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Abstract: It is important to conduct research on the soil freeze–thaw process because concurrent
adverse effects always occur during this process and can cause serious damage to engineering
structures. In this paper, the variation of the impedance signature and the stress wave signal
at different temperatures was monitored by using Lead Zirconate Titanate (PZT) transducers
through the electromechanical impedance (EMI) method and the active sensing method.
Three piezoceramic-based smart aggregates were used in this research. Among them, two smart
aggregates were used for the active sensing method, through which one works as an actuator to emit
the stress wave signal and the other one works as a sensor to receive the signal. In addition, another
smart aggregate was employed for the EMI testing, in which it serves as both an actuator and a receiver
to monitor the impedance signature. The trend of the impedance signature with variation of the
temperature during the soil freeze–thaw process was obtained. Moreover, the relationship between
the energy index of the stress wave signal and the soil temperature was established based on wavelet
packet energy analysis. The results demonstrate that the piezoceramic-based electromechanical
impedance method is reliable for monitoring the soil freezing and thawing process.

Keywords: Lead Zirconate Titanate (PZT); smart aggregates; soil freeze–thaw process;
electro-mechanical impedance (EMI) method

1. Introduction

As one of the most important construction materials for engineering structures, soil is irreplaceable
in civil engineering. In addition to earthquakes and soil erosion, soil expansion and contraction induced
by the periodic freeze–thaw process is also a cause of fatal damage to engineering structures such as
roads, bridges, and buildings.

However, the soil freezing and thawing process can not only cause soil expansion and
contraction but can also change the soil’s mechanical properties. In recent decades, numerous
studies about the influences of the freeze–thaw process on soil mechanical properties have been
reported. Aldaood et al. [1] demonstrated that the effect of freezing–thawing cycles on the durability
of gypsum-containing soil is severe by comparing the uncompressed compressive strengths of gypsum
soils with different gypsum contents under freezing–thawing cycles. Qi et al. [2] analyzed the changes
in the density, strength, and resilient modulus of Lanzhou loess soil under different freezing conditions.
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Salour et al. [3] investigated pavement structural behaviors during the spring thaw by using a falling
weight deflectometer. Yang et al. [4] studied the seasonal frost effects on the dynamic behavior of
a twenty-story office building. Simonsen et al. [5] analyzed the effects of freezing–thawing soil on
pavement by using the Finite Element Modeling (FEM) method. Simonsen et al. [6] further studied the
influences of the soil type, permeability, drainage conditions, and thawing rate on the thaw weakening
of pavement structures in cold regions. Guymon et al. [7] developed a mathematical model that can
be used to estimate the frost heave and thawing subsidence in various situations. Shoop et al. [8]
proposed a material model for thawing soil behavior through the FEM method and validated the
numerical model by conducting direct shear tests on thawed soil samples. Graham et al. [9] studied
the effect of the freeze–thaw cycle on the stress state of clay soil.

Generally, evaluation of the soil freeze–thaw process is mainly performed through on-site
investigation. This method is costly and requires a great deal of manpower and material resources.
Nowadays, emerging microwave detection methods have already been successfully utilized as a
promising approach to monitor the soil freezing–thawing status. Mcdonald et al. [10] outlined the
application and principles of microwave remote sensing technology in the estimation of surface
freeze–thaw states. Chai et al. [11] proposed a new method to determine the freezing and thawing
degree based on the use of passive microwave remote sensing technology. Zwieback et al. [12]
presented a fusion algorithm to determine freeze–thaw status by combination of Ku-band and C-band
scatterometer data. Zhang et al. [13–15] researched the freezing–thawing status, duration, and area
of near-surface soils in the United States by using passive microwave remote sensing technology.
Han et al. [16] detected the springtime thawing of near-surface soil in northern China using passive and
active microwave remote sensing technology. Wu et al. [17] monitored the freezing–thawing process
of soil by utilizing a Global Position System (GPS) interference reflectometer. Jadoon et al. [18] utilized
Ground-Penetrating Radar (GPR) to monitor soil freezing–thawing cycles. Judge et al. [19] performed
the freeze–thaw classification of prairie soils by using the Special Sensor Microwave/Imager (SSM/I)
radiobrightnesses. Zhao et al. [20] presented a newly developed algorithm for distinguishing the
freeze–thaw status of surface soil based on the Advanced Microwave Scanning Radiometer—Enhanced
(AMSR-E) which records brightness temperature in the afternoon and after midnight. Also, the NASA
scatterometer [21–23], CT techniques [24–30], and nuclear magnetic resonance techniques [31–33] have
been used to analyze the characteristics of frozen soil.

