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Abstract: Latest advances of deep learning paradigm and 3D imaging systems have raised the
necessity for more complete datasets that allow exploitation of facial features such as pose, gender or
age. In our work, we propose a new facial dataset collected with an innovative RGB–D multi-camera
setup whose optimization is presented and validated. 3DWF includes 3D raw and registered data
collection for 92 persons from low-cost RGB–D sensing devices to commercial scanners with great
accuracy. 3DWF provides a complete dataset with relevant and accurate visual information for
different tasks related to facial properties such as face tracking or 3D face reconstruction by means of
annotated density normalized 2K clouds and RGB–D streams. In addition, we validate the reliability
of our proposal by an original data augmentation method from a massive set of face meshes for
facial landmark detection in 2D domain, and by head pose classification through common Machine
Learning techniques directed towards proving alignment of collected data.

Keywords: face landmark detection; 3D face modelling; head pose classification; 3D data collection;
deep learning

1. Introduction

Recent advances in computer vision and machine learning have directed the research community
towards building large collections of annotated data in order to increase the performance of different
application domains. In an analogous manner, 3D imaging has arrived by the introduction of low-cost
devices and the development of efficient 3D reconstruction algorithms. In this paper, we focus on
3D facial imaging. Facial attributes range from simple demographic information such as gender,
age, or ethnicity, to the physical characteristics of a face such as nose size, mouth shape, or eyebrow
thickness, and even to environmental aspects such as lighting conditions, facial expression, and image
quality [1].

The first attempt to collect facial data to study faces is through the introduction of Multi-PIE
database [2], where the facial appearances vary significantly by a number of factors such as identity,
illumination, pose, and expression. They built a setup with 13 cameras located at head height and
spaced over 15 intervals. Multi-PIE database contains 337 subjects, imaged under 15 view points and
19 illumination conditions. This work is the starting point of the benchmark 300-W [3] that establishes
the main metrics and standards to normalize the evaluation of the different methods for facial landmark
analysis. One of the standards established by 300-W is the annotation of facial landmarks.

Sensors 2019, 19, 1103; doi:10.3390/s19051103 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/5/1103?type=check_update&version=1
http://dx.doi.org/10.3390/s19051103
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 1103 2 of 21

More recently, 2D traditional approaches for facial analysis have been using low-cost depth
sensing devices by providing 3D modelling data sources. An important topic today is 3D face
modeling employing RGB–D sensing devices. Traditional works mostly focus on providing accurate
3D face models. Recently, it was demonstrated that laser scan quality face models can be reconstructed
from RGB–D sequences [4,5].

Head pose estimation is another important but challenging task for face analysis. Head pose
provides important meta-information about communicative gestures, salient regions in a scene based
on focus of attention, and can be used in surveillance environments to perform behaviour analysis [6,7].

It is known that deep learning methods are data hungry. Hence, there exists a data-demanding
problem of deep networks, and tedious data annotation procedures related. This data problem can be
solved by generating synthetic data [8,9]. In this paper, we have employed 3D meshes of 300 faces
of subjects from 3DU dataset that allows for a proper augmentation method whose parameters are
Euler angles [10] (pitch, yaw and roll). With this method, we only need to annotate every model once,
but then we can generate thousands of augmented images for the different head poses.

The contributions of this work are:

1. 3DWF We propose a multi-camera dataset containing visual facial features. We include
streams from 600 to 1200 frames of RGB–D data from three cameras for 92 subjects and clouds
normalized to 2 K points for ten poses proposed and their corresponding 3D landmarks projected.
Demographic data such as age or gender is provided for every subject as well. Such a complete
dataset in terms of the number of subjects and different imaging conditions is unique and the
first of its kind.

2. An innovative data augmentation method for facial landmark detection. This method is based
on a 3D(mesh)-2D projection implemented by raycasting [11].

3. 3D reconstruction workflow adapted to facial properties and their normalization to provide
meaningful features for cloud formats.

The paper is organized as follows:

1. Section 2 outlines the techniques related to the work presented here.
2. Section 3 presents the set-up for the acquisition of the proposed dataset.
3. Section 4 introduces an innovative data augmentation for facial landmark detection.
4. Section 5 describes a complete pipeline for 3D face modeling with a multi-camera RGB–D setup.
5. Section 6 presents a validation method for the classification of the markers.
6. Section 7 validates the captured data and evaluates the proposed methods for facial landmark

detection.
7. The main contributions are discussed in Section 8.

2. Related Work

This section describes the current algorithms related to facial analysis that make use of computer
vision techniques. We focus on the following facial analysis applications: 3D facial acquisition,
facial landmarks detection, and head pose estimation.

