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Abstract: Silicone rubber material is widely used in high-voltage external insulation systems due to
its excellent hydrophobicity and hydrophobicity transfer performance. However, silicone rubber is a
polymeric material with a poor ability to resist electrical tracking and erosion; therefore, some fillers must
be added to the material for performance enhancement. The inclined plane test is a standard method
used for evaluating the tracking and erosion resistance by subjecting the materials to a combination of
voltage stress and contaminate droplets to produce failure. This test is time-consuming and difficult
to apply in field inspection. In this paper, a new and faster way to evaluate the tracking and erosion
resistance performance is proposed using laser-induced breakdown spectroscopy (LIBS). The influence
of filler content on the tracking and erosion resistance performance was studied, and the filler content
was characterized by thermogravimetric analysis and the LIBS technique. In this paper, the tracking and
erosion resistance of silicone rubber samples was correctly classified using principal component analysis
(PCA) and neural network algorithms based on LIBS spectra. The conclusions of this work are of great
significance to the performance characterization of silicone rubber composite materials.

Keywords: silicone rubber material; tracking and erosion resistance; laser-induced breakdown
spectroscopy; neural network

1. Introduction

Insulators of high-voltage transmission lines usually gather large amounts of contamination on
their surface after long-term operation in an outdoor environment [1]. The contamination becomes wet
and forms a conductive water film on the insulator surface in wet weather, which is prone to causing
flashover. Silicone rubber materials are widely used in electrical power systems for their excellent
hydrophobicity and hydrophobicity transfer performance compared with ceramic materials, which is
a key point in the anti-pollution flashover problem [2,3]. Silicone rubber materials are mainly used in
the external insulation field, such as in high temperature vulcanized (HTV) silicone rubber insulators
and room temperature vulcanized (RTV) silicone rubber coatings.

However, silicone rubber insulators also face challenges when serving in outdoor environments.
Usually, dry band arcing is generated on the insulator surface due to the contamination when the
hydrophobicity of insulators is temporarily lost, and then the silicone rubber material will be ablated
due to thermal degradation. Fillers are widely added to silicone rubber material to improve its tracking
and erosion resistance performance [4–6]. As an important indicator of the service lifetime of silicone
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rubber materials, tracking and erosion resistance performance has great significance for the operation
and maintenance of transmission lines.

A conventional method used to measure tracking and erosion resistance performance is the
inclined plane test method. This method simulates the thermal degradation of materials by electric
arcing [7,8]. However, this method is complicated and time-consuming. It is difficult to apply in field
inspection because this method is mainly used for factory inspection and only rarely for insulators in
service when an entire insulator string is removed from a transmission line and destructive sampling
must be carried out. Cherney et al. developed a new method to replace the inclined plane test
method by simulating the thermal degradation process of materials via a continuous laser ablation
process [9,10]. It is more convenient than the inclined plane test, but still requires a long test time.

The laser-induced breakdown spectroscopy (LIBS) technique is an elemental analysis technique that
induces the sample to generate plasma by focusing an intense pulsed laser onto the sample surface [11,12].
LIBS has been applied in various fields because of its advantages, which include the lack of a sample
preparation requirement, fast measuring speed, ability to detect almost all elements and so on. The LIBS
technique has great application potential in high-voltage external insulation detection due to these
advantages and the remote measurement ability [13,14]. Via LIBS, it is possible to realize on-site detection
of operating insulators, which is attractive for daily operation and maintenance.

In this work, the relationship between the tracking and erosion resistance performance of silicone
rubber materials and the corresponding aluminum hydroxide (ATH) and silica filler content will be studied.
The measurement results of filler content via TGA and LIBS were compared. The conventional method
was compared with a neural network algorithm when the material properties were studied via LIBS.

2. Materials and Methods

2.1. Materials

In this work, 27 types of HTV silicone rubber samples with different contents of ATH and silica
filler were prepared for testing. Silicone rubber mainly contains siloxane, additive agent like ATH
and silica fillers, and other assistance like vulcanizing agent, iron oxide and so on. The ingredient
information of samples is shown in Table 1. All of the samples were prepared under the same
manufacturing procedure except for the content of the two fillers mentioned above. The unit of content
is relative mass, while the resin content of each sample is normalized to 1.