Lead Zirconate Titanate (PZT), a type of piezoceramic material, has been extensively applied
in structure health monitoring (SHM) [34–37] and damage detection [38,39] in the past few decades.
Compared with non-destructive testing (NDT) devices, the piezoceramic-based transducer has
the advantages of small size, high sensitivity, fast response, wide bandwidth, and low cost, and
piezoceramic transducers can also be used for structural impact monitoring [40–45]. Since the PZT
material has both direct and reverse piezoelectric effects, it can serve as both an actuator and a sensor.
Nowadays, there are mainly two types of methods for SHM using PZT-based transducers, namely, the
active sensing method [46–48] and the electromechanical impedance method [49–52]. Based on these
two methods, PZT transducers have been employed in numerous studies. Soh et al. [53] demonstrated
the feasibility of the PZT-based transducer to monitor a typical reinforced concrete (RC) bridge.
Visalakshi et al. [54] compared the performances of embedded and surface-bonded PZT patches in the
corrosion detection of RC structures. Feng et al. [55] monitored different types of damage to concrete
piles by using PZT-based transducers. PZT transducers have been used to detect damage to an oil
pipeline [56–58] and a concrete-filled steel tube (CFST) [59,60]. Karayannis et al. [61] conducted a
damage evaluation of rebar inside concrete by using PZT transducers. Moreover, PZT transducers have
also been researched in other fields such as timber damage and moisture detection [62–66], SHM of
aerospace structures [67–69] and mechanical components [70–73], and wind turbine monitoring [74–77].
Song et al. [78–82] adopted piezoceramic-based smart aggregates, which have been verified to be more
stable and reliable, to monitor cement strength development and to test the dynamic behaviors of
concrete structures subject to seismic excitation.
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In this paper, several PZT-based smart aggregates were employed to monitor the
soil freezing–thawing process through the EMI method and the active sensing method.
Through experimental research, the changes in the resonance peaks in the EMI spectra over temperature
were measured and analyzed; this demonstrated itself to be an effective indicator to characterize the
soil freeze–thaw process. Also, the relationship between the soil freezing–thawing status and the EMI
signature was established. Additionally, the wavelet packet energy index was used to quantify the soil
freezing–thawing status, which verified the effectiveness of the EMI method in monitoring the soil
freeze–thaw process.

2. Principles

2.1. Electromechanical Impedance Method

Due to its direct and reverse piezoelectric effects, the PZT transducer can be used as both an
actuator and a receiver. The one-dimensional model that illustrates the coupling between the PZT
transducer and the host structure is displayed in Figure 1. In this system, when alternating current
is applied to the PZT transducer, it will create harmonic vibrations with high frequencies which will
further drive the vibrations of the host structure and induce a structural response in the form of
electromechanical impedance. Any changes in the mechanical properties of the host structure will lead
to variations in the electromechanical impedance.
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Equation (1) is the mathematical expression used to illustrate the relationship between the
electric admittance (the reciprocal of impedance) and the frequency based on the piezoelectric wave
equation [83]:

Y = iωa
[

εT
33(1 − iδ)− Z(ω)

Z(ω) + ZA(ω)
(d32)

2YE
22

]
(1)

where a is the geometric constant of the PZT driver, i is an imaginary unit, ω is the angular frequency of
the applied current, δ is the dielectric loss factor, εT

33(1 − iδ) is the complex permittivity without stress,
Z is the mechanical impedance of the structure, ZA is the mechanical impedance of the PZT material,
d32 is the piezoelectric constant, and YE

22 is the Young’s modulus of the PZT at zero electric field.
According to IEEE Std. 176-1987 [84,85], cD

22 and kt can be determined using the following equations:

cD
22 = 4ρL2 fp

kt =
π

2
fs

fp
tan

(
π

2
fp − fs

fp

)
where cD

22 and kt represent the elastic stiffness constant at constant electric displacement and the
electromechanical coupling constant, respectively; fp and fs are the frequencies at which the real
parts of the impedance Z and the admittance Y, respectively, have a maximum. Both fp and fs can be
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measured by the impedance analyzer; thus, based on the above equations, cD
22 and kt can be obtained.