2.1. 3D Facial Acquisition

Recently, different approaches have been published to optimize acquisition systems to accurately
represent 3D facial attributes. Ref. [12] collected 2000 2D facial images of 135 subjects as well as their
3D ground truth face scans. The authors proposed a dense face reconstruction method based on dense
correspondence from every 2D image gathered to a collected neutral high resolution scan. Another
hybrid solution (Florence Dataset) for reconstruction is presented in [13], where a complex capturing
system (3dMD [14]) is used. The number of subjects (53) is also smaller than the one proposed here.
UHDB31 [15] presented a follow-up of this work by increasing the number of poses and the number of
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subjects resulting in a more complete dataset, but still costs of the set up are quite high and the number
of subjects are still under the ones captured in this work.

In our case, we provide neutral high resolution scans as well, but we believe that the impressive
results of recent works published, implementing deep learning for classification and segmentation
with normalized input clouds [16,17] motivate a new research line. Therefore, we postulate a new
challenge, and propose an initial reconstructed and normalized set to adopt this line for facial analysis.

The Pandora dataset, focusing on shoulder and head pose estimation, is introduced in [18] for
driving environments. However, the dataset only contains images from 20 subjects and they only have
one camera, and therefore it does not allow proper 3D reconstruction for extreme poses. Ref. [19]
proposes a 3D reference-free face modeling tested on a set of predefined poses. The authors perform
an initial data filtering process, and employ the face-pose to adapt the reconstruction. In our case,
we use 2D face detection projection, and afterward implement the proper 3D filtering techniques,
exploiting information from 2D facial landmark detection in order to perform a more reliable 3D
face reconstruction. Other techniques are proposed by simply using a single RGB sensor, but in this
case they require either a 3D Morphable Model (3DMM) initially proposed by Blanz and Vetter [20],
this kind of method can be trapped in a local minimum and can not generate very accurate 3D geometry,
or a 2D reference frame and displacement measurement, as in [21].

2.2. Facial Landmark Detection

Research in this field is very proficient. Therefore, we concentrate on the three groups most
relevant to our work:

1. Regression-Based Methods. These methods directly learn a regression function from image
appearance (feature) to the target output (shape):

M : F(I)→ x ∈ R2N (1)

where M denotes the mapping from an image appearance feature (F(I)) to the shape x, and F is
the feature extractor.
Ref. [22] proposed a two-level cascaded learning framework based on boosted regression.
This method directly learns a vectorial output for all landmarks. Shape-indexed features are
extracted from the whole image and fed into the regressor.

2. Graphical Model-based Methods. Graphical model-based methods mainly refer to
tree-structure-based methods and Markov Random Field (MRF) based methods.
Tree-structure-based methods take each facial feature point as a node and all points as a
tree. The locations of facial feature points can be optimally solved by dynamic programming.
Unlike the tree-structure that has no loops, MRF-based methods model the location of all points
by loops.

Zhu and Ramanan [23] proposed a unified model for face detection, head pose estimation and
landmark estimation. Their method is based on a mixture of trees, each of them corresponds
to one head pose view. These different trees share a pool of parts. Since tree-structure-based
methods only consider the local neighboring relation and neglect the global shape configuration,
they may easily lead to unreasonable facial shapes.

3. Deep Learning-Based Methods. Luo et al. [24] proposed a hierarchical face parsing method
based on deep learning. They recast the facial feature point localization problem as the process
of finding label maps. The proposed hierarchical framework consists of four layers performing
respectively the following tasks: face detector, facial parts detectors, facial component detectors
and facial component segmentation.

Sun et al. [25] proposed a three-level cascaded deep convolutional network framework for point
detection in a coarse-to-fine manner. It can achieve great accuracy, but this method needs to
model each point by a convolutional network that increases the complexity of the whole model.
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Ref. [26] enhanced the detection by following a coarse-to-fine manner where coarse features
inform finer features early in their formation, in such a way that finer features can make use of
several layers of computation in deciding how to use coarse features. We selected this method to
test the data augmentation method presented in Section 4.1 because of the novelty and efficiency
of a deep net that combines convolution and max-pool layers to train faster than the summation
baseline and yields more precise localization predictions.

Finally, the other selected solution to test the performance of the proposed augmentation method
(Section 4.1) is [27] as they imply an evolution from previous models. As the proposed Tweaked
Neural Network does not involve multiple part models, it is naturally hierarchical and requires
no auxiliary labels beyond landmarks. They provide an analysis of representations produced
at intermediate layers of a deep CNN trained for landmark detection, yielding good results at
representing different head poses and (some) facial attributes. They inferred from previous
analysis that the first fully connected layer already estimates rough head pose. With this
information they can train pose specific landmark regressors.