Table 1. Concentrations of 27 samples. The numerical value represents mass fraction taking resin
content as a reference.

Index Resin ATH Silica Other Assistance

1 1 0.05 0.3 0.264
2 1 0.1 0.3 0.264
3 1 0.15 0.3 0.264
4 1 0.2 0.3 0.264
5 1 0.25 0.3 0.264
6 1 0.3 0.2 0.264
7 1 0.3 0.1 0.264
8 1 1.1 0.3 0.264
9 1 1.2 0.3 0.264

10 1 1.3 0.3 0.264
11 1 1.4 0.3 0.264
12 1 0.75 0.3 0.264
13 1 1.5 0 0.264
14 1 0.8 0.3 0.264
15 1 0.85 0.3 0.264
16 1 0.9 0.3 0.264
17 1 0.95 0.3 0.264
18 1 1.05 0.3 0.264
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Table 1. Cont.

Index Resin ATH Silica Other Assistance

19 1 0 0 0.264
20 1 0 0.3 0.264
21 1 0.3 0.3 0.264
22 1 0.5 0.3 0.264
23 1 1 0.3 0.264
24 1 1.5 0.3 0.264
25 1 1.5 0.1 0.264
26 1 1.5 0.2 0.264
27 1 1.5 0.4 0.264

2.2. Inclined Plane Test

The tracking and erosion test procedure for silicone rubber materials followed the inclined plane
test (IPT) adopted Method 1—Application of constant tracking voltage in IEC-60587 [15], and the
schematic diagram is shown in Figure 1 [16]. In the inclined plane test process, the voltage was
increased to one of the test voltages list in Table 2 (i.e., 2.5, 3.5 or 4.5 kV) and applied to the standard
size silicone rubber samples, and the conductive liquid was continuously and evenly dripped onto the
sample surface with the purpose of generating intermittent arcing on the sample surface to simulate
the ablation of the insulating material by the electric arcing. The schematic figure of the experiment
setup is the same as that in [17].

All of the samples were cut into the standard size of 120∗50∗6 mm3 and tested in the experimental
configuration sequence shown in Table 2. Each type of sample was tested 5 times under a certain
experimental condition for 6 h. A type of sample would be considered to not have passed the test if
one of the 5 samples showed overcurrent (exceeded 60 mA), penetrated hole or ignited during the test.
The classifying method for samples is shown in Table 3.
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Figure 1. Schematic diagram of inclined plane test. The silicone rubber sample was fixed onto an
inclined plane by two electrodes and contaminated liquid was dropped to the sample via filter paper.

Table 2. Configuration of the inclined plane test for different testing levels.

Test Voltage (kV) Preferred Test Voltage (kV) Contaminant Flow Rate mL/min Series Resistor, Resistance (kΩ)

2.0–2.75 2.5 0.15 10
3.0–3.75 3.5 0.3 22
4.0–4.75 4.5 0.6 33
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Table 3. Grading criterion for the inclined plane test.

Classification Result Test Voltage—2.5 kV Test Voltage—3.5 kV Test Voltage—4.5 kV

1A0 fail - -
1A2.5 pass fail -
1A3.5 - pass fail
1A4.5 - - pass

2.3. Thermogravimetric Analysis

In this work, thermogravimetric analysis was used to validate the filler concentration of HTV
silicone rubber materials. The thermo-gravimetric analyzer model used in this experiment is
MDTC-EQ-M35-01. The temperature rose from 50 ◦C to 800 ◦C with a heating rate of 5 ◦C per minute.