Furthermore, by substituting the two calculated parameters into the following basic equations [85],
εT

33, d32, and YE
22 can be acquired:

k2
t =

d2
32

εT
33cD

22

cD
22 = cE

22/
(

1 − k2
t

)
, YE

22 = 1/cE
22

εT
33 = C

l
A

where l and A denote the thickness and area of the PZT patch, respectively. C represents the capacitance,
which can be measured by a capacitor.

2.2. Active Sensing Method

The active sensing method is adopted to monitor the soil freezing–thawing process as well.
In this method, two PZT-based smart aggregates are embedded at pre-determined locations inside
the soil specimen. Between them, one serves as an actuator to emit a stress wave signal, and the
other one is used as a receiver to capture the signal. Since the soil specimen acts as a medium for the
transmission of the signal, the received signal directly depends on the soil’s physical properties. As the
soil sample experiences the freeze–thaw process, its properties will change. This will further influence
the propagation of the signature through the soil specimen. Hence, the soil freeze–thaw status can be
evaluated by measuring the signal variations with temperature.

2.3. Wavelet Packet Analysis

Wavelet packet analysis is based on wavelet analysis, but it maintains a higher time–frequency
resolution than wavelet analysis [86,87]. In addition, more suitable frequency bands can be chosen
to match the spectra of the signal through this method. Previously, wavelet packet analysis has been
used to analyze the active sensing data for SHM and damage detection [88,89]. Based on the active
sensing method, wavelet packet analysis has also been performed to quantitatively describe the soil
status during the freeze–thaw process [90–92].

The signal S collected by the piezoceramic-based transducer can be decomposed by an n-layer
wavelet packet, and its mathematical expression can be written as

S = s1 + s2 + . . . + si + . . . + s2n−1 + s2n (2)

where S is the original signal and si is the corresponding decomposed subsignal to each frequency band.
Representing Si in the form of a vector gives

Si = [si,1, si,2, si,3, . . . , si,m−1, si,m ] (3)

where i stands for the frequency band and m is the total number of collected data samples.
The sub-signal energy vector in each frequency band of the n-layer signal can be defined as

E = [e1, e2, e3, . . . , ei, . . . , e2n−1 , e2n ] (4)

where e is the sub-signal energy in each band of the n-layer signal. ei can be expressed as

ei =
n

∑
k=1

∣∣xi,k
∣∣2 (5)

where xi,k represents the signal data at the frequency band i.
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Therefore, the energy of the signal decomposed by the n-layer wavelet packet can be represented
by the sum of the signal energy vectors of each frequency band, namely,

E =
2n

∑
k=1

ei (6)

Based on the above wavelet packet analysis, the soil freezing–thawing status can be assessed by
analyzing the energy of the stress wave signal received by the PZT transducer. The value of the energy
increases as the temperature drops in the freezing process. Conversely, the energy value decreases as
the temperature goes up in the defrosting process.

3. Experimental Investigation

3.1. Experiment Materials

The involved experimental materials are exhibited in Figure 2. In this experiment, smart aggregate
with a PZT patch sandwiched between two marble cylinders was adopted, as shown in Figure 2a.
A K-type thermocouple sensor was used to monitor the temperature change in the freeze–thaw process,
as exhibited in Figure 2b. The experimental soil sample was regular surface clay soil collected from
a construction site in Houston, USA. The soil was fully dried in a heated drying oven, as shown in
Figure 2c, and its particle size distribution curve is displayed in Figure 2d.
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3.2. Experimental Setup

The experimental setup is displayed in Figure 3. The soil was encapsulated in a polyvinyl chloride
(PVC) tube with a diameter of 9.0 cm and a total length of 30.0 cm. Three smart aggregates (SAs)
and one K-type thermocouple sensor were embedded at pre-determined locations in the PVC tube.
SA1 and SA3 were embedded 10.0 cm away from opposing ends of the pipe, as shown in Figure 3.
SA2 and the thermocouple sensor were placed at the center of the tube. In this research, SA1 was used
as an actuator and SA3 was employed as a receiver to monitor the stress wave signal from SA1, the
received data was acquired with a DAQ (Data Acquisition) card. In addition, SA2 was used for the
EMI testing and served as both a driver and a receiver.
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Figure 3. Experimental setup.

