their key concepts for successful completion of the task.

3.4.2. Client-Side Application

A brief overview of the main Python libraries used in this client-side application is as follows:

	
Socket: This module provides low-level inter-process communication on Layer 3 (Network layer) of the TCP/IP (Transmission Control Protocol/Internet Protocol) architecture by implementing socket system calls. A socket, in the simplest term, is a gateway that provides point-to-point, two-way communication between two processes running on two separate endpoints.

	
RPi.GPIO: This is a Python module that controls the general-purpose I/O pins on a Raspberry Pi. The configuration of GPIO pins on a Raspberry Pi can be examined in Figure 4. We can retrieve the values inserted by the user through an attached keypad, by setting up the rows and columns of the 4 × 4 Matrix keypad as the input and output.

	
Threading: A thread of execution is the smallest sequence of programmed instructions that can be independently managed by a system scheduler, which is typically a part of the Operating System (OS) [30]. The thread waits for the user to press a button, while the GPS monitors the current location. Both of these activities need to be performed simultaneously, and this can be achieved by opening two parallel threads that can work independently.

A separate “GpsController” class works with a GPS daemon to periodically collect the latitude and longitude values from the satellite. These values can be pulled out whenever required by declaring an object of this class and calling a “next()” method on it. To wrap it up, whenever a client-code is executed, the node gets connected to either the nearest intermediate node or directly to the server, provided that the node is in the vicinity. Once a TCP-based connection is up and running, the data transmission can take place. Since the data can have a random size depending upon the input fed by the rescue team member, it can just be an emergency call that requires you to dispatch an ambulance or give some additional information regarding the collapse of a building or a blockage of some nearby road. In order to bring flexibility into the picture, a Java Script Object Notation (JSON) wrapper is used, which can adequately manage a message of variable length. After all the data is nicely compiled and packaged, it is sent through the socket interface.

3.4.3. Server-Side Application

A TCP connection is a reliable one-to-one communication window that facilitates bi-directional talk between two terminals. However, in our case, as previously mentioned in Section 3.4, a server is required to send a response to all the queries sent by the clients at any given time. Since a single socket connection

between a client and the server is exclusive, no other client can share this channel. For the communication to happen between the server and a client, while there is already an active communication channel, we have to rely on a concept called “Concurrency”. Hardware exception handlers, processes, and Unix signal handlers are all familiar examples of Concurrency in a computer system. In this context, a concurrent server is one that creates a separate logic flow for each client. Nowadays, systems are equipped with multi-core processors that contain multiple CPUs to handle various tasks at once. Applications that run in such machines are faster and executed in parallel rather than being interleaved, as used in single-core systems. There can be three different approaches to dealing with concurrency in modern systems. These are:

	
Processes: The kernel schedules and maintains each logical control flow as a process. If processes need to exchange information with one another to complete a particular task, then they need to perform some kind of inter-process communication due to their individual virtual address space.

	
I/O multiplexing: In this form of concurrency, a program is a single process where all logical flows share the same address space. The logical flows are modeled as state machines by the main program, which explicitly makes state-to-state transitions according to the data arriving on file descriptors.

	
Threads: Threads are a hybrid of the two earlier approaches, and scheduled by the kernel as process flows, it shares the same virtual address space, like I/O multiplexing flows [31].

In prototype application implementation, we used “threads” as a means to provide multi-tasking capability. This abstraction is provided by Python 2.7 in the form of a module called “concurrent.futures”. This module provides a high-level interface for asynchronous execution of “callables” [32]. This execution can be carried out either by threads using a “ThreadPoolExecutor” or by processes using a “ProcessPoolExecutor”. We chose the former, as it is generally preferred for I/O-bound applications.

3.4.4. Graphical User Interface

In a post-disaster management scenario, the control room is occupied by strictly professional individuals who have the ability and authority to make critical decisions in a real-time environment that can cause a sizable impact on the overall operating results. In order to do so, a visual image of everything that is taking place in and around the disaster-struck area is needed. Therefore, visualizing the data being received from OBUs mounted on vehicles or hand-held devices in possession of volunteers and rescue staff, in a meaningful way, is one important aspect of this project. For this purpose, we used the simplest and most straight-forward Python module for the graphical representation of data, called Tkinter.

GUI is divided into three blocks, as can be seen in Figure 5, each with a very specific responsibility.

	
The upper part of the Left Block is responsible for showing the map of the disaster area, while the lower part has the list of all the relevant departments that takes part in the rescue-and-response efforts;

	
The top part of the Central Block presents the statistics of the damage caused by the calamity, such as the collapsed area, blocked roads, or broken bridges, while the bottom part shows the current availability of the resources at disposal;

	
The Right Block is the activity log where all the alert messages are displayed.

The map present on the GUI was captured from an open-source Application Programming Interface API provided by Google [33].

4. Ad Hoc Routing: Configuration, Scenarios, and Results

In essence, an ad hoc network has a flat typological structure with dynamic interconnection of nodes, where each node can communicate with as many nodes as possible in the network through the intermediate or relay nodes, to efficiently forward the information to the desired destination. The flow of information in the network from one endpoint to another can be achieved either by the use of flooding or routing techniques. By implementing routing techniques, a message can hop multiple nodes to ultimately reach its destination. To ensure that there is always a path between the source and destination, the network must reconfigure itself periodically through the use of some routing techniques in order to counter any broken links. An ad hoc network comes with its own set of challenges—since the nodes tend to be mobile, routing algorithms are required to answer issues raised by the mobility of nodes. Luckily in the implemented TestBed, the nodes are OBUs, mounted in vehicles. Since vehicles or nodes are not random in their movement, they, in fact, follow a predefined path, such as a road. Hence, routing can be managed relatively easily.

To test the designed application and the implemented TestBed, it is necessary to consider a routing protocol to configure the TestBed. For this purpose, a routing protocol Better Approach To Mobile Ad hoc Networking (BATMAN). It is a multi-hop mobile ad hoc routing protocol, and was developed by the German Freifunk community. It is a non-commercial open grassroots initiative to support free computer networks in the German region, through which a term known as Collective Intelligence emerged in early 2007. The German Freifunk community has also started to tinker with the idea of routing data on Ethernet Layer (Layer 2) of the TCP/IP Model, instead of Network Layer (Layer 3). This approach provides a virtual interface where packets get transported on their own without maintaining or manipulating any routing tables. This concept increases transparency and takes the burden of routing table management off the shelf. To differentiate this new approach from BATMAN protocol which are already available, they put an ADV at the end, to denote that it is “advanced” [34].

4.1. Configuring BATMAN-ADV Protocol

Since the nodes in the TestBed are based on Raspberry Pi, which operate on a Linux Debian distribution (Raspbian Stretch, in this case), the starting point had to be the configuration of the operating system on Pies through raspi-config, and basic ad hoc routing in Linux. Once the basic installation and configuration of Raspberry Pi OS and the ad hoc network [35] was done, respectively, BATMAN-ADV protocol was configured on all Pies. The hands-on settings for configuring BATMAN-ADV is available at the project Git repository in [36].