2.4. LIBS Experimental Setup

The LIBS system consisted of a laser, a spectrometer, a digital delay generator, an optical fiber,
a computer and an optics system as shown in Figure 2. The laser model belongs to the Beamtech
Nimma series, its output energy can reach up to 900 mJ when the laser wavelength is 1064 nm and
its pulse duration is about 10 ns. The spectrometer has 6 channels corresponding to 6 different
wave bands covering from 190 nm to 640 nm, and its sampling interval is approximately 0.01 nm.
The synchronization between the laser shot and the spectrum collection process is realized by a DG645,
which controls the delay between a laser shot and the beginning of spectrum collection. The LIBS test
is conducted by focusing a laser onto the sample surface, ablating the material, and then the plasma is
induced and emits the spectrum collected by the spectrometer via an optical fiber; eventually, the data
are transferred to the computer for analysis. In this work, the time delay and the integration time of the
spectrometer were set to 3 microseconds and 30 microseconds to archive an optimum signal-to-noise
ratio, respectively. The energy of each laser pulse that actually arrived on the sample surface was
measured by a laser-energy meter, and the average result was 64.5 mJ when the signal-to-noise ratio
and signal-to-background ratio were both large enough to be analyzed.
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Figure 2. Schematic diagram of the LIBS setup. The LIBS setup includes a laser, a spectrometer, a 
digital delay generator, a computer and an optics system. 

3. Results 

3.1. Tracking and Erosion Resistance of Samples 

All types of samples were subjected to the inclined plane test, the details and a summary of the 
results are shown in Tables 4 and 5. From the table, we can see that the silicone rubber material 
samples were classified as 1A0 when the ATH content was less than 0.1, classified as 1A2.5 when the 
ATH content was less than 0.8 and classified as 1A3.5 when the ATH content was less than 1.1. Only 
when the ATH content was greater than 1.1 were the samples classified as 1A4.5. 
  

Figure 2. Schematic diagram of the LIBS setup. The LIBS setup includes a laser, a spectrometer, a digital
delay generator, a computer and an optics system.

3. Results

3.1. Tracking and Erosion Resistance of Samples

All types of samples were subjected to the inclined plane test, the details and a summary of the
results are shown in Tables 4 and 5. From the table, we can see that the silicone rubber material samples
were classified as 1A0 when the ATH content was less than 0.1, classified as 1A2.5 when the ATH
content was less than 0.8 and classified as 1A3.5 when the ATH content was less than 1.1. Only when
the ATH content was greater than 1.1 were the samples classified as 1A4.5.
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Table 4. The results of the inclined plane test for all the samples.

Index ATH Silica Tracking and Erosion Resistance Classification

1 0.05 0.3 1A0
2 0.1 0.3 1A2.5
3 0.15 0.3 1A2.5
4 0.2 0.3 1A2.5
5 0.25 0.3 1A2.5
6 0.3 0.2 1A2.5
7 0.3 0.1 1A2.5
8 1.1 0.3 1A4.5
9 1.2 0.3 1A4.5

10 1.3 0.3 1A4.5
11 1.4 0.3 1A4.5
12 0.75 0.3 1A2.5
13 1.5 0 1A4.5
14 0.8 0.3 1A3.5
15 0.85 0.3 1A3.5
16 0.9 0.3 1A3.5
17 0.95 0.3 1A3.5
18 1.05 0.3 1A3.5
19 0 0 1A0
20 0 0.3 1A0
21 0.3 0.3 1A2.5
22 0.5 0.3 1A2.5
23 1 0.3 1A3.5
24 1.5 0.3 1A4.5
25 1.5 0.1 1A4.5
26 1.5 0.2 1A4.5
27 1.5 0.4 1A4.5

Table 5. Summary of the tracking and erosion resistance classification for all samples and the
corresponding test condition.

ATH Content Range Tracking and Erosion Resistance Grade

0–5 1A0
10–75 1A2.5

80–105 1A3.5
110–150 1A4.5

The failure time of samples below Class 1A3.5 in the test with 3.5 kV is presented in Figure 3. As the
ATH content increases, the tolerance time of the sample in the inclined plane test increases exponentially.
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3.2. TGA Test

Thermo-Gravimetric Analysis (TGA) of 8 samples selected from the 27 samples was carried
out under a heating rate of 5 ◦C/K. The 8 samples were selected because they have the most highly
different ATH or silica content, covering the whole content range. It helps us to see clearly the
relationship between the results of TGA and the results of LIBS measurement. Figure 4 shows how the
residual mass fraction varies with constant temperature increase with time from 50 ◦C to 800 ◦C for
the 8 samples.
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Figure 4. Thermogravimetric curve of silicone rubber (#23) whose ATH filler and silica filler mass
fraction is 1.0 and 0.3, respectively, under a heating rate of 5 ◦C/K.