3.3. Experimental Procedures

In this experiment, to monitor the soil freeze–thaw process, the soil specimen was placed in a
temperature-adjustable refrigerator with a temperature range from room temperature (about 20 ◦C) to a
minimum temperature of −25 ◦C. Once the temperature reached −20 ◦C, the freezer was immediately
turned off. The experiment then shifted to the thawing process, during which the temperature
gradually rose back to room temperature (around 20 ◦C). Two aggregates (SA1 and SA3) were adopted
in the active sensing method and one aggregate (SA2) was utilized in the EMI testing, and the
temperature of the specimen was monitored by the K-type thermocouple sensor. The temperature was
recorded every 5 min. In the active sensing testing, SA1 emitted a signature under the excitation of a
sweep sine signal with a sweep period of 1.0 s, and the frequency of the sweep sine wave increased
linearly from 0.1 to 30 kHz. SA3 served as a receiver to capture the signal. In the EMI testing, SA2 acted
as both an actuator and a receiver to acquire the impedance signal, which was obtained by scanning
the transducer over a frequency range from 50 kHz to 450 kHz.

What calls for special attention is the fact that temperature changes may have some influence
on the captured impedance signals during the experiment due to the long-term depolarization effect
of the piezoelectric material. However, for the situation in this study, the temperature is not low
enough to cause significant depolarization. This is supported by some studies [93,94] which have
shown that the real part of the signal of PZT patches is negligibly affected by the temperature while the
imaginary part of the signal may be affected depending on how significantly the temperature changes.
This was also verified by a pre-test on a free PZT patch under the temperatures of 20 ◦C and −20 ◦C;
the experimental results did not show clear changes in the impedance signals. Therefore, in this study,
the effect of the temperature change range on the results was limited and can be ignored.

4. Results and Analysis

4.1. Temperature Measurement during the Freeze–Thaw Process

As shown in Figure 4, the temperature of the specimen was monitored by the thermocouple sensor
throughout the freezing–thawing process. The initial temperature of the soil specimen was about 20 ◦C
and the lowest measured value was around −20 ◦C. Soon after the test started, the temperature of the
soil specimen began to decline sharply. It was almost 120 min before the temperature dropped to 0 ◦C,
which was then followed by a freezing process for about 210 min. During this period, the temperature
remained nearly unchanged. The reason for this phenomenon is that phase transition occurs during
this period, in which the soil moisture gradually turns into ice. This would continuously extract heat,
keeping the soil temperature from decreasing. After that, the temperature continued to decrease until
it finally reached the pre-set temperature of −20 ◦C. The entire freezing process lasted about 600 min.
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During the thawing process, converse results were observed. In addition, a similar phenomenon of the
temperature remaining unchanged at temperatures around 0 ◦C was also observed, and the process
lasted approximately 180 min. During this period, the frozen soil gradually defrosted. Upon complete
thawing, the duration of the soil thawing process was almost the same as the freezing time. The entire
freeze–thaw test lasted about 1320 min.
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4.2. Impedance Variation during the Freeze–Thaw Process

The variation of impedance signatures measured by the PZT-based transducer at different
temperatures in the freezing process is shown in Figure 5. As can be seen from the figure, two
resonance frequency peaks (RFP) appear in the frequency range of 0–450 KHz. The first observed
resonance peak is located at about 175 kHz, and the second observed peak is located at around 375 kHz.
It was found that as the temperature decreased, the resonance peak value of the impedance signature
declined and the resonance frequency shifted to the right. The variation of the impedance signal with
the temperature during the thawing process is shown in Figure 6. It can be seen from the figure that
with increasing temperature, the magnitude of the resonance peak presented an upward trend and the
resonance frequency shifted to the left. These results demonstrate that the impedance signature is very
sensitive to changes in temperature. The trends of the resonance frequency peaks show a clear pattern
with variation of the temperature, which reflects that the shift of the resonance frequency peak can
serve as an indicator to monitor the soil freeze–thaw process. Therefore, the correlation between the
resonance peaks in the EMI spectra and the temperature was analyzed; this is described below.

The relationship between the resonant frequency and the temperature was obtained by comparing
the changes in the resonant frequency of the impedance signal of the PZT transducer, and the fitted
correlation curves between the two variables along with the corresponding values of R2 are exhibited
in Figure 7. It can be concluded that the resonant frequency shift has a negative correlation with the
variation of the temperature. Both the first and second observed resonant frequencies declined as the
temperature increased and went up as the temperature decreased. This is mainly attributed to the
changes in the soil properties induced by the soil freezing and thawing. Besides this, the temperature
itself also had some influence on the impedance signature captured by the piezoceramic-based sensor.
As shown in Figure 8, a relationship between the magnitude of the resonance frequency peak and the
temperature was also observed. It can be concluded that the magnitude of the resonance peak presents
a positive correlation with the temperature. The peak value increased as the temperature increased in
the thawing process and declined as the temperature dropped in the freezing process. The analysis
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above illustrates that the resonance peak shift is a very effective part of monitoring the soil freeze–thaw
process. Even the hysteresis between the freezing and thawing paths can be monitored.Sensors 2019, 19, x FOR PEER REVIEW 8 of 16 
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4.3. Active Sensing during the Freeze–Thaw Process