2.3. Head Pose Estimation

Head pose estimation is a topic widely explored with applications such as autonomous driving,
focus of attention modeling or emotion analysis. Fanelli et al. [28] introduced the first relevant method
to solve this problem relying on depth sensing devices. Their proposal is based on random regression
forests by formulating pose estimation as a regression problem. They synthesize a great amount of
annotated training data using a statistical model of the human face. In an analogous way, Liu et al. [8]
also propose a training method based on synthetic generated data. They use a Convolution Neural
Network (CNN) to learn the most relevant features. To provide annotated head poses in the training
process, they generate a realistic head pose dataset through rendering techniques. They fuse data from
37 subjects with differences in gender, age, race and expression. Some other lines of research, such as
the one followed by [29], pose the problem as the classification of human gazing direction. We follow
this approach in our work. It proposes as well deep learning techniques to fuse different low resolution
sources of visual information that can be obtained from RGB–D devices. The authors encode depth
information by adding two extra channels: surface normal azimuthal and surface normal elevation
angle. Their learning stage is divided into two CNNs (RGB and depth inputs). The information
learned by deep learning is employed to further fine-tune a regressor.

Analyzing all literature related to our work, we can conclude that our multi-camera RGB–D
setup provides an affordable capturing system, able to perform 3D face reconstruction at extreme
poses with a reasonable cost and deployment. In addition, facial landmark detection is already been
explored extensively. Therefore, it is more suitable to provide a refinement of the 3D techniques being
presented here. Head pose estimation is highly correlated with facial landmark detection (especially in
3D domain) and we believe with a good performance in facial landmarks head pose could easily be
approached.

3. 3DWF Dataset

This dataset is captured by a system composed of 3 Asus Xtion depth cameras [30] in order to
acquire multi-camera RGB–D information from 92 subjects by modifying their head poses steered
by a sequence of markers. The subjects were asked to move their head continuously in a natural
manner. To achieve a synchronous acquisition with three simultaneous devices, three independent
USB buses are required, and synchronization among them has been implemented to provide a uniform
acquisition. Synchronization among the devices is very critical since subjects are moving their head,
and reducing delay between the cameras allows registration of the point clouds acquired. For that aim
OpenNI 2 library [31] has been adopted by following the following procedure:

1. List of connected devices is gathered.
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2. Every sensor is activated.
3. Data structures required to perform data flow are created.

First generation of RGB–D sensors are deployed due to their higher accuracy to perform 3D
reconstruction of one category of objects proved in [32], and their feasibility to connect more than
one device to the same computer. Between 600–1200 frames are recorded by each device for every
subject. The proposed setup is displayed in Figure 1. Three RGB–D cameras can be observed in the
Figure 1, the one in the middle will be named as frontal camera, and the other ones as side cameras.
The number in the box represents the sequence of markers that the subjects were asked to follow
(starting in box 1 and ending in box 10). Where W stands for width, H for height and D for depth,
and origin is located at the frontal camera for W and D, and the floor for H. The proposed dataset
contains the following sources:

1. Visual data

(a) RGB and Depth data. This data has been continuously captured and is relevant for topics
such as facial tracking or 3D face reconstruction.

(b) RGB point clouds for ten markers. This data has been statically reconstructed with a target
resolution of 2K, and it is very suitable for machine learning methods related to the tasks
such as head pose or gaze estimation.

(c) HD initial cloud. This data can be useful as reference cloud and has been captured with
Faro Freestyle 3D Laser Scanner [33] whose 3D point accuracy is 0.5 mm and reconstructed
by FARO Scene [34] .

2. Subject data

(a) Age
(b) Gender

Figure 1. Graphical description of the proposed scenario to capture the 3DWF dataset. Coordinates of
the markers are expressed in meters

3.1. Set-Up Optimization

Optimization tests are mainly based on three parameters:
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1. Distance from the model to the frontal camera. The manufacturer of the device recommends a
distance in the range of 80–150 cm. Therefore, the tests are performed in this range. From Table A2,
it can be derived that the highest number of points in the point cloud are obtained with distances
of 80 cm. Analogously, the best visual appearance is gathered with that value.

2. Light source. Once the optimum distance from the model to the camera is calculated, the next
step is to determine the parameters related to the LED light source employed whose main features
are expressed in Table A1. Different tests are performed based on three parameters:

(a) Distance.The tests performed for the distance were mainly based on visual appearance in
the cloud obtained. For distances smaller than 200 cm appearance was too bright. We found
that optimum distance should be set to 250 cm.

(b) Luminous flux. We base our evaluation on the resolution of the pointcloud obtained for
each camera. Results obtained can be noted in Table A3. It can be derived that as long
as the luminous flux increases, the resolution of the point cloud decreases. Therefore,
250 Lumens (lm) (minimum provided by the manufacturer) is chosen.

(c) Orientation. To optimize orientation of the light source at the proposed scenario, grayscale
mean ( Î) and Standard deviation (σI) values are evaluated. To this end, different angles
between the light sources are explored with a luminous flux of 250 lm, but in this case,
we also should consider the visual appearance. For that purpose, we have tested light
sources pointing to three targets:

i. Models
ii. Frontal cameras

iii. Side cameras

Tests performed pointing to the models presented the worst visual results, even though
different diffusion filters have been tested on the light source. Other values are shown
in Table A4. The best visual results were obtained when light sources were pointing to
the opposite side cameras. In this case, the mean and STD are replaced by the median ( Ĩ)
and Median Absolute Deviation (MAD), since the median and the mean own a notable
difference. Also angles of the cameras are included in the table since they have a large
influence on the results. Further, this parameter will be analyzed (separately) below.

