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Abstract: Visible light positioning (VLP) is a promising technology for indoor navigation. However,
most studies of VLP systems nowadays only focus on positioning accuracy, whereas robustness
and real-time ability are often overlooked, which are all indispensable in actual VLP situations.
Thus, we propose a novel VLP method based on mean shift (MS) algorithm and unscented Kalman
filter (UKF) using image sensors as the positioning terminal and a Light Emitting Diode (LED) as
the transmitting terminal. The main part of our VLP method is the MS algorithm, realizing high
positioning accuracy with good robustness. Besides, UKF equips the mean shift algorithm with
the capacity to track high-speed targets and improves the positioning accuracy when the LED is
shielded. Moreover, a LED-ID (the identification of the LED) recognition algorithm proposed in
our previous work was utilized to locate the LED in the initial frame, which also initialized MS and
UKF. Furthermore, experiments showed that the positioning accuracy of our VLP algorithm was
0.42 cm, and the average processing time per frame was 24.93 ms. Also, even when half of the LED
was shielded, the accuracy was maintained at 1.41 cm. All these data demonstrate that our proposed
algorithm has excellent accuracy, strong robustness, and good real-time ability.

Keywords: visible light positioning (VLP); real-time positioning and tracking; image sensor (IS);
mean shift (MS); unscented Kalman filter (UKF); robustness

1. Introduction

In business centers [1], large public buildings (subways, airports, libraries, etc.), high-risk
industrial parks, hospitals, nursing homes [2], and other indoor places where Global Positioning
System (GPS) helps little but where navigation and location services are urgently needed, indoor
positioning technology has broad application prospects [3,4]. Common optional techniques for indoor
positioning include infrared ray (IR), ultrasonic wave, radio-frequency identification (RFID), wireless
local area network (WLAN), Bluetooth, ultra-wideband (UWB), etc. Based on these technologies,
different implementation schemes have been developed. However, each has obvious drawbacks
considering positioning accuracy [5] or the ability to resist electromagnetic interference [6], or the high
cost of hardware devices [7], which makes them difficult to become popularized.

Compared with these indoor positioning technologies mentioned above, visible light positioning
(VLP) technology has outstanding advantages because of its abundant bandwidth resources [8],
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strong ability to resist electromagnetic interference, higher positioning accuracy and illumination
ability. Additionally, the cost of hardware devices supporting VLP systems is relatively small, because
complex facilities conducting precise measurement are not necessary. A simple VLP system even can
be structured with an image sensor, some LEDs and a processor. Therefore, VLP technology has a
promising prospect in the field of indoor positioning. There exist two modes of indoor positioning
systems based on VLP: The photodiode-based (PD-based) positioning, and the image-sensor-based
(IS-based) positioning [9,10]. The PD-based VLP systems have been deeply studied by researchers
before. A series of research projects on VLP systems based on PD have been completed in our previous
works [11–16] through which we found that the mobility of the positioning terminal has been severely
limited because of PD’s sensibility to the direction of the light beam. To deal with the orientations of
the PDs, the authors of Reference [17] designed a pyramid receiver (PR) and hemispheric receiver (HR),
which improved the channel capacity and bit-error-rate (BER) performance under various settings
and reduced the space usage. However, another significant drawback of PD-based VLP systems is
the doubtful robustness. Even at the same location, repeated measurements will yield a fluctuating
value of light intensity. Also, PD-based VLP systems are easily disturbed by ambient light and
reflected light [15]. Meanwhile, the angular and signal strength received need to be precisely measured.
Otherwise the positioning results will have noticeable error. In addition, precise instruments must
be exploited because the received signal strength and signal’s time difference of arrival should be
measured to calculate the distance between the reference point and target [2]. In contrast, IS-based
VLP methods are unaffected by these problems mentioned above. What is more, smart phones are
nowadays equipped with high-resolution complementary metal-oxide-semiconductor (CMOS) sensor
cameras, which can be combined with IS-based VLP methods easily, where huge commercial value lies.
Furthermore, the position would fail if the LED is shielded in PD-based VLP systems. In comparison,
our previous work [9] based on image sensor solved the problem effectively. Therefore, image sensors
are better than PDs as the receiving terminal for VLP systems [18,19]. Finally, few research projects on
PD-based VLP have explored the field of dynamic positioning, which has significance for real-time
indoor navigation, but restricts the application to low-speed motion or static positioning [20].

Theoretically, IS has better performance than PD regarding the field of VLP, but existing
studies have not yet yielded satisfactory results in terms of positioning accuracy, real-time ability,
and robustness, which are three vital elements for VLP systems. There is still much room for
improvement. First, for positioning accuracy, a circle projection-based single LED system was proposed
in Reference [21], whose positioning accuracy was only 25.12 cm. In Reference [22], the positioning
error was reduced to less than 10 cm; however, the performance remained unsatisfactory. These
works did not give satisfactory accuracy. In Reference [23], a novel method was proposed utilizing
the electronic compass and gyroscope to calculate the yaw angle of the positioning terminal. The
stimulated results showed the error was within 2 cm. However, the real-time ability was not considered
in the article. Additionally, few studies could maintain a good balance between real-time ability and
positioning accuracy. The author used a minimax filter to estimate the trajectory of the terminal
in Reference [24], whose average velocity simulated by MATLAB simulator was 1 m/s (3.6 km/h),
unable to fit higher motion speed. Finally, the VLP method proposed in Reference [25] considers
the system’s real-time ability, whose maximum allowable motion speed of the positioning terminal
was 18 km/h, with a positioning accuracy of 7.5 cm. Though it maintained a relatively good balance
between accuracy and real-time ability, the blur effect, caused by high relative speed between IS and
LED, was ignored. When the target moves at such a speed, the image of the LED will blur. Because
the IS-based positioning method in Reference [25] is based on pixel intensity detection, when the LED
is blurred in the image, the LED–ID recognition process through pixel intensity detection becomes
tough, which may lead to failure of location. The ignorance of robustness is crippling in the field
of VLP, which can make research outputs have little practical value, and this reference article is no
exception. Moreover, few papers have considered the general circumstance that the transmitter (i.e.,
LED) is shielded or broken. When the light links are blocked between LEDs and positioning terminal,
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the positioning would fail because most of the positioning algorithms are based on two or more LEDs,
the absence of even one LED in the image can lead to failure of the whole algorithm. The shielded
effect is a fatal problem in the field of VLP. No one has yet solved the problem except our previous
work [9], where a relatively perfect method is proposed. Based on optical flow and Bayesian forecast,
the algorithm possesses the ability to address all the difficulties of VLP systems mentioned above,
whose positioning accuracy is 0.86 cm and the maximum allowable speed of positioning terminal is up
to 48 km/h. Also, the algorithm can locate the target even if half of the LED is shielded. However,
the computational cost of the optical flow method is very large. Furthermore, optical flow algorithms
alone cannot track the LED under shielded effect. Therefore, Bayesian forecast is introduced to solve
the problem of shielded effect. Finally, the outcomes of the Bayesian forecast algorithm and the optical
flow algorithm was combined by Kalman filter to obtain the final output.