4.2. Scenarios and Results

Once everything is completed, the last step of a successful TestBed implementation is to verify its results in various scenarios. We initiated our central Server and started to listen to requests from Clients. One after another, the nodes started sending connection requests, which the Server accepted, thus creating a multi-client scenario where routing and forwarding took place automatically using the BATMAN-ADV protocol. Since the Raspberry Pies are Linux-based, we confirmed the communication through a built-in network diagnostic tool called “traceroute”. This command shows the entire path taken by a packet from one end to another. It utilizes an IP protocol’s Time To Live (TTL) field and attempts to elicit an ICMP TIME_EXCEEDED response from each node along the path to the destination.

4.2.1. Scenario 1: Client–Server Direct Communication

Firstly, the user only gets connected to the Control Room without the need for any intermediate entity, as both are within the range of each other. This can be verified through the following command on the Linux terminal:

“$ sudo batctl originators”

This shows the list of all available routes, highlighted in purple in Figure 6. Since the BATMAN-ADV protocol works with Medium Access Control (MAC) addresses rather than IP addresses, all the connections are shown in terms of their MAC IDs. One can see that there is a direct path to the server (with a MAC address of 78 : 32 : 1b : ad : e4 : 11 shown in red. The path quality is 158 (out of 255), indicating a rather strong connection, and therefore no intermediate hop is required for the packet to reach its destination.

As can be seen in Figure 7, when the client (192.168.2.103) checks its path to the server (192.168.2.102), it receives a response in around 21 milliseconds, highlighted in red. Although there is an alternate path in the network, where there is a node with an IPv4 address of (192.168.2.101), as shown in purple box. However, it has a longer route taking at least 150 milliseconds (high link cost) to traverse. Therefore, the client would pick the shorter route (low link cost) to send its message.

4.2.2. Scenario 2: Forwarding through One Intermediate Hop

As the user is mobile, there will be a time when it gets away from the server’s range and the established path will not be available anymore. The user now needs other nodes to forward its packets to the server. The user, however, is still quite close to the server—therefore, just one hop will be sufficient for the communication to take place, as presented in Figure 8.

When we trace the route of a packet toward the server with a MAC ID 78 : 32 : 1b : ad : e4 : 11, we see that it takes one hop to an intermediate node (with a MAC ID of (40 : 9b : cd : 00 : 5a : 85) in around 10.78 milliseconds, and then travels for another 5.87 milliseconds to reach the server. The total time for the packet to complete its journey is then roughly 16.65 milliseconds, as depicted in Figure 9.

4.2.3. Scenario 3: Forwarding through Multiple Intermediate Hops

Now if we increase the distance between the two endpoints—that is, the server and user—there will be more hops in between, and the travel time for a packet will increase. Figure 10 shows such a scenario where the packet takes four hops in 57.5 milliseconds to reach the destination. It can also be noticed that some of the nodes are at a greater distance from each other, thus requiring a longer time for packets to travel, for instance, 34.5 milliseconds, while others might be closer and take less time for a packet to travel, such as only 3 milliseconds, as shown in Figure 10 with the purple boxes.

BATMAN-ADV is an intelligent protocol that has link quality awareness. When confronted with the situation of more than one route to the destination, it will automatically pick the one with the best link strength and least travel time. One such scenario is presented in Figure 11. Although there is a one-hop route towards the server (through a node with MAC Address (40 : 9b : cd : 00 : 5a : 5a), the link quality of the said path is almost non-existent. Hence, the BATMAN-ADV. protocol will take four hops to reach the destination in order to make sure that the message is properly delivered in its entirety.

We tested the delivery of packets from a certain client to the server, through multiple hops. However, one should be aware that the TCP communication is bi-directional—not only can multiple users send messages to the server, but the server can also reply to any user via a message in the opposite direction of propagation, as shown in Figure 12, where a packet from the server takes three hops to reach the end-user.

It should also be noted that, since the entire communication chain is dynamic, the travel time for packets from any particular node to reach any other is constantly changing. As can be seen in Figure 13, the packet sent to a node (40 : 9b : cd : 00 : 5a : 50) took 2.33 and 2.72 milliseconds for its two consecutive hops, respectively. When another packet was sent from the same node to the same destination, it took less time for the first hop (1.5 milliseconds) and more time for the second hop (3.76 milliseconds), indicating the mobility of its users.

One limitation of the “$sudo batctl originators” command, as shown in Figure 14, is that it only shows the next hop toward any direction of propagation—although there are five different users in the vicinity, the next hop for any one of those five routes is the same. However, in order to view the end-to-end path, the “$sudo batctl tr” command can be used with the MAC address of the destination.

Lastly, it is worth noting that BATMAN-ADV is a highly dynamic protocol which continuously monitors the environment and keeps itself updated. Therefore, communication is realistic, and ensures the best possible quality at any given time. As shown in Figure 15, each time we ran the “$sudo batctl o” command, it assessed the quality of each available path in the network and updated the relevant values. For example, a path which had a low link-quality of 86 in the first run had a link strength of 113 the next time we ran the same command (highlighted in red). Similarly, another path with a link quality of 174 had an even greater link strength of 219 the second time round (highlighted in purple).

4.3. Emergency Response System: Real-Time Statistics

In each aforementioned scenario, queries were generated in order to check the statistics displayed on the server side at the control room. Figure 5 presents the user interface at the server side that shows the disaster statistics, activity logs, and resource entities available in the inventory, to yield the facilitation to the affected people. After generating 200 queries, the system presented real-time statistics against the available resources in the inventory and the disaster statistics for the investigated scenario. It is assumed that the disaster occurred due to an earthquake, which has destroyed or demolished the already deployed communication infrastructure like LTE, or 3G/4G. Additionally, the proposed system was tested with the presumption that the volunteers are dispersed in the affected area. Since the system is designed to support the rescue operation for post-disasters, it is thus assumed that the rescue operation is well-prepared with basic entities to handle critical life threats. Hence, it is equally important to have information of available and allocated resources in the inventory. Based on this assumption, the proposed system gives real-time statistics about the available and allocated/busy resources on the user-interface at the server side in the control room. Figure 16 depicts the status of the inventory that is maintained to cope with the challenges of post-disaster management. This chart shows the quantity of resources on an x-axis and available entities on the y-axis. It provides the information of total resources indicated with the blue bar, available resources with the red bar, and allocated/busy resources with the grey bar. This may vary in different scenarios depending on the need and the level of disaster in a particular area. Figure 17 presents the incident reported via emergency messages to the control room. These incidents include collapsed lands, broken bridges, collapsed buildings, and blocked roads. The increased number of reported events indicates the level of disaster.