3. Camera orientation. To test the best orientation of the cameras, different angles are used.
All optimum parameters exposed previously are deployed in the scenario to test this parameter.
The RGB–D devices chosen capture the scene affected by all parameters previously exposed,
and therefore we believe it might be last parameter to be tested, and most critical since it
determines the field of view. First tests are carried to determine the region of interest to be covered
for the subjects involved in the experiment. The minimum angle required to completely cover
the face of the subjects is 30◦ and as long as the angles among the cameras are increased, surface
covered increases as well. Finally, grayscale values obtained by the RGB sensor are evaluated to
capture a similar range of color intensities for the faces. Results are shown in Table A5. It can be
derived that as long as the angle among the cameras is increased, the difference between mean
and the STD is also increased. Therefore, we can conclude that the optimum angle between the
cameras is 30◦.

3.2. Subjects Description

For this dataset, age and gender are also registered for all the subjects. Statistics of those features
are shown in Figure 2.

We can observe that most of the population is located between 20 and 40 years old due to the fact
that the dataset has been recorded in a university, but the dataset covers a wide range of ages. It is also
noticeable that gender is a little unbalanced, however, looking to the specific graphs of age ranges for
every gender it can be observed that age of females is more balanced than the age of males.
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Figure 2. Graphics showing the most important features of the subjects included in 3DWF dataset:
age and gender.

4. Facial Landmark Detection

This section proposes a new data augmentation method from 3D meshes to 2D images and
analyzes its influence on two state of the art deep learning facial landmark detection methods.

4.1. Data Augmentation

With the data augmentation method proposed for face landmark detection we wanted to prove
a possible application for the dataset proposed (3DWF). The dataset provided by 3DUniversum is
captured by a rotating structured sensor device in order to reconstruct 3D models of 300 subjects.
Rotation is performed by an analogous device to the one presented in [35], however, in this case
projector is not required, and structured light sensor is combined with common RGB sensor to perform
the capture. This dataset was gathered by performing a massive data collection which allowed to
collect a larger number of subjects, in spite of collecting less facial attributes such as pose, gender of
age from every one of them, 3D reconstruction of gathered data is outside of the scope of this work.
In our case, we are directed towards a deep learning method to extract valuable features from meshes
already processed. To this end, we used raycasting [11] to perform the projection of the 3D mesh to a
2D image. By implementing this technique, we moved the viewing plane in front of the pinhole to
remove the inversion. A graphical explanation is shown in Figure 3. If an object point is at distance z0

from the viewpoint, and has y coordinate y0, then its projection yp onto the viewplane is determined
by the ratios of sides of similar triangles: (0, 0), (0, zp), (yp, zp), and (0, 0), (0, z0), (y0, z0). So we have:

yp

zp
=

y0

z0
(2)

The values of the viewpoint are based on the following parameters and values:

1. Pitch. [−30◦, 30◦] Interval: 5◦

2. Yaw. [−30◦, 30◦] Interval: 5◦

3. Roll. [−30◦, 30◦] Interval: 5◦

4. Distance. [110 cm,160 cm] Interval: 10cm

Subjects are split in three datasets following the deep learning paradigm.

1. Training set: 245 subjects (81.67%).
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2. Validation set: 40 subjects (13.34%).
3. Testing set: 15 subjects (5%).

Figure 3. Raycasting geometry model with a plane and a pinhole. Extracted from [11] and reproduced
with permission from Prof. House.

4.2. Deep Learning Architectures

4.2.1. VanillaCNN

The solution shown in [27] is selected as one suitable architecture to increase the performance
of facial landmark detection for Annotated Facial Landmarks in the Wild Dataset (AFLW [36]) based
on data augmentation method previously discussed. The architecture of this network includes
mid-network features and implies a hierarchical learning. The main peculiarity of this network
is the tweaking model oriented to two main processes:

1. It performs a specific clustering in the intermediate layers by a representation that
discriminates between differently aligned faces. With that information, it trains pose specific
landmark regressors.

2. The remaining weights from the first dense layer output are fine-tuned by selecting only the
group of images classified in the same cluster with the features from the intermediate layers.

An absolute hyperbolic tangent is used as an activation function and Adam is used for training
optimization [37]. L2 normalized by the inter-ocular distance is implemented as the network loss:

ϕ(Pi, P̂i) =
‖Pi − P̂i‖2

2
‖ p̂i,1 − p̂i,2‖2

2
(3)

where Pi is the 2xk vector of predicted coordinates for a training image, P̂i their ground truth locations,
and p̂i,1, p̂i,2 is the reference eye position.