Though our previous work [9] seems powerful enough to address all the knotty problems in the
field of VLP, it also raised some problems that cannot be ignored. First, the optical flow method used
in Reference [9] greatly increases the computational cost and the running time of the whole system,
which reduces the real-time ability of the algorithm, whose utility is inversely proportional to the
computational cost. Because the function of the optical flow method is to track the LED, in this article,
to improve the real-time ability of our visible light positioning method, it was replaced by the mean
shift algorithm, which greatly reduces the computational cost. Moreover, the mean shift algorithm
possesses wonderful robustness, which can reduce the influence of the shielded effect exists in the VLP
situations to a great degree. Furthermore, in the simple background of VLP, the precision of the mean
shift algorithm does not lose to any other target tracking algorithm. Second, the Kalman filter used in
Reference [9] simply combines the outcome of optical flow and Bayesian forecast without considering
the state noise and measurement noise of the whole system, which greatly affects the accuracy of the
VLP system. In this article, the unscented Kalman filter is introduced to improve the robustness and
accuracy of our visible light positioning method and process the noises of the whole VLP system in a
clever way.

In Reference [26], the author proved that the introduction of the unscented Kalman filter into the
camshift algorithm can improve the accuracy of the target tracking algorithm as same as reducing
the running time of the whole system by leaps and bounds. Inspired by Reference [26], our proposed
algorithm also used unscented Kalman filter (UKF) to improve the performance of the mean shift
algorithm, and eventually our VLP method. However, though the unscented Kalman Filter in
Reference [26] took noises into account, the noises were only Gaussian white noises, which are
random noises without considering the condition of the target. If the LED is not occluded and the
measured position of the LED is accurate, the noises considered will reduce the accuracy. Therefore,
inspired by Chaos theory, a weight measuring the accuracy of the measured LED’s position was
introduced into our algorithm. If the accuracy of the measured LED’s position is reliable, the weight of
Gaussian white noises will be small, and the measured position will be trusted more by the Kalman
filter. Through this method, the bad influence of using Gaussian white noise as the state noise and
measurement noise can be reduced.

To address the shortcomings of existing methods and improve the performance of our previous
VLP system, in this paper, we propose a high-precision, real-time and robust indoor visible light
positioning method based on the mean shift algorithm and unscented Kalman filter. The function of
the LED is to deliver world coordinates using visible light. After the initial position of the positioning
terminal is calculated by the LED–ID recognition algorithm, the mean shift algorithm is utilized to track
and locate the LED in the image sequences in real time with high robustness. Then the trajectory of the
positioning terminal can be calculated combining the positioning terminal’s initial position with its
relative position relationship in the subsequent frames calculated by MS and UKF. The UKF algorithm
forecasts the possible location of the LED in the next frame, equipping the mean shift algorithm with
the ability to track fast moving targets and reduces the computation cost of the whole algorithm. Also,
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when the LED is shielded, the trajectory of the positioning terminal will be output by UKF to reduce
the influence of noises.

Previous studies have considerable drawbacks in robustness because they had to repeat the
complex positioning algorithm to get the trajectory of the positioning terminal. However, in our VLP
method, only the initial world position of the positioning terminal is calculated by the static positioning
algorithm. The trajectory can be calculated using the relative position relationship between the LED
and the positioning terminal in the image sequence, which can be accomplished by the target tracking
algorithm. Most of the repeating process of the static positioning algorithm is replaced by robust and
lightweight target tracking algorithm. The remainder of this paper is organized as follows: Section 2
provides a detailed description of the proposed positioning and tracking algorithm. The experimental
setup and analysis are presented in Section 3. Eventually, we summarize our work in Section 4.

2. Theory

When our proposed method starts, the LED–ID recognition algorithm first finds the LED utilizing
the image sensor, then the ID of the LED will be recognized. The details of the LED–ID recognition
algorithm was deeply researched in our previous works [18,19].

Our proposed method utilizes the rolling shutter mechanism of the Complementary Metal Oxide
Semiconductor (CMOS) image sensor. The exposure and data readout are performed row by row.
The data of one row read out immediately when the exposure of this row is finished. The working
principle of the rolling shutter mechanism is shown in Figure 1. Instead of employing traditional
LED–ID encoding and decoding methods, the process of LED–ID detection and recognition is regarded
as a classifying problem regarding machine learning in our algorithm. Through off-line training for
the classifiers and on-line recognition for LED–ID, high-speed and robust LED–ID recognition was
realized. The LED–ID algorithm will not be detailed in this article. For readers interested in LED–ID
recognition, please refer to our previous article [19].
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Figure 1. The working principle of the rolling shutter mechanism.