The results in the following section show that the system performed all the above-mentioned tasks. The performance of the system was analyzed in terms of response time, successful data transmission, and delay. However, the implemented system was tested in a lab under the constraints of a limited availability of hardware and testing area.

4.4. Performance Analysis

It is always a good idea to compare different scenarios and to produce conclusive results, in order to better understand the processes of any system. This analysis not only helps in decision-making, but also helps to find solutions for any current or future issue. We plotted the average values of the Round Trip Time (RTT) taken by sent packets in various executions of the system, versus the number of hops they traversed. Obviously, the greater the number of hops, the more time it takes for the data to reach its destination. We witnessed that by executing the same operation by changing the positions of the users (robot cars, in our case) every time, the values for the RTT changed accordingly, as depicted in Figure 18. This change is mainly due to the mobility of the cars, but is due also in part to the disturbances in the wireless environment (e.g., scattering effects, interference with other signals).

Additionally, we performed three different tests by executing the proposed applications on the TestBed. 100, 150, and 200 queries were generated for each hop-count value (i.e., 1, 2, 3, 4, 5, 6 in the first, second, and third test, respectively). In each test, the Packet Delivery Ratio (PDR) was observed by increasing the hop-count value, as shown in Figure 19. It was observed that PDR was 100% with a hop-count value from 1 to 4, which shows that all the queries that were sent to the intended destination were successfully received. However, with an increase in the number of hop-counts greater than 4, the PDR decreased to some extent, showing that there was a loss in the received queries which were sent by the sender. This happened possibly because of interference due to the increase in the number of nodes in any wireless communication.

It is to be noted that safety and emergency applications require a 20–100 ms delay. Though the proposed application is designed to meet the communication requirement in an emergency situation, the nature of the application can tolerate little delay. During the testing phase, the average delay was evaluated for the queries. Figure 20 presents the average delay comparison with the number of hops. The TestBed encompasses a limited number of vehicular nodes, and the observed delay is below the minimum requirement of the safety application.

This concludes our work toward presenting a real-world prototype, which comes with its own set of advantages and disadvantages. This work can be considered to realize even better systems that can be commercially used in rescue-and-relief efforts in disaster-management areas.

5. Conclusions and Future Work

The prime goals of the proposed work were attained with the complete design of an emergency response system and with the successful implementation of a TestBed, which carried out the intended communication using VANET. Our study provided ways in which the scientific society could achieve the required goals and objectives of an emergency response system applicable in a vehicular environment, and presented real-time statistics of an emergency response system along with the disaster statistics of an affected area. Furthermore, it provided a way to measure the performance of a network in terms of round-trip-time with reference to the number of hops along the route from the source to destination. Moreover, the research work may also be used to receive knowledge about reliability, and delay factors based on the hop-count value along the route within the network. The proposed prototype application was examined through experimental validation by fetching the user message from the GPIO pins of the Raspberry Pi through serial communication, and the geographical coordinates of the user from the GPS sensor. The communication was performed using the Transmission Control Protocol, mainly because of its connection-oriented and reliable nature. Out of all the commercially available ad hoc routing protocols, BATMAN-ADV was selected because of its sophisticated abstraction. It hides all lower-level complexities and provides an easy-to-use virtual interface between Layers 2 and 3 (Network and Data Link, respectively) of the TCP/IP model. This study, along with the implemented TestBed, provides an effective way to exchange crucial information amongst volunteers and staff working in dire situations, such as that of a post-disaster rescue-and-relief operation. Since fast and reliable communication plays a key role in such scenarios, this work offers a viable solution that can be implemented by the concerned authorities at times of catastrophic disaster.

Author Contributions

Conceptualization, K.A.K.; Data curation, A.S.; Formal analysis, K.A.K.; Investigation, A.Q. and J.P.; Methodology, K.A.K.; Software, A.S.; Supervision, A.Q. and J.P.; Validation, K.A.K., Omer Chughtai, A.Q. and J.P.; Writing—original draft, K.A.K.; Writing—review & editing, K.A.K., O.C. and J.P.

Acknowledgments

This research was supported by the European Commission in the framework of Erasmus Mundus and within the project cLINK. It is also funded by International Graduate School (IGS), Universität Bremen, Bremen, Germany.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Abbreviations

The following abbreviations are used in this manuscript:

	AP
	Access Point

	BATMAN
	Better Approach To Mobile Ad hoc Networking

	CTOS
	Commercial off-the-shelf

	CPU
	Central Processing Unit

	DSRC
	Direct Short Range Communication

	EPIC
	Explicitly Parallel Instruction Computing

	GPS
	Global Positioning System

	GUI
	Graphical User Interface

	GoPiGo
	General Purpose Input Output

	ID
	Identity

	I2I
	Infrastructure-Infrastructure communication

	IBSS
	Independent Basic Service Set

	ILS
	Indoor Localization System

	IECS
	Integrated Emergency Communication System

	IESS
	Integrated Emergency Service System

	ISE
	Integrated Synthesis Environment

	JSON
	Java Script Object Notation

	LOS
	line-of-sight

	MAC
	Medium Access Control

	MANET
	Mobile Ad hoc Network

	MAPs
	Mesh Access Points

	MCs
	Mesh Clients

	OSI
	Open Systems Interconnection

	OBU
	On-Board Unit

	OS
	Operating System

	OSI
	Open Systems Interconnection

	P2Pnet
	peer-to-peer communication network

	FPGA
	Programmable Gate Array

	PDAs
	Personal Digital Assistants

	RSU
	Road Side Unit

	RAM
	Random Access Memory

	RNs
	Relay Nodes

	RFID
	Radio-frequency identification

	RISED
	Rescue Information System for Earthquake Disasters

	SUMO
	Simulation of Urban MObility

	TCP
	Transmission Control Protocol

	TCP/IP
	Transmission Control Protocol/Internet Protocol

	TTL
	Time To Live

	VANETs
	Vehicular Adhoc Networks

	V2I
	Vehicle-to-Interface

	V2V
	Vehicle-to-Vehicle

	WAVE
	Wireless Access in Vehicular Networks

	WMN
	Wireless Mesh Networks

	WSN
	Wireless Sensor Network

	UNISDR
	United Nations Office for Disaster Risk Reduction

References

	

United Nations Office for Disaster Risk Reduction (UNISDR). The Human Cost of Weather Related Disasters. Available online: https://www.unisdr.org/archive/46793 (accessed on 28 September 2018).