4.2.2. Recombinator Networks (RCN)

Ref. [26] performs learning through using landmark independent feature maps. In this case,
instead of performing specific learning, a more purely statistical approach is performed. The output
of each branch is upsampled, then concatenated with the next level branch with one degree of finer
resolution. Therefore, the main novelty is that branches pass more information to each other during
training letting the network learn how to combine them non-linearly to maximize the log likelihood
of the landmarks. It is only at the end of the Rth branch that feature maps are converted into a
per-landmarks scoring representation by implementing a softmax.

All convolutional layers are followed by ReLU non-linearity except for the one right before the
softmax. This architecture is trained globally using gradient backpropagation with an additional
regularization term for the weights calculated through the next equation:

L(W) =
1
N

N

∑
n=1

K

∑
k=1
−logP(Yk = y(n)k |X = x(n)) + λ||W||2, (4)
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where n is the number of samples, k is the number of landmarks, W represents the network parameters
to minimize within regularization term to minimize and λ their weight.

In summary, we selected two architectures that alternate convolution and max-pooling layers,
but whose nature is completely different. VanillaCNN presents four convolution layers and two
dense layers. Dense layers are interlaid by a discrimination among the clusters previously learned
from midnetwork features in a specific pose manner. RCN presents a bidirectional architecture with
different branches including 3–4 convolution layers whose results are concatenated in the end of each
branch to the inputs of the following one. VanillaCNN presents a descending size of filtering sizes
along the network and RCN keeps it fixed.

5. 3D Reconstruction

This section validates the algorithm developed to present one point cloud for every subject for
the markers located in the scenario that are graphically shown in Figure 1 in 3DWF Dataset. The steps
performed are summarized in Figure 4.

Figure 4. Block diagram of the different steps involved in 3D reconstruction of faces.

5.1. Registration

Clouds obtained from RGB–D devices are registered by using a rigid body transformation [38].
We use an affine transformation [39]. Ten points are selected from every cloud (two by two matching).
To obtain the transformation matrix, we built an homogeneous transformation, using the frontal point
cloud as reference (ClFrontal):

f (qi) = Rpi + t (5)

where R is the rotation matrix R and ti∀i,∈ {1, ..., 3} t is the translation vector. Obtaining an origin
matrix with a point in every row pi = (xi, yi, zi, 1) where i,∈ {1, ..., 10} from ClRight and ClLe f t and a
target matrix with a point in every row qi = (xi, yi, zi, 1) where i,∈ {1, ..., 10} from ClFrontal .

And to overcome accuracy errors in manual annotation and obtain optimum values for Rle f t,right
and Tle f t,right we employed Random Sample Consensus (RANSAC) [40]. Then initial clouds (ClLe f t,
ClRight) are transformed towards the reference frontal cloud (ClLe f t′ , ClRight′ ) and the resulting clouds
are added two by two to obtain the complete cloud ClTotal . This summation task is shown in Figure 5.
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Figure 5. Graphical detailing of the procedure followed to reconstruct the 3D models upon the depth
and RGB information captured by the three RGB–D devices.

5.2. Refinement

The second step for reconstruction is based on Iterative Closest Point (ICP) [41] algorithm. ICP
is used to minimize difference between sets of geometrical points such as segments, triangles or
parametric curves. In our work, we use the point-to-point approach. Metric distance between the
origin cloud (ClLe f t and ClRight) and target cloud (ClFrontal) is minimized by the following equation:

i = arg min
i
‖pi − qi‖2, (6)

where pi is the point belonging to the origin cloud (ClLe f t and ClRight) and qi is a point belonging to
the target cloud (ClFrontal). Regarding rotation and translation matrix, the algorithm iterates over the
minimum square distances by:

R, t =
N

∑
i=1

arg min
R,T

‖(Rpi + t)− qi‖2, (7)

where N is the number of iterations fixed to 30 for our solution and we have also fixed the percentage
of worst candidate removal to 90%. With this refinement ClTotal′ is obtained.

5.3. ROI

Once the whole cloud is built and refined, we use the Dlib face detector [42] on the RGB image
from the frontal camera in order to determine the region of interest (ROI). In a similar way, we apply
the face landmark detection based on VanillaCNN exposed in Section 4 obtaining the locations of facial
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landmarks. To project the keypoints obtained from the neural network, we use Perspective Projection
Model [43]. By applying the following equations:

Xk = −
Zk
f
(xk − xc + δx), Yk = −

Zk
f
(yk − yc + δy), (8)

where Xk, Yk and Zk are the projected coordinates in the cloud, xc and yc are the coordinates of the
center of the 2D image, xk and yk are the input coordinates from the 2D image and δx and δy are the
parameters to correct the distortion of the lens provided by the manufacturer. Obtaining 3D projection
for the bounding box delimiters to project the cropped cloud obtained after refinement ClTotal′ into a
cloud with mostly facial properties ClF0 .