The TG curves of silicone rubber samples with ATH filler added show 2 stages of reaction.
The first stage is mainly about the decomposition of ATH from approximately 200 ◦C to 350 ◦C,
and the second stage is about the decomposition of siloxane from approximately 350 ◦C to 600 ◦C.
The thermo-gravimetric curves of samples with various ATH content and silica content in Table 4 have
similar behaviors because the main ingredients are the same. The ATH content can be calculated based
on the mass loss corresponding to the first stage, and the resin content is proportional to the mass loss
in the second stage.

3.3. Emission Spectra

A standard spectrum of HTV silicone rubber materials containing ATH and silica is shown in
Figure 5. The peaks of the spectrum can be identified based on the NIST database. We can see that the
intensity of Si and Al spectral lines is strong. Apparently, the Al element mainly exists in ATH filler,
and the Si element exists in both silica filler and siloxane. There always exists the C element in the
siloxane corresponding to the C I 247.9 nm in the spectrum. The Fe element is always present in the
form of oxide in silicone rubber materials, and it has plenty of spectral lines.

Figures 6–8 show the emission spectrum of 3 types of new silicone rubber while the mass fraction
of ATH is 0, 1.5, and 0, the mass fraction of silica filler is 0, 0, and 0.3, respectively. It can be seen that
the number of spectral lines for samples without filler was less than that for samples with added silica
filler, even though the filler did not contain any new element.
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Figure 6. Emission spectrum of new HTV silicone rubber with no additional ATH and silica filler. 
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4. Discussion

4.1. Thermo-Gravimetric Analysis

By deriving the TG curve in Figure 3, the position of the turning point can be calculated, and the
corresponding weight loss can be obtained. The weight loss at the position of the turning point
corresponds to the total weight loss during the first stage, relating to the dehydration process of ATH
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filler. The second stage of TG is mainly regarding the decomposition of siloxane, and the corresponding
weight loss is equal to the final weight loss minus the weight loss at the turning point. The results are
shown in Figures 9 and 10.
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Figure 10. Relationship between base resin content and thermal mass loss in the second stage of
thermogravimetric analysis.

It can be seen that there is a close relationship between weight loss during the TG process and
the ATH filler content of samples. The linear correlation coefficient between resin content and the
corresponding weight loss is slightly lower, mainly because of the decomposition of other substances
in that corresponding temperature range.

4.2. Emission Spectral Line

The tracking and erosion resistance performance of silicone rubber material is affected not only
by filler content and resin content but also by other factors. This part will focus on the relationship
between the main elements, especially Si, Al, C and O, and the corresponding spectral lines’ intensity.
Our purpose is to find the relationships between the spectrum and the parameters of silicone rubber.

From the results of IPT, it is obvious that the ATH content has a decisive influence on the tracking
and erosion resistance performance. It can be seen from Figure 11 that there is a positive correlation
between the intensity of Al I 308.2 nm and ATH filler content as a whole. Notice that, when the
ATH content reaches approximately 30%, the spectral intensity begins to saturate because of the
self-absorption effect. The data points with the same tracking and erosion resistance performance
are marked with the same color in Figure 11. It can be seen clearly from the figure that a higher
tracking and erosion resistance grade corresponds to higher ATH content for the samples. A similar
relationship exists between the tracking and erosion resistance grade and line intensity for Al I 308.2 nm.
Samples under Class 1A3.5 can be easily distinguished by spectral data, while samples for 1A3.5 and
1A4.5 were difficult to distinguish when the corresponding ATH content was high.
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and 15. The level is stepped up when the intensity ratio is gradually increased, except for several 
single points. 