	

De Francesco, E.; Leccese, F. Risks Analysis for Already Existent Electric Lifelines in Case of Seismic Disaster. In Proceedings of the 11th International Conference on Environment and Electrical Engineering (EEEIC), Venice, Italy, 18–25 May 2012; pp. 830–834. [Google Scholar]

	

Fogue, M.; Garrido, P.; Martinez, F.J.; Cano, J.C.; Calafate, C.T.; Manzoni, P. Identifying the key factors affecting warning message dissemination in VANET real urban scenarios. Sensors 2013, 13, 5220–5250. [Google Scholar] [CrossRef] [PubMed]

	

Zhang, H.; Li, G.; Yuan, H. Collaborative Optimization of Post-Disaster Damage Repair and Power System Operation. Energies 2018, 11, 2611. [Google Scholar] [CrossRef]

	

Seneviratne, D.; Ciani, L.; Catelani, M.; Galar, D. Smart Maintenance and Inspection of Linear Assets: An Industry 4.0 Approach. ACTA IMEKO 2018. [Google Scholar] [CrossRef]

	

Vegni, A.M.; Biagi, M.; Cusani, R. Smart Vehicles, Technologies and Main Applications in Vehicular Ad Hoc Networks. In Vehicular Technologies-Deployment and Applications; InTech: London, UK, 2013. [Google Scholar]

	

Nellore, K.; Hancke, G.P. Traffic management for emergency vehicle priority based on visual sensing. Sensors 2016, 16, 1892. [Google Scholar] [CrossRef] [PubMed]

	

Sahoo, P.K.; Chiang, M.J.; Wu, S.L. SVANET: A smart vehicular ad hoc network for efficient data transmission with wireless sensors. Sensors 2014, 14, 22230–22260. [Google Scholar] [CrossRef] [PubMed]

	

Santamaria, A.F.; Tropea, M.; Fazio, P.; De Rango, F. Managing Emergency Situations in VANET Through Heterogeneous Technologies Cooperation. Sensors 2018, 18, 1461. [Google Scholar] [CrossRef] [PubMed]

	

Khaliq, K.A.; Raza, S.M.; Chughtai, O.; Qayyum, A.; Pannek, J. Experimental validation of an accident detection and management application in vehicular environment. Comput. Electr. Eng. 2018, 71, 137–150. [Google Scholar] [CrossRef]

	

Khaliq, K.A.; Chughtai, O.; Qayyum, A.; Pannek, J. Design of Emergency Response System for Disaster Management Using VANET. In International Conference on Dynamics in Logistics; Springer: Berlin, Germany, 2018; pp. 310–317. [Google Scholar]

	

Reina, D.; Askalani, M.; Toral, S.; Barrero, F.; Asimakopoulou, E.; Bessis, N. A survey on Multihop Ad Hoc Networks for Disaster Response Scenarios. Int. J. Distrib. Sens. Netw. 2015, 11, 647037. [Google Scholar] [CrossRef]

	

Mangharam, R.; Meyers, J.; Rajkumar, D.; Stancil, D.D.; Parikh, J.S.; Krishnan, H.; Kellum, C. A Multi-Hop Mobile Networking Test-Bed for Telematics. SAE Trans. 2005. [Google Scholar] [CrossRef]

	

Chenji, H.; Zhang, W.; Stoleru, R.; Arnett, C. DistressNet: A Disaster Response System providing Constant Availability Cloud-Like Services. Ad Hoc Netw. 2013, 11, 2440–2460. [Google Scholar] [CrossRef]

	

Giuliano, R.; Mazzenga, F.; Petracca, M.; Vari, M. Indoor Localization System for First Responders in Emergency Scenario. In Proceedings of the Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Italy, 1–5 July 2013; pp. 1821–1826. [Google Scholar]

	

Lien, Y.N.; Jang, H.C.; Tsai, T.C. A MANET Based Emergency Communication and Information System for Catastrophic Natural Disasters. In Proceedings of the 29th IEEE International Conference on Distributed Computing Systems Workshops, Montreal, QC, Canada, 22–26 June 2009; pp. 412–417. [Google Scholar]

	

Bai, Y.; Du, W.; Ma, Z.; Shen, C.; Zhou, Y.; Chen, B. Emergency Communication System by Heterogeneous Wireless Networking. In Proceedings of the 2010 IEEE International Conference on Wireless Communications, Networking and Information Security (WCNIS), Beijing, China, 25–27 June 2010; pp. 488–492. [Google Scholar]

	

Kumar, C.N.; Sam, R.P. MANET Test Bed for Rescue Operations in Disaster Management. Wirel. Pers. Commun. 2015. [Google Scholar] [CrossRef]

	

Alam, S.W.; Khan, B.M. Implementation of VANETs Using FPGA-Based Hardware Test-Bed Approach for Intelligent Transportation System. Bahria Univ. J. Inf. Commun. Technol. 2016, 9, 30. [Google Scholar]

	

Cesana, M.; Fratta, L.; Gerla, M.; Giordano, E.; Pau, G. C-VeT The UCLA Campus Vehicular Testbed: Integration of VANET and Mesh Networks. In Proceedings of the 2010 European Wireless Conference (EW), Lucca, Italy, 12–15 April 2010; pp. 689–695. [Google Scholar]

	

Dipobagio, M. An Overview on Ad Hoc Networks; Institute of Computer Science (ICS), Freie Universitat Berlin: Berlin, Germany, 2008. [Google Scholar]

	

Leccese, F.; Cagnetti, M.; Di Pasquale, S.; Giarnetti, S.; Caciotta, M. A New Power Quality Instrument Based on Raspberry-Pi. Electronics 2016, 5, 64. [Google Scholar] [CrossRef]

	

Pasquali, V.; D’Alessandro, G.; Gualtieri, R.; Leccese, F. A New Data Logger Based on Raspberry-Pi for Arctic Notostraca locomotion Investigations. Measurement 2017, 110, 249–256. [Google Scholar] [CrossRef]

	

Ambrož, M. Raspberry Pi as a Low-Cost Data Acquisition System for Human Powered Vehicles. Measurement 2017, 100, 7–18. [Google Scholar] [CrossRef]

	

Sørensen, C.W.; Hernández Marcano, N.J.; Cabrera Guerrero, J.A.; Wunderlich, S.; Lucani, D.E.; Fitzek, F.H. Easy as Pi: A Network Coding Raspberry Pi Testbed. Electronics 2016, 5, 67. [Google Scholar] [CrossRef]

	

Samourkasidis, A.; Athanasiadis, I. A Miniature Data Repository on a Raspberry Pi. Electronics 2017, 6, 1. [Google Scholar] [CrossRef]

	

Jennehag, U.; Forsstrom, S.; Fiordigigli, F.V. Low Delay Video Streaming on the Internet of Things using Raspberry Pi. Electronics 2016, 5, 60. [Google Scholar] [CrossRef]

	

Van Rossum, G. Python 2.7. 10 Tutorial: An Introduction to Python; Samurai Media Limited: Thames Ditton, UK, 2015. [Google Scholar]

	

An Introduction to GPIO and Physical Computing on the Raspberry Pi. Available online: https://www.raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/ (accessed on 3 October 2017).