After the LED–ID is recognized, the world’s coordinate of the LED is known. Then through
single-light positioning technology, the initial real-world position of the positioning terminal can be
obtained. Next, the mean shift algorithm and UKF dynamically track the LED in the image sequence,
through which the relative position in the pixel coordinates between LED in the current frame and
LED in the initial frame can be calculated. Utilizing different coordinate systems and the geometric
relationships between the LED and the image sensor, linear mapping from the pixel coordinates to the
world’s coordinates can be established. With the information above, the relative relationship between
the LED’s current position and its initial frame in the pixel coordinate plane can be transformed to the
relative position relationship in the world’s coordinate space. Finally, by combining the positioning
terminal’s initial position with its relative position relationship in the subsequent frames, the location
of the positioning terminal in the real world can be obtained.
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Hence, by dynamically tracking the LED in the two-dimensional plane of the IS in the captured
image sequences, indoor dynamic positioning can be accomplished. Because the processing time of
our lightweight target tracking algorithm is much shorter than that of most static positioning systems,
the real-time ability of our algorithm is also good. The steps of our whole algorithm are as follow:

First, the LED–ID recognition algorithm obtains the LED’s initial world coordinates and pixel
coordinates. The latter also initializes MS and UKF. Then the predicted position of UKF is treated as the
starting position of iteration in MS. When cb, the ratio of the target’s area factor ap to its initial value,
is smaller than the threshold in 5 frames, which means LED is lost in the previous tracking process,
the LED–ID recognition algorithm plays its role again to search for the initial position of the LED to
start the next tracking cycle. After the LED is tracked and positioned in the pixel coordinate plane,
the positioning terminal’s world coordinates can be calculated by the proposed algorithm. The flow
of the whole algorithm is shown in Figure 2. In the following parts, these processes will be analyzed
mathematically, and formulations will be given.
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After the procedures of LED–ID recognition, the initial position of the LED is obtained, which
also initializes MS and UKF. Meanwhile, different coordinate systems, shown in Figure 3, and the
geometrical relationship between the LED and image sensor, shown in Figure 4, are utilized to get the
location of the positioning terminal in the real world. Define Lt as the set of pixels belonging to LED at
time t in the image, and (xt

i , yt
i)∈ Lt. i represents ith pixel. Because of the background’s area, such as

the ceiling of the house, it is much larger than the LED’s area, and the position of the LED (s(t) (xt, yt))
in the image can be approximated as the centroid of Lt.
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The world’s coordinates of the image sensor is defined as zl(t) (xt
l , yt

l ,z
t
l), where dx and dy represent

each pixel’s size on IS in different coordinate directions, respectively. The height between the LED and
lens is known as H, which is assumed as a fixed value and is already known by the algorithm. With all
the conditions above, the pixel coordinate (x0,y0) of the image’s centroid can be calculated as follow: x0

y0
1

=
 1/dx 0 xt

0 1/dy yt

0 0 1


 xt

i
yt

i
1

 (1)

Next, the horizontal coordinate of image sensor (camera) XC in the camera coordinate can be
calculated by the following equation:

X0

XC
=

f
f + H

(2)

YC can be calculated by the same method. As can be seen from Figure 5, we can rotate the
coordinate by Equation (3) and realize positioning under any azimuth.

(
xt

l , yt
l
)

is transformed from
(XC, YC) by the equation below: XC

YC

1

 =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1


 xt

l
yt

l
1

+
 TX

TY

TZ

 (3)
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In the equation above,

 TX

TY

TZ

 represents translation and (xt
l , yt

l) has been denoted by zl(t). Let

zl(t) = h(s(t),Dl), where h represents the mapping function and Dl stands for the ith coordinate of the
LED in the world’s coordinates that we have known.
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2.1. The Mean Shift Algorithm

In some traditional VLP methods based on image recognition only, every image must be processed
to locate the positioning terminal, where maximum allowable motion speed of the positioning terminal
is confined by the blur effect caused by the high relative speed between LEDs and image sensors,
whereas the blur effect has much less of an impact on the mean shift algorithm, relying on color
histogram. Additionally, even if half of the LED is shielded in the image, the tracking process won’t fail.
In view of the wonderful robustness and real-time ability of the mean shift algorithm, it was used as
the main part of our proposed VLP algorithm. Non-parametric density estimation is the basic concept
in the mean shift algorithm, using kernel density estimation as the fundamental of the whole theory.

One of the most popular density estimation methods is known as kernel density estimation. Given
n points of data Xi, i = 1 . . . n in the d-dimensional space Rd, and the multivariate kernel density
estimator whose kernel function K(x), together with a symmetric positive definite d × d bandwidth
matrix H, calculated in the point x, satisfying:

f̂(x) =
1
n

n

∑
i=1

KH(x− xi) (4)

in which
KH(x) = |H|−

1
2 K
(

H−
1
2 x
)

(5)

The kernel function K(x) with d variates is combined with the following equations:∫
Rd

K(x)dx = 1 (6)

lim
||x||→∞

||x||dK(x) = 0 (7)

∫
Rd

xK(x)dx = 0 (8)∫
Rd

xxTK(x)dx = cKI (9)

where ck is a constant, and I is an Identity matrix. The multivariable kernel function can be generated
by the following two methods.

KP(x) =
d

∏
i=1

K1(xi) (10)

KS(x) = ak,dK1(||x||) (11)
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in which KP(x) is obtained from the univariate kernels and KS(x) is the product of rotating K1(x) in Rd.
Besides, KS(x) is radially symmetric. The normalized constant ak,d assures that the integral of function
KS(x) is one.

We only need to focus on a special class of kernel functions satisfying

K(x) = ck,dk
(
||x||2

)
(12)

where k(x) is called the profile function of the K(x). The normalized constant ck,d is always positive,
ensuring that the kernel function K(x) integrates to one.

H is a d × d bandwidth matrix which is often computed as diagonal H = diag[h2
1, . . . , h2

d], or
proportional identity matrix H = h2I. The proportional identity matrix has only one parameter, which
can be computed more easily. If we use the equation H = h2I for calculation, then Equation (4) can be
rewritten as

f̂(x) =
1

nhd

n

∑
i=1

K
(

x− xi

h

)
(13)

If the definition of one-dimension kernel function K(x) is brought into Equation (13), we can get the
equation which the general mean shift algorithm uses to calculate the density estimate of eigenvalues.