In order to test the accuracy of ClF0 we have considered the clouds gathered with Faro Freestyle
3D Laser Scanner (ClHD) as ground truth, and we have measured the average minimum distance from
∀pti ∈ ClF0 ∈ Marker1 to ∀pt′i ∈ ClHD for every subject, obtaining as result distances in the range
[16− 23] mm. In addition, we should consider:

1. Since the distance from the subject to the camera is below 1 m, the error of the depth sensor
should be in the range [5− 15] mm according to the results exposed in [44].

2. The faces of the subjects are not rigid (although both captures have been performed on a
neutral pose).

Therefore, the range measured as distance from ClF0 to ClHD proves the accuracy of the 3D
reconstruction performed.

5.4. Noise Filtering

In this section, an algorithm to filter ClF0 is proposed to obtain reliable face clouds. The following
features are proposed:

1. Color. Initially we need to delimit two areas:

(a) 2D ROI’ to extract. We have employed facial landmarks detected by VanillaCNN through
data augmentation procedure presented in Sections 4.2 and 4.1 respectively. In our setup
we have detected five points: left eye (le), right eye (re), nose (n), left mouth (lm) and right
mouth (rm). A new ROI (ROI′) is defined based on a bounding box with these detections:

{(xle, yle), (xre, yre), (xlm, ylm), (xrm, yrm)}

ROI′RGB intensities are transformed to a more uniform color space: CIELAB [45].
Components values of the two intensities samples used for thresholding are calculated in
the following manner following a normal distribution:

thiLab = (L̂ROI′ ± wσLROI′
, âROI′ ± wσaROI′ ,

b̂ROI′ ± wσbROI′
) (9)

where L̂ROI′ and σLROI′
are the mean and standard deviation of L component from CIELAB

color space for the new ROI defined. Analogously for âROI′ , σaROI′ , b̂ROI′ and σbROI′
. And w

is fixed to 0.75 in our implementation.
(b) 3D Contour CtF0 . In this case we have defined two margins for width and height from ClF0

to filter farther points to the cloud centroid by applying CIEDE2000 ∀pti ∈ CtF0 :

i f ∆E∗00{(L̂ROI′ , âROI′ , b̂ROI′), (Lpti , apti , bpti )} <
∆E∗00(th1Lab , th2Lab) => pti ∈ ClFFC (10)
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where ∆E∗00 is the metric used in CIEDE2000 and ClFFC is the point cloud obtained after
color filtering.

2. Depth. Mainly focused on noise introduced by depth sensors and outliers from color filtering.
For that aim we have built a confidence interval based on normal distribution of ClFFC [ẐClFFC

−
wZ, ẐClFFC

+ wZσZClFFC
]. Where wZ is fixed to 2.25 in our implementation.

5.5. Uniform Distribution

To provide a reliable point cloud dataset, it is important that clouds have similar resolutions
and that every part of the cloud is constant regarding point-space density. For that reason, ClFF is
divided into four parts based on its width and height. A resolution of 2K points is proposed as target
resolution. Therefore, every cloud part should have 2K/4 points. An implementation of voxel grid
downsampling [46] based on a dynamic radius search is used. The voxel grid filter down-samples
the data by taking a spatial average of the points in the cloud through employing rectangular areas
that are known as voxels. The set of points that lie within the bounds of a voxel are assigned to that
voxel and will be combined into one output point. With this final step ClF is composed, and sample
values for one subject are displayed in Figure 6. In an analogous way one sample for Marker 1 without
texture mapping is shown in Figure 7.

Figure 6. 2D images extracted from the final face clouds proposed by this work.

Figure 7. 2D images extracted from the final face clouds for Marker 1 without texture mapping
proposed by this work.

6. Head Pose Classifcation

This section describes the methods implemented to validate the alignment of head pose values
of the data gathered in 3DWF dataset with markers located in the scene. We used visual information
of subjects when they look at marker 1 (relaxed pose looking to the front) as reference for the other
markers. Initial steps are analogous to the ones proposed in Section 5.3. In this case, we reversely used
projection equations shown in (8) together with 2D Euclidean distance to gather the closest points
included in ClTotal′ to 2D facial landmarks detected by Vanilla CNN. In this way, a new set composed
by 3D facial landmarks is obtained:
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{(Xle, Yle, Zle), (Xre, Yre, Zre), (Xn, Yn, Zn),

(Xlm, Ylm, Zlm), (Xrm, Yrm, Zrm)}

Rigid Motion

Initial transformations are performed by using the Least-Squares Rigid Motion by means of
SVD [47] from the set of 3D facial landmarks to obtain the corresponding rotation matrix. Let P =

p1, p2, ..., pn where pi are 3D coordinates of facial landmarks for marker 1 ∈ R3 and Q = q1, q2, ..., qn

where qi are 3D coordinates of facial landmarks for markers 2–10 ∈ R3 be our reference and target
sets of data respectively. We are able to find a rigid transformation that optimally aligns the two sets
in the least squares sense, i.e., assuming unity vector for translation matrix (subjects are static in the
experiment proposed):