	

Iannucci, R.A.; Gao, G.R.; Halstead, R.H., Jr.; Smith, B. Multithreaded Computer Architecture: A Summary of the State of the Art; Springer Science & Business Media: Berlin, Germany, 2012; Volume 281. [Google Scholar]

	

Marlow, S. Parallel and Concurrent Programming in Haskell: Techniques for Multicore and Multithreaded Programming; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2013. [Google Scholar]

	

Palach, J. Parallel Programming with Python; Packt Publishing Ltd.: Birmingham, UK, 2014. [Google Scholar]

	

Maps Static API. Available online: https://developers.google.com/maps/documentation/static-maps (accessed on 8 October 2017).

	

Open Mesh: BATMAN-ADV. Available online: https://www.open-mesh.org/projects/batman-adv (accessed on 8 October 2017).

	

Khaliq, K.A. Emergency Disaster Management. Available online: https://gitlab.ips.biba.uni-bremen.de/kai/emergency-disaster-management/blob/master/adhoc-network-configuration.pdf (accessed on 19 February 2018).

	

Khaliq, K.A. Emergency Disaster Management. Available online: https://gitlab.ips.biba.uni-bremen.de/kai/emergency-disaster-management/blob/master/BATMAN-Adv-configuration.pdf (accessed on 19 February 2018).

[image: Sensors 19 01150 g001 550]

Figure 1. Emergency Response Plan in Disaster Scenario.

Figure 1. Emergency Response Plan in Disaster Scenario.

[image: Sensors 19 01150 g001]

[image: Sensors 19 01150 g002 550]

Figure 2. An example of inserting data at the Client interface.

Figure 2. An example of inserting data at the Client interface.

[image: Sensors 19 01150 g002]

[image: Sensors 19 01150 g003 550]

Figure 3. Hardware used in designing an emergency response system.

Figure 3. Hardware used in designing an emergency response system.

[image: Sensors 19 01150 g003]

[image: Sensors 19 01150 g004 550]

Figure 4. General-purpose input/output pins of Raspberry Pi model B+ [29].

Figure 4. General-purpose input/output pins of Raspberry Pi model B+ [29].

[image: Sensors 19 01150 g004]

[image: Sensors 19 01150 g005 550]

Figure 5. Graphical User Interface (GUI) using Python’s Tkinter library.

Figure 5. Graphical User Interface (GUI) using Python’s Tkinter library.

[image: Sensors 19 01150 g005]

[image: Sensors 19 01150 g006 550]

Figure 6. List of all available connections through the wlan0 interface.

Figure 6. List of all available connections through the wlan0 interface.

[image: Sensors 19 01150 g006]

[image: Sensors 19 01150 g007 550]

Figure 7. One-to-One TCP communication between the user and Control Room.

Figure 7. One-to-One TCP communication between the user and Control Room.

[image: Sensors 19 01150 g007]

[image: Sensors 19 01150 g008 550]

Figure 8. One hop through the intermediate (40 : 9b : cd : 00 : 5a : 85) node.

Figure 8. One hop through the intermediate (40 : 9b : cd : 00 : 5a : 85) node.

[image: Sensors 19 01150 g008]

[image: Sensors 19 01150 g009 550]

Figure 9. Total travel time for the packet is the sum of both the hops.

Figure 9. Total travel time for the packet is the sum of both the hops.

[image: Sensors 19 01150 g009]

[image: Sensors 19 01150 g010 550]

Figure 10. Four-hop scenario, three intermediate nodes.

Figure 10. Four-hop scenario, three intermediate nodes.

[image: Sensors 19 01150 g010]

[image: Sensors 19 01150 g011 550]

Figure 11. One-hop link quality is merely 2 out of 255, max.

Figure 11. One-hop link quality is merely 2 out of 255, max.

[image: Sensors 19 01150 g011]

[image: Sensors 19 01150 g012 550]

Figure 12. Trace route at Server for a node with MAC Address 40 : 9b : cd : 00 : 5a : 50.

Figure 12. Trace route at Server for a node with MAC Address 40 : 9b : cd : 00 : 5a : 50.

[image: Sensors 19 01150 g012]

[image: Sensors 19 01150 g013 550]

Figure 13. The dynamic nature of mobile users, indicated through the “batctl” traceroute.

Figure 13. The dynamic nature of mobile users, indicated through the “batctl” traceroute.

[image: Sensors 19 01150 g013]

[image: Sensors 19 01150 g014 550]

Figure 14. The same next-hop for all five available users.

Figure 14. The same next-hop for all five available users.

[image: Sensors 19 01150 g014]

[image: Sensors 19 01150 g015 550]

Figure 15. Dynamism of BATMAN-ADV Protocol.

Figure 15. Dynamism of BATMAN-ADV Protocol.

[image: Sensors 19 01150 g015]

[image: Sensors 19 01150 g016 550]

Figure 16. Emergency response system—the status of the inventory after receiving 200 queries from the disaster area.

Figure 16. Emergency response system—the status of the inventory after receiving 200 queries from the disaster area.

[image: Sensors 19 01150 g016]

[image: Sensors 19 01150 g017 550]

Figure 17. Emergency response system—the level of disaster in a particular area in terms of destruction.

Figure 17. Emergency response system—the level of disaster in a particular area in terms of destruction.

[image: Sensors 19 01150 g017]

[image: Sensors 19 01150 g018 550]

Figure 18. Analysis: Round Trip Time (RTT) vs Hop Count.

Figure 18. Analysis: Round Trip Time (RTT) vs Hop Count.

[image: Sensors 19 01150 g018]

[image: Sensors 19 01150 g019 550]

Figure 19. The trend of packet delivery ratio (%) with increasing hop count.

Figure 19. The trend of packet delivery ratio (%) with increasing hop count.

[image: Sensors 19 01150 g019]

[image: Sensors 19 01150 g020 550]

Figure 20. Comparison of Delay with Increasing Hop Count.

Figure 20. Comparison of Delay with Increasing Hop Count.

[image: Sensors 19 01150 g020]

[image: Table]

Table 1. Alert messages, their types, and Transferred Message Codes.

Table 1. Alert messages, their types, and Transferred Message Codes.

	No.
	Alert
	Type
	Message Code

	1
	First Aid
	Emergency Help Call
	1

	2
	Ambulance
	Emergency Help Call
	2

	3
	Air-help
	Emergency Help Call
	3

	4
	Food/Water
	Help Call
	4

	5
	Vehicles
	Help Call
	5

	6
	Shelter/Camp
	Help Call
	6

	7
	Volunteers
	Help Call
	7

	8
	Warm-clothes
	Help Call
	8

	9
	Collapsed Land
	Informative
	9

	10
	Broken Bridge
	Informative
	A

	11
	Blocked Road
	Informative
	B

	12
	Collapsed Buildings
	Informative
	C

	13
	All OK/Clear
	Informative
	D

[image: Table]

Table 2. Summary of actions taken by the Server at the Control Room.

Table 2. Summary of actions taken by the Server at the Control Room.