The distribution position with maximum density in the sample data group can be obtained by
estimating the density gradient. The density gradient is defined as the gradient of kernel density
estimation function, which can be calculated by Equation (14):

∇̂fh,K(x) = ∇f̂h,K(x) =
2ck,d

nhd+2

n
∑

i=1
(x− xi)k′

(∣∣∣∣∣∣ x−xi
h

∣∣∣∣∣∣2)
=

2ck,d

nhd+2

n
∑

i=1
g
(∣∣∣∣∣∣ x−xi

h

∣∣∣∣∣∣2)(∑n
i=1 xig

(∣∣∣∣∣∣ x−xi
h

∣∣∣∣∣∣)2

∑n
i=1 g

(∣∣∣∣∣∣ x−xi
h

∣∣∣∣∣∣)2 − x

)
= fh,G(x)mh,G(x)

(14)

in which fh,G(x) is the non-parametric density estimation function based on kernel G(x) at point x, and
mh,G(x) is a mean shift vector. Besides, g(x) = −k′(x) is the profile function of kernel G(x).

In general, the shorter the distance of the sample point to the central point, the more significant
the statistical property of the estimated point x becomes. Thus, the concept of kernel density function
is introduced, giving each sample point a different weight associating with their distance to the center
point. Also, the mean shift procedure is guaranteed to make the kernel function converge at a nearby
point where the estimate density gradient is zero.

Epanechikov kernel function is used for model description. In initial frame, supposing that there
are n pixels {xi}i=1,...n in the target region, and the center point is x0. If the bandwidth of the kernel
function is h, and we uniformly divide the feature space into m subintervals, the probability density
estimation of the eigenvalue of the target model u = 1, . . . ,m is

p̂u(y) = C
n

∑
i=1

k

(∣∣∣∣∣∣∣∣x0 − xi

h

∣∣∣∣∣∣∣∣2
)
δ(b(xi)− u) (15)

C =
1

∑n
i=1 k

(∣∣∣∣∣∣ x0−xi
h

∣∣∣∣∣∣2) (16)

where C is a normalization constant, and function k() is the profile function of kernel, measuring
the weight of each pixel by the distance from which to the center point x0, as stated above. δ(b(xi)
− u) judges whether the eigenvalue of pixel xi belongs to the uthbin. The candidate regions in the
subsequent frames are described in the same way.
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Because of the excellent fitness between Bhattacharyya coefficient and the mean shift algorithm,
the Bhattacharyya coefficient is selected to measure the similarity between target model and candidate
model in our proposed algorithm.

The eigenvalue of each model in the feature space is divided into m parts. If public members of
two models in a part can be found when the Bhattacharyya coefficient is being computed in each part,
the value of Bhattacharyya coefficient grows. The value of m depends on the range of eigenvalue in
the feature space. The accuracy of the Bhattacharyya coefficient will be influenced whether m is too
large or too small. Here is the definition of Bhattacharyya coefficient:

ρ(y) = ρ(p̂(y), q̂) =
m

∑
u=1

√
p̂u(y)q̂u (17)

where ρ(y) ∈ [0,1], whose value represents the similarity between the two models. The candidate
region that make the maximum value of ρ(y) is believed to be the position of the target.

The value of Bhattacharyya coefficient ρ(y) should be maximized if we want to get the most
accurate position of the target. Normally, the center point y0 of the target in last frame is treated as
the initial position of the target in current frame, where the algorithm begins searching for the goal of
optimal matching, whose center point is y. Firstly, calculate the probability density estimation p̂u

(
y0
)

of the candidate target at point y0 in the current frame, the current Bhattacharyya coefficient satisfying:

ρ
(
y0
)
=

m

∑
u=1

√
p̂u
(
y0
)
q̂u (18)

whose Taylor expansion is computed by:

ρ
(
y0
)
=

m

∑
u=1

√
p̂u
(
y0
)
q̂u =

1
2

m

∑
u=1

√
p̂u
(
y0
)
q̂u +

Ch
2

nk

∑
i=1

wik

(∣∣∣∣∣∣∣∣y− xi

h

∣∣∣∣∣∣∣∣2
)

(19)

in which wi is the weight of each pixel, whose definition is:

wi =
m

∑
u=1

√
q̂u

p̂u
(
y0
)δ(b(xi − u)) (20)

It is easy to notice that only the second term of Equation (19) is associated with y. If it gets the
maximum value, the value of Bhattacharyya coefficient is maximized too.

Thus, we analyze the second term, to define:

fn,K =
Ch
2

nk

∑
i=1

wik

(∣∣∣∣∣∣∣∣y− xi

h

∣∣∣∣∣∣∣∣2
)

(21)

which is very similar with the definition of the kernel density function. The mean shift vector also can
be calculated, pointing towards the center point y of the target’s actual position from the candidate
point y0, satisfying:

mh,G(y) = y− y0 =
∑nk

i=1 xiwig
(∣∣∣∣∣∣ y−xi

h

∣∣∣∣∣∣2)
∑nk

i=1 wig
(∣∣∣∣∣∣ y−xi

h

∣∣∣∣∣∣2) − y0 (22)

Supposing that the distribution of target’s model is q̂u u = 1, . . . ,m, the estimated position in the
current frame is y0, and the error allowed is ε, then the mean shift algorithm can be implement by the
following steps, as is shown in Figure 6:
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1. Assume that the target’s initial position in the current frame is the central point y0 of the target
in last frame. Firstly, compute the probability density estimation p̂u

(
y0
)

of the candidate target
in current image frame using the same method as Equation (15). Then, utilize Equation (17) to
calculate the Bhattacharyya coefficient ρ(y0);

2. Compute the weight of each bin {wi}i=1,...n with Equation (20);

3. Update the center point y of target region;
4. Calculate the Bhattacharyya coefficient ρ(y);
5. If ρ(y) > ρ(y0), the center of the search region transfers to point y;
6. If |y − y0| < ε, the point y is considered as the center point of the target region in the current

frame, else skip to step 1.
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2.2. The Unscented Kalman Filter

Though the traditional mean shift algorithm possesses excellent real-time ability and accuracy
under ideal situations, it cannot track targets with high speed because the algorithm starts searching
the candidate target from its central point in the last frame within a small area. If the target moves
outside the area within the time of one frame, the algorithm fails. To improve the real-time ability and
the robustness of our proposed algorithm, giving it the ability to track objects moving at a high speed
as well as to pinpoint the target under shielding effect, we introduced the unscented Kalman filter into
our detection algorithm.