The time domain signal response of the PZT-based sensor during the soil freeze–thaw process is
reflected in Figure 9. Each curve represents a one-second period of the sweep sine wave signal at a
certain temperature. It can be seen from the figure that the amplitude of the signal presents an upward
trend with decreasing temperature in the freezing process. This is mainly due to the fact that the
stiffness of the soil specimen increased significantly as the soil began to harden in the freezing process,
which resulted in a reduction in the signal energy dissipation. It is noteworthy that there was no signal
at all before the temperature reached 0 ◦C and the soil began to freeze. These signals were exhibited
in form of white noise, as shown in Figure 9. During the thawing process, the reverse results were
observed, as shown in Figure 9b. The experiment results are in good agreement with those obtained
in the studies by Kong et al. (2014) and Wang et al (2015) [90–92]. Thus, based on the above analysis,
we can draw the conclusion that the active sensing signal is sensitive to the soil temperature change
during the freeze–thaw process.
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To fully explore the feasibility of the active sensing method to monitor the soil freeze–thaw
process, the wavelet packet-based energy index of the active sensing signal was calculated using
the wavelet packet analysis method. This can serve as a reliable approach to quantitatively evaluate
the soil freeze–thaw status. The relationship between the wavelet packet-based energy index and
the temperature is shown in Figure 10. As is shown, the calculated index went up sharply with an
increased growth rate during the freezing process. As the soil was at the unfrozen state, that is, the
temperature of the soil specimen was above 0 ◦C, the wavelet packet-based energy index was at a very
low value, being close to 0. However, as the temperature dropped to the minimum value of about
−20 ◦C, the index reached the highest value of more than 1500. During the defrosting process, the
calculated index experienced a declining trend with increasing temperature and the declining rate
gradually became lower and lower. This trend is quite similar to that of the resonance peak shift in
the EMI spectra, as shown in Figures 7 and 8, which validates that the EMI method is reliable for
monitoring the soil freeze–thaw process and that the resonance peak shift can be adopted as an index
to monitor the soil freeze–thaw process. Compared with the active sensing method, the EMI method
has more advantages. Only one transducer is needed in the EMI method, and the results are directly
reflected by the impedance analyzer without any complicated mathematical calculations. In addition,
many low-cost systems have been developed to apply this approach [95]. Thus, it is expected that we
will see more studies using the EMI method for monitoring the soil freeze–thaw process in related
engineering projects.
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5. Conclusions and Future Works

In this research, based on the electromechanical impedance (EMI) method and the active sensing
method, three PZT-based smart aggregates were used to monitor the soil freezing–thawing process.
In the EMI tests, it was noted that the impedance signal was very sensitive to the temperature
change in the soil freeze–thaw process. In the freezing process, the resonance peak of the impedance
signature shifted towards the right and in a downward direction. Meanwhile, in the thawing process,
the magnitude of the resonance peak gradually went up and the resonance frequency declined.
This illustrates that the resonance peak shift is can be effectively used to monitor the soil freeze–thaw
process. Moreover, through the active sensing method, the recorded stress wave signal was also found
to be sensitive to the temperature change. A significant increasing trend of the signal amplitude was
acquired due to the enhancement of the soil stiffness in the freezing process, and a converse trend was
observed in the thawing process. To conduct further research on the active sensing method used for
monitoring the soil freeze–thaw process, analysis of the wavelet packet-based energy index of the stress
wave signal was performed, and its correlation with the soil temperature was established by the wavelet
packet analysis. The results reveal that the wavelet packet-based energy index can act as a reliable
indicator to quantitatively estimate the soil freeze–thaw process. Thus, this experimental research
demonstrated that it is feasible to monitor the soil freezing–thawing status by using a PZT-based
electromechanical method. In future research on this topic, factors that may affect the experimental
results, such as the soil moisture, type, and repeated freezing–thawing cycles, will be investigated.
Moreover, in future works, some statistical metrics such as the root-mean-square deviation (RMSD),
the mean absolute percentage deviation (MAPD), and the cross-correlation coefficient (CC) will also be
employed as indicators for the quantitative evaluation of the changes in the impedance signals.
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