	Code
	Action

	1
	Sends a message to the First-Aid team nearest to the location

	2
	Sends a message to the Hospital service

	3
	Sends a message to the Air-Base Control room

	4
	Sends a message to the Food & Accessories management head, along with location information

	5
	Sends a message to the Transport service head, along with location information

	6
	Sends a message to the Camping & Shelter management head, along with location information

	7
	Sends a message to the Volunteers management center asking for volunteers at the specified location

	8
	Sends a message to the Food & Accessories management head, along with location information

	9
	Stores the information in database and displays it on the User Interface

	A
	Stores the information in database and displays it on the User Interface

	B
	Stores the information in database and displays it on the User Interface

	C
	Stores the information in database and displays it on the User Interface

	D
	No action is performed as this only acknowledges the end of the message

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file13.jpg

media/file4.png
A
i

Broken-

bridge

W

Blocked-
Road

Collapsed Collapsed
Cancel i OK/Clear

User Input
A#1#D

Send Message
Alert-code: 0A

Data: 1
Location Coordinates:
(40.741895, -73.989308)

Recorded Short Voice
Message:
Location Coordinates:
(40.741895, -73.989308)

media/file30.png
pi@raspberrypi:~ $ sudo batctl o

[B.A.T.M.A.N. adv 2016.4, MainIF/MAC: wlan0/40:9b:cd:00:5a:50 (bat0/42:62:6f:34:ed:8d BATMAN_IV)]

Orlglnator last-seen (#/255) Nexthop
;5353 0,870s L 18:32:0b:adied]
).870s (86) 78:32:1b:ad:e4:2f
.870s r1ﬂﬂ 0D:cd:00: :»a
©.100s (©0) 78:32:1b:ad:e4:11
©.100s (0) 78:32:1b:ad:e4:2e
0.100s (33) 78:32:1b:ad:e4:2f
0.100s (22) 40:9b:cd:00:5a:5a
2.070s (©) 40:9b:cd:00:5a:5a
2.070s (75) 78:32:1b:ad:e4:2f
2.070s (©0) 78:32:1b:ad:e4:11
f 3 . . . - -
0.390s _ (174) 78:32:1b:ad: |
40:9 :cd:00:5a:85 1.240s (10) 40:9b:cd:00:5a:85

px@raspbor :~ $ sudo batctl o

[outgoingIF]
i wlanO]
wlan@]
wlan@]
wlan@]
wlan@]
wlan@]
wlan@]
wlan@]
wlan@]
wlan®]
wlan@]
wlan@]

wlan@]

[B.A.T.M.A.N. adv 2016.4, MainIF/MAC: wlan0/40:9b:cd:00:5a:50 (bat0/42:62:6f:34:ed:8d BATMAN_IV)]

Orlglnator last seen (#/255) Nexthop

T T 78:32:1b; h

0. (113) 78.32.1b.ad.e4:2f]

40:9b:cd:00:5a: 0. 1r1ﬂ1-1 :9b:cd:00:5a:5a |
78:32:1b:ad:e4d:2e 1.800s (©) 78:32:1b:ad:e4d:2e
* 78:32:1b:ad:e4d:2e 1.800s (55) 78:32:1b:ad:e4:2f
78:32:1b:ad:e4:2e 1.800s (27) 40:9b:cd:00:5a:5a
78:32:1b:ad:ed4:11 147.020s (36) 40:9b:cd:00:5a:5a
* 78:32:1b:ad:e4:11 147.020s (63) 78:32:1b:ad:e4:2f

(.

147.020s
0,500

[outgoingIF]
wlan@]
wlan@]
wlan@]
wlan@]
wlan@]
wlan@]
wlan@]
wlan®]
wlan®]
wlan@]
wlano]

wlan@]

media/file39.jpg
Comparison of Delay and Hop Count

—
u —

Average Delay (ms)

4 6
Hop Count

s~ Av Del

for 100 Queries —— Avg Delay for 150 Queries —0— Ave. Delay for 200 Queries

media/file18.png
pi@raspberrypi:~ $ sudo batctl traceroute 78:32:1b:ad:e4:11

traceroute to 78 32 1b:ad:ed4:11 (78:32:1b:ad:ed4:11), 50 hops max, 20 byte packets
6.045 ms 1.188 ms

.604 ms 3.109 ms

2 78 32: 1b ad e4 28 = 869 ms

media/file35.jpg
RRT (mns)

Comparison of Round Trip Tame (RTT) and Hop Count

e

Hop Count

media/file21.jpg
- $ sudo batctl originators
o AT TOR AR S 20104 MnTE/MAC lan0:32: 10500042 (AKD/ 48T 0750 SATRNITV))

originator autooitore
« G0t ano
tano
“lan
3 tano
- loiobicd:00i5a:ss 32,3005 (5) 40:0bicd:00:saisa [wlano)
12 o bater 78132 Tbad0s:2f
78:3211b:ad:04:2(), 50 hops max, 20 byte packets
Jorsos me 37,475
70600 ns 7,857 ne
1767 me 7816 me
131021 ma 16216 me
B e 100588 e

media/file26.png
px@raspborrypx ~ 3 sudo batctl tr 40:9b:cd:00:5a:50
- 3:50 (40:9b:cd:00:5a:50), 50 hops max, 20 byte packets
2.099 ms 1.453 ms
2.270 ms 8.692 ms
r 40:9b:cd:00:5a:50
(40:9b:cd:00:5a:50), 50 hops max, 20 byte packets
47.023 ms 4.878 ms
16.551 ms 2.328 ms

media/file27.jpg
raspborrypi.-~ § sudo batctl originators
TRIATTMAN ade 2646.4, MasnIE/HAC] land/78:22:1osad:ed:20 (BaKO/da: 74321 dai00:50 BATAAN IV))

reakint
o
-
-
-
o

7). 50 hops max, 20 byte packets
17.604 ms 7.857

17675 s 7,816 s
16,603 ms 13,921 ms 16,210 a8
14681 e 13201 me 12369 me

media/file3.jpg
o Aertcode: 04
A | ot

1 Location Coordinates:

ot ||| GOTA189575959508)

Location Coardinates:
(0741895, 73 959308)

media/file22.png
pi@raspberrypi:~ $ sudo batctl originators
[B.A.T.M.A.N. adv 2016.4, MainIF/MAC: wlan©/78:32:1b:ad:ed4:2e (bat0/4a:74:3f:de:d0:50 BATMAN_IV)]

Originator last-seen (#/255) Nexthop [outgoingIF]

* 40:9b:cd:00:5a:5a « §F 3703 (166) 40 9b cd:00:5a:5a [wlan0]
Qb - . . o . . . [wlane:

2) 40:9 :cc: [wlan0]

B:32:1b:ad:e4: LB (3) 4o: d:00:5a:5a | wlan@]