Figure 11. Normalized Al atomic line (Al I 308.2 nm) average intensity of samples with different ATH
content; blue, red, yellow and violet points correspond to the silicone rubber samples classified as 1A0,
1A2.5, 1A3.5 and 1A4.5, respectively.

It is difficult to characterize the resin content of silicone rubber by spectrum data since both
siloxane and silica filler contain Si. However, there is no C element, only Si and O elements, in silica
filler, and the ratio of the Si and C spectral line intensity is considered to be used as the basis for the
determination of the ablated substance. Figure 12 shows a good linear relationship between the atomic
and ionic spectral line intensity ratio of Si to C and the resin content of the ablated silicone rubber
material. Figure 12 shows a better result compared with TGA in Figure 10.
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Silica filler can improve the mechanical behavior and thermal conductivity of silicone rubber.
When more silica filler is added to the silicone rubber material, the oxygen content will obviously
increase, and the ratio of Si element content to O element content will drop, as shown in Figure 13.
However, Figure 13 shows a poor correlation between the spectrum and the silica content. This may
be explained by the fact that Si and O elements exist in both siloxane and silica filler in silicone rubber
materials, making it difficult to fully characterize the silica content with the spectral intensity ratio of
Si and O elements.
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Moreover, we found that some spectral line intensity ratios of the Mg element can well characterize
the tracking and erosion resistance performance of the samples, as shown in Figures 14 and 15. The level
is stepped up when the intensity ratio is gradually increased, except for several single points.
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Through the analysis of the spectral data, it can be concluded that, though there always exist some
single lines or line combinations to characterize the samples, the spectral line selection process is too
complex to be used as a general method for silicone rubber materials. To make full use of the spectral data
and simplify the spectral line selection process, the Principal component analysis (PCA) method was used
in the following work.

4.3. Principal Component Analysis of LIBS Spectra

Principal component analysis is a data dimensionality reduction algorithm that transforms the original
dataset onto a hyperplane. The standard orthonormal vectors of the hyperplane coordinate system are
sorted according to the data variance projecting from the original space to the new space base vectors.
The components with larger variances represent more features of the dataset. From the perspective of
variance, usually most of the information in the data set can be characterized by the first few components.

PCA of the spectral dataset showed that the variances of the three largest components accounted
for approximately 92% of the total variance, and the four largest components accounted for
approximately 95%. An original spectrum contains approximately 10 thousand intensity data points for
different wavelengths, while several components can be extracted to express most of the information
via the PCA method, greatly simplifying the complexity of the subsequent computational model.

Figure 16 shows the distribution of spectral data for four different-level samples in the new
coordinate space using the three largest components. Data points corresponding to the same grade
aggregate together, and point clouds of Class 1A0 and 1A2.5 were far away from other point clouds,
while the point clouds of 1A3.5 and 1A4.5 were overlapping. This result indicates that it is easy to
distinguish samples below grade 1A3.5 via a LIBS spectrum, but there may be problems for samples
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above 1A2.5. For this reason, a neural network algorithm was chosen to study the relationship between
spectral data and the corresponding tracking and erosion resistance classification.
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Figure 17. Confusion matrix of the neural network algorithm using the MATLAB neural net pattern 
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Because it is convenient for LIBS to make multiple measurements at the same point, we can 
calculate all the spectral data of samples to get the corresponding tracking and erosion resistance, 

Figure 16. Distribution of spectral sets of samples for different tracking and erosion resistance
performance in the new coordinate space.