R = argmin
R∈SO(3)

n

∑
i=1

wi||Rpi − qi||2 (11)

By Restating the problem so that the translation would be zero, and simplifying the expression
we cand reformulate the problem:

||Rpi − qi||2 == tr(WYT RX) (12)

where W = diag(w1, ..., wn) is an nxn diagonal matrix with the weight wi on diagonal entry i, Y is the
dxn matrix with yi as its columns and X is the dxn matrix with xi as its columns. tr is the trace of a
square matrix (sum of the elements on the diagonal) and owes commutative property with respect
to product . Therefore we are looking for a rotation R that maximizes tr(RXWYT). Now we have
denoted dxd covariance matrix S = XWYT . If we take Single Value Decomposition (SVD) of S such
that S = U ∑ VT relying on the fact that that V , R and U are all orthogonal matrices, so VT RU is also
an orthogonal matrix and we can assume identity. Therefore we can calculate corresponding rotation
matrix in the following way:

R = VUT (13)

Given a rotation matrix R, we can compute the Euler angles, φ, θ, ψ by equating each element
in R with the corresponding element in the matrix product RZ(φ)RY(θ)RX(ψ). This results in nine
equations that have been used to find the Euler angles.

7. Results

In this subsection, metrics used for evaluation and results obtained by them for the proposed
architectures and datasets are presented.

7.1. Facial Landmark Detection

7.1.1. Training Details

Initially, we have defined training details for every dataset:

1. 3DU Dataset. Number of viewpoints augmented to split dataset, number of subjects included
per view and learning rate base for 3DU Dataset are expressed in Table 1.

Subjects are randomized for every viewpoint based on splits presented in Section 4.1.
2. AFLW. Number of images to split dataset and learning rate base for AFLW Dataset are shown

in Table 2.
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Table 1. Parameters for training 3DU dataset.

Dataset
Subjects Learning Rate

Train. Val. RCN Vanilla

3DU 35 12 10−4 10−4

Table 2. Parameters for training AFLW dataset.

Dataset
Images Learning Rate

Train Val. Test RCN Vanilla

AFLW 9000 3000 1000 10−4 10−4

7.1.2. Error Metric

The euclidean distance between the true and estimated landmark positions normalized by the
distance between the eyes (interocular distance) is used:

ε =
1

KN

N

∑
n=1

K

∑
k=1

√√√√ (wn
k − ŵ(n))2 + (h(n)k )− (ĥ(n)k )

D(n)
(14)

where K is the number of landmarks (5 in our work), N is the total number of images, D(n) is the
interocular distance in image (n). (wn

k , h(n)k ) represent the true and (ŵn
k , ĥ(n)k ) estimated coordinates for

landmark k in image n, respectively. Localization error is measured as a fraction of the inter-ocular
distance, a measure invariant to the actual size of the images. We declare a point correctly detected if
the pixel error is below 0.1 interocular distance.

7.1.3. Accuracy

The histogram in Figure 8 show that the error for the different combinations of networks,
explained in Section 4.2 and datasets. It can be derived that the lowest error rate is by training
RCN with the 3DU dataset.

Massive normalized 2D projections of this dataset learned in a bidirectional approach reduces the
error. In addition, we mention that the network layers based on midnetwork features proposed by
VanillaCNN achieve the worst results with the same training and testing data since this is an specific
solution for another nature of data, but weights and bias pre-learned from 3DU dataset increases the
performance of the algorithm, and helps to achieve the best results for AFLW after finetuning. In this
case, massive data initialize properly midnetwork features so that the network can go beyond in global
minimum target for common datasets of landmark detection such as AFLW. This procedure is shown,
using the visualization of filters, in Tables 3 and 4 for last convolution and max-pooling layers, where
brighter color intensities represent stronger activations. It can be derived that the initial training of
3DU provides blunter features at this stage of the learning due to triangulation procedure to gather
mesh input data. It can be inferred as well that the fine-tuning process provides sharper features that
increase the performance of the network.
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Figure 8. Results obtained for both pipelines of face landmark detection with different combinations of
datasets.

Table 3. Representation of the last layer of convolution from VainillaCNN.

Conv 3DU Conv 3DU + AFLW

Table 4. Representation of the last layer of max-pooling from VainillaCNN.

Pool 3DU Pool 3DU + AFLW

7.2. Head Pose Classification

To validate the proposed dataset, we assumed Euler angles calculated previously as head pose
angles (pitch (φ), yaw (ψ) and roll (θ)). Three 2D projections of this data can we noted on Figure 9.
It can be inferred that the distribution of the data is quite uniform.

Figure 9. Graphical plots of Euler Angles obtained for the different markers of 3DWF.
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Accuracy

Two validation methods have been tested in order to classify the Euler angles calculated for
the projection of the facial andmarks obtained by fine tuning the initial training of VanillaCNN with
the data augmentation procedure exposed in Section 4.1 with the training of AFLW. The methods
selected are Linear Discriminant Analysis (LDA [48]) and Gaussian Naive Bayes (GNB [49]). The aim
of those classification methods is to validate the data capture, and the projection of the facial landmarks
estimated to the point clouds gathered. The results and the main features of the proposed methods can
be noticed on Table 5.