* 40:9b: cd'00:5a:85 52.390s (5) 40: 9b cd 00:5a:5a [wlan@]

pi@raspberrypi:~ $ sudo batctl tr 78:32:1b:ad:e4:2f
traceroute to 78:32:1b:ad:ed4:2f (78:32:1b:ad:ed4:2f), 50 hops max, 20 byte packets
:9b:ca: 2.994 ms 37.475 ms
2 40:9b: cd 00:5a:50 g 17.604 ms 7.857 ms
3: 40:9b:cd:00:5a:85 & 17.879 ms 7.816 ms
- 13.921 ms 16.216 ms
5: 78:32:1b:ad:e4:2 14.681 ms 13.211 ms 11.353 ms

pi@raspberrypi:~ S ||

media/file19.jpg
piraspberrypi:~ $ sudo batctl tr 78:32:1b:ad:ed:11
To 78:32:1b:ad:e4:11 (78:32:1b:ad:e4:11), 50 hops max, 20 byte packet

Esge e o 000 ms 3,122 0
3.400 ms 5614 ms
3330 ns 17,852 ms 11.103 ms
12.680 ms 16.650 ms

media/file7.jpg
LI 000 00 5000 O 000
9000 0000000 €00000

media/file28.png
pi@raspberrypi:~ $ sudo batctl originators

[B.A.T.M.A.N. adv 2016.4, MainIF/MAC: wlan0/78:32:1b:ad:e4:2e (bat0/4a:74:3f:de:d0:50 BATMAN_IV)]
191ns : h

40:9b:cd:00:5a:

40:9b:cd:00:5a:
40:9b:cd:00:5a:

2.236 ms 2.994 ms 37.475 ms
29.900 ms 17.604 ms 7.857 ms
38.664 ms 17.879 ms 7.816 ms

:cd.Oe.Sa.Se
:cd:00:5a:85
:1b:ad:e4:11
:1b: ad ed:2f

16.863 ms 13.921 ms 16.216 ms
14.681 ms 13.211 ms 11.353 ms

[outgoingIF]
wlanO]
wlane_
wlan@]
wlan0O]
wlan@]

:ad:ed:2f (78 32 1b éd red: 2f), 50 hops max, 20 byte packets

media/file10.png
LEY Emergency Besponse Sysiem

Statistics
bloc_road: 0 2 areals) collapsed at 53.110785,
coll_building: 5 8.856183333
brok_bridge: 2 & building(s) collapsed at 53.11101,
coll Emd- 2 8.856256667
- ' & Volunteeris) required at 53.11101,
Resources 8.85625606A7
. 2 bridge(s) broken at 53.110923333,
| | Available | | Busy 8 B56075
: 5 firstaid: 495 firstaid: 5 7 Vehicleis) required at
HORN-LEHE . warmClothes: 400 warmClothes: O 53.110796667, 8.856021667
@ Universum Bremen camp: 600 camp: 0 5 First Aid required at
 wehicle: 43 =z = 53.110796667, 8.856021667
food: 1200 food: O
m@,.nﬂﬂtﬂzum GeoBasis-DE/BKG (£2009), Google

ambulance: 30 ambulance: 0

airHelp: 5 airHelp: 0
Lnlunteer: 244 Lnlunteer: 6

Hospital Services
Food Depot
ransport Service

olunteers Management Centre (WVMC)
Mews/TV Channels

ir-base Control Room (ACR)
Camping/Sheltering Service

media/file40.png
Comparison of Delay and Hop Count

13
12 =
11 A
10
~ 9
b)
g g
[=F]
A 6
=F]
% 5
3
2
1
0
1) 3 4 5 5

Hop Coun

—*—Avg. Delay for 100 Quertes —— Avg. Delay for 150 Queries —O— Avg. Delay tor 200 Queries

media/file33.jpg
Disaster Statistics in Affected Area

Collapsed Lands

Broken Bridges

e —

Blocked Roads

media/file32.png
Real Time Statistics of Emergency Responce System

Volunteers
Ambulance
Aur help
Food

Entities

ik

Vehicles

Camps
Warm Clothes Packets

Furst Aud Kats

200 400 600 800 1000 1200

=

Available Resources (Quantity)

® Allocated/Busy Resources ™ Available Resources ~ ® Total Resources

media/file14.png
prraspborrypx ~ $§ traceroute -4 192.168.2.102
G 58 0 G ale 0 5 hop max 50 D s packets

1 192 168. 2 102 (192.168.2.102 21.426 ms 21.380 ms 21.697 ms
pidra rypi:~ raceroute -4 192.168.2.101

ps max, 60 byte packets
174.927 ms

156.491 ms 174.509 ms

media/file11.jpg
[pirasborrypic s sudo batctl ariginators
20104, RasnTF WA wlana/a0:shcd:

:5a:50 (bato/42:62: BaTan_1v)]

media/file6.png
- .‘
)
- N ——y
faen L‘-—'."!f" ‘
1.}

(o n 1 0
(ERLr)

O\

C. GPS Module

E__‘

BRSRREYD ASNAn
P < 1,

) (7 K e
O
w

B. Raspberry Pi

&
-
-

ik,
St @ .
)

HiR11

[
@x3re

w .‘;

D. USB Dongle |

E. Keypad

media/file36.png
EET (ms)

b
L

[

L

L

Comparison of Round Trip Time (RTT) and Hop Count

.'-- __—.‘

1 2 3 - 3 6
Hop Count

media/file15.jpg
i~ $ sudo batctl o

media/file37.jpg
Packet Delivery Ratio (PDR)

Packet Delivery Ratio with Increasing Hop count

1 2 3 4 5 6

Hop Count

100

g

99

8

98.

9
£

®PDF for 100 Queries ®PDF for 150 Queries # PDF for 200 Queries

nav.xhtml

 sensors-19-01150

 		
 sensors-19-01150

media/file41.png

media/file16.png
pi@raspberrypi:~ $ sudo batctl o
B.A. T M.A.N. adv 2016.4 MainIF/MAC wlan®/40:9b:cd:00:5;:

8:32:1b:ad:ed:
. 40:9b:cd:00:5a:5a 2.8808 (128) 40:9b:cd:00:5a:5a
78:32:1b:ad:e4:2e ©0.880s (©) 78:32:1b:ad:e4d:2e
» I '3 ¥ . o . - .88 [4. . . . o * 3

; 10:9b:cd:00:5a:
0. (110) 78:32:1b:ad:e4:2f
40:9b:cd:00:5a:85 1.680s (1) 78:32:1b:ad:e4:2f
1 (22