Based on the unscented transformation (UT), shown in Figure 7, UKF abandons the traditional
method of linearization of non-linear functions and adopts the framework of the Kalman filter,
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which is shown in Figure 8. On the premise that the mean value and covariance of the random
vectors remain unchanged, a set of Sigma sample points was selected, each of which goes through
non-linear transformations. Then the mean and variance of the random vector through the non-linear
transformation were estimated by the statistics of the transformed sample points, avoiding the error
caused by linearization. The UKF algorithm has better stability than EKF because it no longer calculates
the Jacobi matrix of non-linear equations. Also, UKF has a similar performance and smaller calculation
cost compared with particle filter.
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An ordinary state space model can be divided into two parts: namely state transfer model and
state observation model. The state of the tracking system is the state of the target, while the observation
model is the sequence image. Given that the velocity of the target changes, we assume the acceleration
a(k) is a random quantity, and a(k) satisfying the Gauss distribution a(k) ∝ N(0,σ2

w). The target’s
state vector was set to be X(k) =

[
x, y,

.
x,

.
y, cb

]T
k, where (x, y) was the target’s center point;

.
x and

.
y represent the velocity of the target at the x and y coordinate directions, respectively; and cb was
the ratio of the target’s current area in the tracking window to its initial area. Observation variable
y(k) =

[
xc(k), yc(k)

]T
k , in which xc(k) and yc(k) are observation values of the target. The state

transition model and observation model are respectively computed by:

X(k) = φX(k− 1) + Γwk (23)

y(k) = Xs(k) + Ξvk (24)
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where φ =
[
1, 0, t, 0, 0; 0, 1, 0, t, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, ap

]
; Γ =

[
t2

2 , t2

2 , t, t, 0
]T

; Ξ = [1, 1]T;

Xs(k) = [xm(k), ym(k)]T. wk, and vk represent the value of white Gaussian noise of the state transition
model and observation model, respectively. t is the time interval of adjacent frames, which is one
in our algorithm. ap is the target’s area factor, which is computed by the zeroth moment of the
image in the tracking window. (xm(k),ym(k)) is the centroid of the LED obtained from the mean shift
algorithm. Supposing that (xc,yc) is the initial value of the LED’s centroid, calculated by our LED–ID
detection algorithm, X(0) =

[
xc, yc, 0, 0, 1

]T. The theory and formula of the unscented Kalman filter
is shown below.

Assume that state’s mean and variance of the n-dimension state vector X at time k − 1 are x̂k−1
and P(k − 1) respectively. The state transition model and observation model are:

xk = F(xk−1) + Wk (25)

yk = H(xk) + Vk (26)

where F is the state transition equation and H is the observation equation (specially, H(xk) = Xs(k)
in our algorithm). Wk and Vk are the white Gaussian noise matrices of these two models (in our
algorithm Wk = Γwk and Vk = Ξvk), whose statistical characteristics satisfy:

Wk ∼ N(0, Qk) Vk ∼ N(0, Rk) (27)

in which Qk and Rk are the covariance matrix of two noise matrices, respectively.
(1) Initialization of UKF

x̂0 = E[x0] (28)

P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]

(29)

The Sigma points can be calculated by Equations (30)–(32).

χ0
k−1 = x̂k−1 (30)

χi
k−1 = x̂k−1 +

(√
(n + λ)Pk−1

)
i
, i = 1, · · · , n (31)

χi
k−1 = x̂k−1 −

(√
(n + λ)Pk−1

)
i
, i = n + 1, · · · , 2n (32)

where λ = α2(n + ϕ)− n; ϕ = 3− n, α is the candidate parameter, and 0 < α ≤ 10−4.
(2) Time updating process. Take Sigma points into the state transition Equation (33) and

observation Equation (36), then compute the state vector’s average value by Equation (37)

χi
k|k−1 = F

(
χi

k−1

)
(33)

x̂−k =
2n

∑
i=0

W(m)
i χi

k|k−1 (34)

P−x,k =
2n

∑
i=0

W(c)
i

[
χi

k|k−1 − x̂−k
][
χi

k|k−1 − x̂−k
]T

+ Qk (35)

γi
k|k−1 = H

(
χi

k|k−1

)
(36)

ŷ−k =
2n

∑
i=0

W(m)
i γi

k|k−1 (37)
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where W(m)
i is the weight coefficient of the mean. W(m)

0 = λ
n + λ; W(m)

i = 1/[2(n + λ)], i = 1, . . . ,2n.
(3) Observation updating equations. Take Equations (34), (36), (37) into Equations (38) and (39),

compute Kalman gain by Equation (40).