Table 5. Results for head pose classification.

Method Training Samples Testing Samples Training Accuracy Testing Accuracy

LDA 80% 20% 82% 83%
GNB 80% 20% 84% 84%

Confusion matrix for GNB classification, where rows correspond to ground truth markers (2–10)
and columns to predicted markers in the same range, is shown in Figure 10. Results show promising
values for a simple classification technique such as GNB. It can be noticed that those markers where the
subjects are looking to one side of the scene (such as 2 or 5) are the most complex to predict, and those
markers where the subjects are looking straight and modifying their pitch (such as 10) the simplest.

Figure 10. Confusion Matrix calculated for Head Pose validation method.

8. Conclusions

In this paper, we have presented an optimized multi-camera RGB–D system for facial properties
to capture accurate and reliable data. In this scope we have performed a data collection including
92 people fulfilling the need of a 3D facial dataset able to exploit capabilities of deep learning paradigm
in 3D scope. In addition, we provide a complete pipeline to process data collected and pose a challenge
for Computer Vision and Machine Learning research community by annotating human characteristics
such as age or gender. The collected RGB–D streams allow other related tasks such as face tracking or
3D reconstruction with a wide source of visual information that increase the performance of common
acquisition systems for extreme head poses.

In this scope, we found facial landmark detection one of the main tasks where our work should
contribute to research lines that project 3D information into a more feasible and less costly domain
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such as 2D. For that reason, we have proposed an innovative data augmentation method, tested and
discussed its accuracy on two state-of-the-art deep learning solutions. We have trained and evaluated
synthetic and visual imaging data on two complementary architectures, finding a combined solution
that enhances results for a very common deep net architecture like Vanilla CNN.

Finally, the alignment of the path proposed to the subjects by ten markers is validated
by implementing a geometric approach for head-pose through previously estimated features.
The refinement of the learning techniques implemented for this task is one of the lines of research
proposed for future work.
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Abbreviations

The following abbreviations are used in this manuscript:
MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym
LD linear dichroism
RGB-D Red Green Blue - Depth
3DWF 3D Wide Faces
Multi-PIE Multi Pose Illumination Expression
3DU 3DUniversum
3DMM 3D Morphable Model
MRF Markov Random Field
CNN Convolutional Neural Network
USB Universal Serial Bus
LED Light-Emitting Diode
STD Standard Deviation
MAD Median Absolute Deviation
AFLW Annotated Facial Landmarks in theWild Dataset
RCN Recombinator Networks
ReLU Rectifier Linear Unit
RANSAC Random Sample Consensus
ICP Iterative Closest Point
ROI Region Of Interest
CIELAB color space defined by the International Commission on Illumination (CIE)
CIEDE2000 color difference defined by the International Commission on Illumination (CIE)
SVD Single Value Decomposition
LDA Linear Discriminant Analysis
GNB Gaussian Naive Bayes



Sensors 2019, 19, 1103 18 of 21

Appendix A. Light Source

Table A1. Main features of the light source employed in 3DWF setup.

Feature Value

Power 36 W
Color temperature 5800 K ± 300 K

Luminous flux 4200 lm

Appendix B. Quantitative Evaluation of 3DWF Set-Up

Appendix B.1. 3DWF Distance from Model to the Frontal Camera

Table A2. Evaluation of the distance from the model to the frontal camera.

Distance (cm) Cloud Points

80 7754
100 5871
120 4342

Appendix B.2. 3DWF Light Source Luminous Flux

Table A3. Evaluation of the influence of the light source luminous flux.

Lm
Points of the Cloud

Cloud Cam. 1 Cloud Cam. 2 Cloud Cam. 3

5000 5859 7693 7460
2625 6029 7896 7986
1435 6084 8221 7562
250 6621 8841 8935

Appendix B.3. 3DWF Light Source Orientation

Table A4. Evaluation of the orientation of the light sources.

Focus
Angles Cam 1 Cam 2 Cam 3

Light Cams Ĩ MAD Ĩ MAD Ĩ MAD

Front 30◦ 40◦ 189 56 87 58 124 73
Side 40◦ 30◦ 138 51 89 51 128 62
Front 30◦ 60◦ 164 50 100 68 122 81

Appendix B.4. 3DWF Cameras Orientation

Table A5. Evaluation of the orientation of the cameras.

Angle
Cam 1 Cam 2 Cam 3

Ī σI Ī σI Ī σI

30◦ 129.35 62.69 94.22 66.38 118.35 72.43
40◦ 172.00 71.09 98.29 71.37 122.51 75.80
60◦ 171.50 71.90 108.674 79.94 124.57 85.75
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