* 78:32:1b:ad:e4:2f

* 40:9b:cd:00:5a:85 22) 40:9b:cd:00:5a:85

1:50 (bat0/42:62:6f:34:ed:8d BATMAN_IV)]
outgoin
) wlan

wlan@]
wlan0]

wlan®
wlan
wlan@]
wlan@]

wlan@]

media/file2.png
Disaster Area

In-Vehicle
(OBU)/ Hand
Device

GPS
Module

Processing Unit
(Raspberry Pi)

message

Mobile Hospital

%802.11 Interface

Mobile First Aid/
Ambulance Service

‘802.1 I lnterface|

Control Room

,%802.1 1 Interface

’802.]] lnterface‘

Emergency
Message
Code

Alert Message
Processing

Volunteer
~ Hand Device

Transport Service Head

Alert Types:
-First aid
-Ambulance

- Volunteer

- Food/Water
-Vehicles
-Camps
-Warm Cloths
-Hazard Alerts

' Hand Device |

Air-base Control Room

~ Hand Device |

Food Depot

 Hand Device |

Camping/sheltering and
Others
- Hand Device |

Information
managmenet

Volunteers Management
Center

" Hand Device

News/TV Channels
 Hand Device ¥

media/file20.png
pi@raspberrypi:~ $ sudo batctl tr 78:32:1b:ad:e4:11
traceroute to 78:32:1b:ad:ed4:11 (78:32:1b:ad:e4:11), 50 hops max, 20 byte packet

1: 40:9b:cd:00:5a:5a
2: 40:9b:cd:00:5a:50
3: 40:9b:cd:00:5a:85
4: 78:32:1b:ad:e4:11

2.999 ms |2.009 ms 1.122 ms
15.873 ms 3.400 ms 5.614 ms
4.139 ms 17.852 ms 11.103 ms
12.680 ms 16.650 ms

media/file23.jpg
max, 20 byto packets.

1255 ms 2,65 ms 2,294 ms
3150 me 6436 me 30.406 me
41585 m 361731"me '20.504'm

batetl o
IR TN A Ne ady 2016.4, NOsnIF/WAC: wland/78:32: 1b:ad:ed: 20 (bato/96:61:06:09:03:70 BATHAN IV)]
Originaior Tast-soan (4/255) Nexthop (outgoinatt
(207 d0:obea:o0:sacsa [wiano)
() 00i5aica [wlano)

‘00i50:85 [wlano)
((79) d0iobicaionisase [wiand

media/file5.jpg
A. GoPiGo Robot Car

C.GPS Module:

media/file24.png
.ops max, 20 byte packets

2 658 ms 2.294 ms

6.436 ms 10.406 ms
b:cd:00:5a: 18.731 ms 10.514 ms

px@raspbcrrypx ~ $ sudo batctl o

[B.A.T.M.A.N. adv 2016.4, MainIF/MAC: wlan©/78:32:1b:ad:e4:2e (bat0/96 81:86:29:03:7e BATMAN_IV)]

Originator last-seen (#/255) Nexthop [outgoingIF]
* 40:9b:cd:00:5a:5a 0.240s (207) 40:9b:cd:00:5a:5a [wlan0]
* 40:9b:cd:00:5a:50 6.640s (39) 40:9b:cd:00:5a:5a | wlan@]
40:9b:cd:00:5a:85 1.780s (©O) 40:9b:cd:00:5a:85 | wlan0]
* 40:9b:cd:00:5a:85 1.780s (73) 40:9b:cd:00:5a:5a | wlan0]

pi@raspberrypi:~ S |j

media/file29.jpg
aspberrypi:- S sudo batctl o
B4 ToH AN, ady 2016.4, MaSDTE/MAC: wlan0/40:9b:cd:00:52:50 (bat0/42:62:6f:34:0d:8d BATWANIV)]

originator Tast-coan (4/255) Nexthop [outgoinglF)
5 ;i wano]
Vlano)
lan)
lan0)
“dang)
“iano]
Vlano)
lano)
“lang)
wano]
wiano]
Hlano]
Vlano)

Ty

pibraspbarrypa.- ¢ sudo bitetl o
B A ToH AN, adv 2016.4, NainTP/WAC: wland/d
Originator

c4:00:52:50 (bato/a2:62:6f:
Tast-seon (4/255) Woxthop Toutgoingte]
sath e e e
Wano]
“lang)
Vlano]
el
lano)
“dano)
“lang)
Wiano]
vlana]
vlana]
“ano]

80 aamwan_1v)]

media/file1.jpg
615 At
v 7 By

Wam Clths
aand Aens

Mobile Hospi

sy

Mobile Firs Aid/
Ambulance Serviee

—
SO Interfce

Volunteer

1 Hand Deviee

Trampor Seniee Head
[Hand Deviee
b Contrl Koo

T Hand Deviee

[Hand Deviee

Campngiclriog ni
" o
Hand Bevice

e —

media/file31.jpg
Real Time Statistics of Emergency Responce System

Vohmteers —

Amibulance
N Airbelp
2 |
- Food | e,
= Velicles [y
Ly ———————
Wamn Clobes Packets [—

Fust A Kits | e,

o 20 W00 & s 1000
Available Resources (Quantit)

= Allcated Biuy Resouces 8 Availble Resowces 8 Total Rescuwees

1200

media/file25.jpg

media/file12.png
|pi@raspberrypi:~ $ sudo batctl originators

[B.A.T.M.A.N. adv 2016.4, MainIF/MAC: wlan0/40:9b:cd:00:5a:50 (bat0/42:62:6f:34:ed:8d BATMAN_IV)]

ipnator last- §ggn_£ﬁ[2§§l_ﬂgxthon (outgoinglF’

[F40:9b:cd:00:5a:5a___ 6.2 90) 78:32:1b:ad:ed:11 [wlan0] |
40:9b:cd:00:5a:5a O 2395 (61) 78.32.1b.ad:e4:2f j wlang]
40:9b:cd:00:5a:5a 0.230s (42) 40:9b:cd:00:5a:5a | wlan@’
78:32:1b:ad:e4:11 0.640s (23) 40:9b: cd 00: Sa 5a [wlan@]
Q . . radgd- . [Q‘ 78 . f H]ﬂﬂﬂ

0 T58) 78:32: 1biadied i1 | vlano]]
3 (24) 40:9b:cd:00:5a:5a | wlano
Q (0) 78:32:1b:ad:ed4:11 [wland]
(195) 78:32:1b:ad:ed:2f [wlan®
(11) 40:9b:cd:00:5a:85 [wlan@

media/file9.jpg
Statitics

media/file0.png

media/file38.png
Packet Delivery Ratio (PDR)

10

99.

O

98.

9

Packet Delivery Ratio with Increasing Hop count

0
>
9
| I I I
8
1 2 3 4 S 6

Hop Count

w PDF for 100 Queries mPDF for 150 Queries mPDF for 200 Queries

media/file8.png
Raspberry Pi A+ / B+ and Raspberry Pi 2 GPIO pins

/" 7\ IDEEPROM

media/file34.png
Collapsed Lands

Broken Bridges

Collapsed Buildings

Blocked Roads

Disaster Statistics in Affected Area

media/file17.jpg
ad:e4:11), 50 hops max, 20 byte packets
53] 6.045 ms 1.188 ms.
604 s 3.109 ms