Py,k =
2n

∑
i=0

W(c)
i

[
γi

k|k−1 − ŷ−k
][
γi

k|k−1 − ŷ−k
]T

+ Rk (38)

Pxy,k =
2n

∑
i=0

W(c)
i

[
χi

k|k−1 − x̂−k
][
γi

k|k−1 − ŷ−k
]T

(39)

K = Pxy,kP−1
y,k (40)

in which W(c)
0 = λ/(n + λ)+ (1 − α2 + β); W(c)

i = W(m)
i (i = 1, . . . 2n); β ≥0 and the value of β is

0 here.
Particularly in our algorithm, a confidence coefficientω is introduced into Equation (38), which

can be rewritten as:

Py,k =
2n

∑
i=0

W(c)
i

[
γi

k|k−1 − ŷ−k
][
γi

k|k−1 − ŷ−k
]T

+ωRk (41)

If there exists little interference or shielded area of the LED in the image, in other words, cb ≈ 1,
which means (xm(k),ym(k)) can been viewed as the real centroid of the LED, letω ≈ 0 to reduce the
influence of the noise matrix Rk, meaning the original observation value is trusted. However, if the
value of cb is close to 0, which means most areas of the LED are occluded in the image, the outcome
of MS cannot be trusted. Because the centroid of the candidate region will be viewed as the actual
centroid of the LED by the mean shift algorithm, whose error is considerable. In this condition, it is
necessary to give the noise matrix a bigger weight. Originally, cb ∈ [0, 1]. To obtain proper weight, cb
will be normalized into [−2ℵ,ℵ], where ℵ = 1 in our algorithm. Thus,ω ∈

[
10−2ℵ, 10ℵ

]
. When cb ≈ 1,

ω ≈ 10−2 in our algorithm.
The mean and variance of the state vector can then be updated after taking Kalman gain into

Equations (42) and (43):
x̂k = x̂−k + K

(
yk − ŷ−k

)
(42)

Px,k = P−y,k −KPy,kKT (43)

Due to the uncertainty of moving targets and model, each time the target’s position calculated by
our proposed algorithm will be compared with its last position to update and correct the state model
of unscented Kalman filter.

Through introducing UKF into the mean shift algorithm, our proposed algorithm possesses the
capacity to track fast moving targets because the mean shift algorithm starts searching for the candidate
target from the position predicted by UKF (x̂−k , the prediction value of state equation in Equation
(27)) in current frame instead of from the centroid of the target in last frame, which also reduces the
number of iteration of MS. The candidate search region in the current frame was chosen reasonably
by UKF, taking the priori positions of the target into consideration, thus the problem of the target’s
giant velocity making it move outside the candidate search region within the time of one frame has
been solved. Meanwhile, because of the reduced average iteration number, the real-time ability of the
algorithm was enhanced too. When the target was located, its current position was compared with
previous positions to estimate its velocity and the most possible position in the next frame, through
which the state model of UKF was updated. The combination of UKF and the mean shift algorithm
makes a closed loop tracking system which can track fast moving targets in real-time effectively.
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3. Experiment and Result

3.1. Experimental Facilities

Our experimental facilities are shown in Figure 9, including a constant voltage source, turlebot3
robot, an industry camera, 4 LEDs, a personal computer (ThinkPad E475, Windows 10, 4G RAM
A10-9600P CPU@2.4GHz, Lenovo, Beijing, China.), and a high-speed video transmission line. The
LEDs were light signal transmitters with unique IDs, supplied with a constant voltage source. The
turlebot3 robot served as the carrier for the industry camera, which can move along a fixed route if a
script is written beforehand. The industry camera was connected to the PC by a long and high-speed
video transmission line. The time of transmission was included in the processing time of our VLP
system. The combination of turlebot3 and industry camera stimulated the moving object requiring
indoor navigation. The personal computer received the image captured by the industry camera and
processed it with our proposed algorithm in real time.
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Figure 9. The platform and hardware devices for experimental setup.

The size of our platform was 190 cm× 100× 190 cm. Four of the LEDs were used to realize the
VLP system, whose world coordinates were (100,145,190), (0,145,190), (0,45,190) and (100,45,190),
respectively. The specific parameters of the industry camera, turlebot3, constant voltage source, and
experiment platform are shown in Table 1.

The open source computer vision library (Opencv2.4.9) was used to process the received images
in our experiment, and C++ was used as the programming language. Also, we recorded several image
sequences in different situations with the same route of turlebot3 to better analyze the performance
of our proposed algorithm, which were all captured by the industry camera mentioned above. The
route of turlebot3 was constant, realized by a script written beforehand. Moreover, the single-lamp
positioning technology was introduced into our VLP systems, meaning that we did not need to acquire
all the LEDs’ coordinates but just one to locate the target, which reduced the computational cost and
enhanced the real-time ability of our VLP algorithm.

Furthermore, to learn the ground truth reference of the robot’s position, another camera was set
directly above the experimental platform. Grids and coordinates were drawn on the ground before
doing the experiment. When the industry camera on the turtlebot3 started working, the camera above
the experimental platform started recording. The videos captured by the two cameras were one-to-one
in the number of frames. The frames with the same number were taken at the same time. When we
wanted to confirm the ground truth position of the turtlebot3 at a certain frame, we only needed to
record the number of this frame and then find the frame with the same number in the videos recorded
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by the camera above the platform. Finally, we read the coordinates from the grids on the ground where
the turtlebot3 stood from the image of this frame. Through this method, we learned the ground truth
reference of the turtlebot3’s position, which can be utilized to measure the positioning accuracy of our
VLP system.

Table 1. Parameters of experimental facilities and platform.

Camera Specifications

Model MV-U300
Spectral Response Range/nm 400~1030

Resolution 800 × 600
Frame Rate/FPS 46

Dynamic Range/dB >61
Signal-to-noise Ratio/dB 43

Pixel(H × V) 2048 × 1536
Pixel Size/µm2 3.2 × 3.2

Time of Exposure/ms 0.0556–683.8
Sensitivity 1.0 V/lux-sec 550 nm

Optical Filter 650nm Low Pass Optical Filter
Type of Shutter Electronic Rolling Shutter

Acquisition Mode Successive and Soft Trigger
Working Temperatures/◦C 0–50

Support Multiple Visual Software OpenCV, LabView

Turtlebot3 Robot Specifications

Processor Module Raspberry Pi 3 B

CPU
Quad Core 1.2 GHz Broadcom BCM2837

64 bit CPU
RAM 1 GB

operating system Ubuntu mate 16.04

Experimental Platform Specifications

Size (L ×W × H)/ cm3 190 × 100 × 190

LED Specifications

Coordinates (x, y, z)/cm

LED1(100,45,190)
LED2(100,145,190)

LED3(0,145,190)
LED4(0,45,190)

The half-power angles of
LED/deg(ψ1/2) 60

Circuit Board Specifications

Drive chip DD311
Drive current/A 0.1
Drive voltage/V 28

3.2. Result and Analysis

Positioning accuracy is a vital index measuring the performance of VLP systems. Though
the LED may be shielded or broken sometimes, in most cases the whole LED is captured by the
positioning terminal. Besides, an interferential lamp was introduced into our experiment to test if our
LED–ID algorithm could successfully detect the position of the LED and obtain its ID with the world’s
coordinates. The result was successful as shown in Figure 10.