4.4. Neural Network Algorithm

In this part, the neural network algorithm was used to classify the tracking and erosion resistance
level of silicone rubber samples via LIBS spectral data. Spectral data was first processed by the PCA
algorithm, and then the 8 largest principal components were selected as the input of the network, with
the corresponding level as the output. 75% of the total spectral data was selected as the training set of
the neural network, 15% was the validation set, and the remainder was left for the test set. The results
of training are shown in Figure 17.
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Because it is convenient for LIBS to make multiple measurements at the same point, we can
calculate all the spectral data of samples to get the corresponding tracking and erosion resistance,
and then the probability for each level of all the samples can be obtained. The tracking and erosion
resistance with the highest probability was treated as the corresponding level of samples.
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There were 27 types of samples in total, including 3 samples classified as Class 1A0, 9 samples
classified as 1A2.5, 6 samples classified as 1A3.5, and 9 samples classified as 1A4.5; finally, all of the samples
were recognized correctly, and some of the results are shown in Table 6 through Table 9. It can be seen from
Tables 6 and 7 that silicone rubber material classified below Class 1A3.5 has a reliably nice recognition
result. The calculated probability for the corresponding level was greater than 90%. This is consistent
with the discussion of PCA in the previous section. However, it is slightly dangerous for the recognition
of samples classified as 1A3.5 in the method since one of the samples was nearly recognized as 1A2.5,
as shown in the second column in Table 8. Our model thought that this sample had a 57.6% probability of
being classified as 1A3.5 and a 31.3% probability of being classified as Class 1A2.5. This can be explained
by the fact that this sample contains 0.8 of ATH filler, while a sample with 0.75 of ATH filler cannot pass
the test with 3.5 kV. Comparing the second sample in Table 8 and the first sample in Table 9, it can be
seen that there is a certain effect on the probability of grading because of their relatively close composition.
This is also consistent with Figure 16.

From the above discussion, it can be seen that, although some samples have a relatively low probability
for the correct tracking and erosion resistance classification, the final recognition is still correct when the
level with highest probability is selected. All the samples were recognized correctly using hundreds of
spectra for each sample.

Table 6. Recognition results of the tracking and erosion resistance of samples below 1A0 using the
LIBS technique based on the neural network algorithm.

Classification 1 2 3

1A0 96.3% 100.0% 99.7%
1A2.5 3.7% 0.0% 0.3%
1A3.5 0.0% 0.0% 0.0%
1A4.5 0.0% 0.0% 0.0%

Table 7. Recognition results of the tracking and erosion resistance of samples classified as 1A2.5 using
the LIBS technique based on the neural network algorithm.

Classification 1 2 3 4

1A0 2.3% 0.7% 0.0% 0.0%
1A2.5 97.7% 99.3% 99.9% 99.6%
1A3.5 0.0% 0.0% 0.0% 0.1%
1A4.5 0.0% 0.0% 0.1% 0.3%

Table 8. Recognition results of the tracking and erosion resistance of samples classified as 1A3.5 using
the LIBS technique based on the neural network algorithm.

Classification 1 2 3 4

1A0 0.0% 0.0% 0.0% 0.0%
1A2.5 31.3% 6.8% 0.2% 0.3%
1A3.5 57.6% 75.7% 99.3% 99.0%
1A4.5 11.3% 17.6% 0.4% 0.7%

Table 9. Recognition results of the tracking and erosion resistance of samples classified as 1A 4.5 using
the LIBS technique based on the neural network algorithm.

Classification 1 2 3 4

1A0 0.0% 0.0% 0.0% 0.0%
1A2.5 4.3% 0.7% 3.1% 1.8%
1A3.5 6.9% 1.4% 2.2% 0.6%
1A4.5 88.8% 97.9% 94.8% 97.9%
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5. Conclusions

In this paper, the tracking and erosion resistance of silicone rubber material was analyzed using
the LIBS technique. Different samples were prepared to study the range of filler content corresponding
to different tracking and erosion resistance levels. The results of filler content using TGA and LIBS
were compared. Conventional methods of LIBS were used to study the tracking and erosion resistance
of samples. Some specific single lines or line combinations can be used to characterize the performance,
requiring tedious calculations and screening. PCA was used to extract the principal components of
spectral data to avoid tedious line selection work and to use the total information of full spectra as
much as possible. The 8 largest principal components were used as the input of the neural network,
while the corresponding output was the tracking and erosion resistance classification. The tracking and
erosion resistances of all spectra of each sample were calculated, and the classification with the highest
probability for each sample was obtained. In summary, LIBS can effectively measure the tracking and
erosion resistance of silicone rubber material using PCA and neural network algorithms.
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