Sensors 2019, 19, 1094 16 of 24

Sensors 2018, 18, x FOR PEER REVIEW  16 of 24 

 

 
Figure 10. The tracking performance when the LED was not shielded. 

Thus, 87 sequential frames without shielding were chosen to measure the positioning accuracy 
of the proposed algorithm in our experiment. The result is shown in Figure 11 where the red dot 
stands for the actual position and the blue dot represents the results calculated by our algorithm. 
From Figure 11 we can learn that our proposed algorithm has high accuracy directly. 

For more accurate analysis, the positioning error of the x and y coordinates and the tracking 
error D were further analyzed, respectively, in Figure 12, Figure 13, and Figure 14. 

We define positioning error as: 

D=ඥ(X − X୰)ଶ + (Y − Y୰)ଶ (44) 

Error of X(Y) = |Value୮୰ୣୢ୧ୡ୲ୣୢ − Valueୟୡ୲୳ୟ୪| (45) 

where (X, Y) is the position located by our proposed algorithm and (X୰, Y୰) is the actual position. The 
maximal positioning error of x coordinates is less than 1 cm, and that of y coordinates less than 0.8 
cm. Also, the value of maximal positioning error does not exceed 1.2 cm. Besides, the average value 
of positioning error in x coordinates, the average value of error in y coordinates, the average 
positioning error were 0.31 cm, 0.21 cm, and 0.42 cm, respectively. 

Cumulative distribution function (CDF) is the integral of the probability density function, which 
can be used to analyze the probability distribution of the tracking error, error in the direction of 
coordinate axis x and coordinate axis y. 

 
Figure 11. The calculated positioning value and actual positioning value of the positioning terminal. 

Figure 10. The tracking performance when the LED was not shielded.

Thus, 87 sequential frames without shielding were chosen to measure the positioning accuracy
of the proposed algorithm in our experiment. The result is shown in Figure 11 where the red dot
stands for the actual position and the blue dot represents the results calculated by our algorithm. From
Figure 11 we can learn that our proposed algorithm has high accuracy directly.
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For more accurate analysis, the positioning error of the x and y coordinates and the tracking error
D were further analyzed, respectively, in Figure 12, Figure 13, and Figure 14.Sensors 2018, 18, x FOR PEER REVIEW  17 of 24 
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We define positioning error as:

D =

√
(X− Xr)

2 + (Y− Yr)
2 (44)

Error of X(Y) =
∣∣∣Valuepredicted −Valueactual

∣∣∣ (45)

where (X, Y) is the position located by our proposed algorithm and (Xr, Yr) is the actual position. The
maximal positioning error of x coordinates is less than 1 cm, and that of y coordinates less than 0.8 cm.
Also, the value of maximal positioning error does not exceed 1.2 cm. Besides, the average value of
positioning error in x coordinates, the average value of error in y coordinates, the average positioning
error were 0.31 cm, 0.21 cm, and 0.42 cm, respectively.

Cumulative distribution function (CDF) is the integral of the probability density function, which
can be used to analyze the probability distribution of the tracking error, error in the direction of
coordinate axis x and coordinate axis y.

The cumulative distribution function of positioning error is shown in Figure 14. The definition of
cumulative distribution function is:

FX(x) = P(X ≤ x) (46)

In other words, the cumulative distribution function represents the sum of the probability of all
values less than or equal to x for the discrete variable.

As the Figure 15 indicates, more than 90% of positioning error D, the positioning error of x
coordinates, and the positioning error of y coordinates were less than 0.75 cm, 0.67 cm, and 0.57 cm,
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respectively. If we can bear the 10% uncertainty, the positioning error of our algorithm is only 0.75 cm.
In contrast, the positioning error of our previous work [9] was two times more than that of our
new method.
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The real-time ability is also important for VLP systems, which determines the maximum motion
speed of the positioning terminal allowed. The running time and complexity of the algorithm both
affect the real-time ability of VLP algorithms prominently. Because the algorithm needs time to process
one frame, during which the target may already move to other positions. The process of positioning is
always slower than the moving of the target. Our proposed algorithm utilizes the unscented Kalman
filter algorithm to predict the most possible position of the target in the current frame. Then let the
mean shift algorithm search for the target from the predicted position. This method increases the
highest allowable motion speed of the positioning terminal. Theoretically, our proposed algorithm can
track targets with any speed if enough priori information is given. However, if the target moves too
quickly within one frame, the LED will exceed the maximum capture scope of the image sensor.

To simplify the calculation of the theoretical maximum motion speed of the positioning terminal,
we assume that the LED in the image starts moving from the left edge in frame N with no velocity and
the motion path is parallel to the x-axis. Because the unscented Kalman filter algorithm can handle
variable motion with arbitrary acceleration, we assumed that the UKF algorithm predicts the position
according to the uniform acceleration motion model and ignores the effect of the target’s previous
positions except its last position. The first maximal moving distance allowed is the diameter of the
LED. Then the UKF obtains its speed and accelerated speed to predict its position in the next frame.
In frame N + 1, the maximum allowable moving distance is the predicted moving distance plus the
diameter of the LED. The steps for the next frame are the same. Then the maximum motion speed can
be calculated in frame N + 2, because the predicted moving distance has exceeded the border of image
in this frame. The process is shown in Figure 16.

The maximum motion speed of the target is defined as:

vmax = s/t (47)

in which s represents the maximum allowable moving distance of the positioning terminal between
two successful frames, while t stands for the algorithm’s average processing time. Based on the
proportional relationship between images coordinates and world’s coordinates, the relationship can be
expressed as:

s/r = D/d (48)
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where r represents pixel length of moving distance, D stands for the actual diameter of the LED,
and d is the pixel length of the LED. In our experiment, we calculated the average processing time
of 87 successful frames without shielding, which is 24.93 ms. By contrast, the algorithm’s average
processing time of one frame in our previous work [9] was 0.162 s. The actual diameter of the LED
was 150 mm, whose diameter in the image was 60 pixels. Besides, the pixel length of the image was
800 pixels in our experiments.Sensors 2018, 18, x FOR PEER REVIEW  19 of 24 
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Also, in our algorithm, if the predicted position of the UKF algorithm exceeded the border, the
final output of predicted position will be tangent with the edge of image. Supposing that the LED is
tangent with the right edge of the image in frame N + 2, the moving distance is 440 pixels compared
with frame N + 1, in other words, r is 440. Therefore, the theoretic maximum allowable motion
speed of the positioning terminal is 44.12 m/s ≈ 158.84 km/h according to the definition, which
not only meets the requirement of indoor dynamitic positioning, but also satisfies the needs of some
outdoor positioning circumstances such as traffic systems in channels. The theoretical maximum
allowable motion speed of the positioning terminal in Reference [1] was 48 km/h, much slower than
the proposed method.

Robustness is also significant for VLP systems in practical VLP situations, which is often ignored
in most existing research. In this article, we especially set-up an experiment measuring the performance
of our proposed algorithm under the circumstance of a shielding effect and background interference.
Besides, to simplify the analysis, we considered the case that only one LED existed.

Sometimes LEDs will be shielded or broken, where most existing VLP methods would fail.
In contrast, our algorithm realizes high-accuracy positioning under shielded effect by introducing
unscented Kalman filter into the mean shift algorithm. The MS has wonderful robustness when
the backgrounds are not complicated as shown in Figure 17. However, the algorithm proposed in
Reference [9] would lose the LED under the same circumstance. When the LED is shielded, the tracking
results of the MS is treated as the observation model of the UKF, combined with the noise matrix to
get the final output. Through these measures, the shielded LED can be located with relatively high
accuracy and little computational burden. The performance of our proposed algorithm when half the
area of the LED is shielded is shown directly in Figure 18.
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In addition, a script was written to make the turlebot3 robot move with the fixed route. Several
videos were recorded where the LED was shielded at different degrees and the shielded area varies
from 30 percent to 90 percent of the original area. Seventy-four frames where random areas of the LED
are shielded and 59 frames where nearly 50 percent of LED’s area was shielded were chosen to analyze
the performance of our proposed algorithm handling the circumstances of the shielding effect, whose
performances are shown in Figures 19 and 20.
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The average tracking error was 1.41 cm when nearly 50 percent of the LED was shielded. When
the LED was shielded randomly, the average positioning error was 1.52 cm. Besides, the average error
of the x coordinates in Figure 19 was 0.67 cm and that of the y coordinates was 1.00 cm. In Figure 20,
the error of the x coordinates and y coordinates were 0.84 cm and 0.87 cm, respectively.

The CDF plot of data measuring the position error in Figures 19 and 20 are shown in Figures 21 and 22,
respectively. From Figure 21 we can learn that more than 90 percent of tracking error D, the error of x
coordinates and y coordinates were less than 2.11 cm, 1.88 cm, and 1.44 cm, respectively when nearly
half of the area of the LED was shielded. Meanwhile, these data indexes were 2.11 cm, 1.83 cm, and
1.91 cm, respectively, when random areas of the LED was shielded. These results demonstrate the
excellent robustness of our proposed algorithm.
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Though the positioning accuracy and the real-time ability of our proposed method did not achieve
the most advanced level at present, they are excellent enough compared with most of the VLP systems.
Moreover, the strong robustness of our system is unique in the field of VLPs. Before our previous
work [9], nobody discussed the aspect of robustness in the field of VLP. Furthermore, the focus of
this article is not to improve the real-time ability, robustness or accuracy of the system alone. It is not
difficult to improve the performance of any single aspect, but the improvement of them all at the same
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time and maintaining balance is hard. The key point of our work is balancing the accuracy, robustness,
and real-time ability of a VLP system.Sensors 2018, 18, x FOR PEER REVIEW  22 of 24 
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Figure 22. The CDF of positioning error when random areas of the LED was shielded.

4. Conclusions

In this paper, we propose a novel VLP algorithm for indoor positioning. The image sensor is
used as the positioning terminal and the LED is utilized as the transmitting terminal. The essence and
innovation point of our work is replacing the repeating and complex VLP positioning algorithm in a
clever way which only needed to know the initial position and relative position relationships of the
LED and the positioning terminal. The mean shift algorithm is utilized to track the moving LED in the
image sensor, solving the problem of the blur effect and ensuring the real-time ability. The unscented
Kalman filter improves the highest allowable motion speed of the positioning terminal as well as
reduces the running time of our algorithm. Also, thanks to the excellent robustness of the mean shift
algorithm under simple backgrounds, even when most of the LED is shielded in the image, the VLP
method will not fail. Furthermore, the results of our visible light positioning method are combined
with the noise matrix of UKF to get the output when the LED is shielded, which reduces the error of
positioning results. Therefore, our algorithm possesses strong robustness and high accuracy.

As for the experiment, the proposed VLP method can reach a high positioning accuracy up to
0.42 cm and the average processing time per frame is 24.93 ms. Furthermore, even when nearly 50% of
the LED is shielded, the positioning accuracy maintains at 1.41 cm, which confirms that our proposed
algorithm has strong robustness. All the mentioned results indicate that our proposed VLP method has
excellent performance with high positioning accuracy, good real-time ability, and strong robustness.
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