
 

Sensors 2019, 19, 1086; doi:10.3390/s19051086 www.mdpi.com/journal/sensors 

Article 

Automatic Registration of Optical Images with 
Airborne LiDAR Point Cloud in Urban Scenes Based 
on Line-Point Similarity Invariant and Extended 
Collinearity Equations 
Shubiao Peng 1,2 Hongchao Ma 1,* and Liang Zhang 3 

1 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China; 
shbpeng@whu.edu.cn 

2 Jiangsu Surveying and Mapping Engineering Institute, Nanjing 210013, China 
3 Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; 

zhangliang_hubeiu@hotmail.com 
* Correspondence: hchma@whu.edu.cn 

Received: 17 December 2018; Accepted: 26 February 2019; Published: 3 March 2019 

Abstract: This paper proposes a novel method to achieve the automatic registration of optical 
images and Light Detection and Ranging (LiDAR) points in urban areas. The whole procedure, 
which adopts a coarse-to-precise registration strategy, can be summarized as follows: Coarse 
registration is performed through a conventional point-feature-based method. The points needed 
can be extracted from both datasets through a matured point extractor, such as the Forster operator, 
followed by the extraction of straight lines. Considering that lines are mainly from building roof 
edges in urban scenes, and being aware of their inaccuracy when extracted from an irregularly 
spaced point cloud, an "infinitesimal feature analysis method" fully utilizing LiDAR scanning 
characteristics is proposed to refine edge lines. Points which are matched between the image and 
LiDAR data are then applied as guidance to search for matched lines via the line-point similarity 
invariant. Finally, a transformation function based on extended collinearity equations is applied to 
achieve precise registration. The experimental results show that the proposed method outperforms 
the conventional ones in terms of the registration accuracy and automation level. 

Keywords: registration; LiDAR point cloud; point-line similarity invariant; line matching; extended 
collinearity equations (ECE) 

 

1. Introduction 

High spatial resolution optical images acquired by aerial or satellite remote sensors are one of 
the most commonly used data sources for geographic information applications [1]. They have been 
used for the detection and extraction of manmade objects, urban planning, environmental 
monitoring, rapid responses to natural disasters, and many other applications [2–5]. Nonetheless, the 
lack of three-dimensional (3D) information in optical images limits their applications in 3D scenes [6–8]. 
Airborne Light Detection and Ranging (LiDAR), on the other hand, has the ability to directly acquire 
3D geo-spatial data of the Earth’s surfaces under the World Geodetic System (WGS84). A LiDAR 
system can operate under a wide range of weather conditions with the acquired dataset free of 
shadow. Additionally, a laser pulse can penetrate the gaps of plant foliage and hit the ground; hence, 
not only providing an efficient way for high accuracy Digital Elevation Model (DEM) acquisition in 
regions covered with vegetation, but also being an indispensable means for forestry parameters 
retrieval. Both spatial and spectral information can be acquired when optical images and LiDAR 
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point clouds are combined, which effectively compensates for the deficiency caused by a single data 
source; this combination has many potential applications in natural hazard assessment [9–11], true 
orthophoto production [12,13], change detection [14–16], and automatic manmade objects extraction 
and modeling [17–21], to mention only a few. 

The fusion of LiDAR data and optical images can only be performed if they are precisely 
registered in order to eliminate the geometric inconsistency between the two datasets [22]. Although 
georeferenced aerial images and airborne LiDAR data should have been precisely registered, 
misalignments may exist because of the systematic errors of their respective sensor systems [23]. For 
example, errors may appear due to the insufficient accuracy of the Global Positioning System (GPS) 
and Inertial Measurement Unit (IMU) observations, or be caused by inappropriate system calibration. 
Therefore, precise registration is necessary, even if images have been georeferenced prior to fusing 
with point clouds. 

In digital image processing, image registration refers to the process of aligning two or more 
images pixel by pixel by using a transformation: one of them is referred to as the master and any 
others which are registered to the master are termed slaves. Registration is currently conducted with 
intensity-based methods, feature-based methods, or a combination of the two [24,25]. Intensity-based 
methods involve maximizing the similarity in intensity values between the transformed slave image 
and the master. Mutual Information (MI) [23] and normalized gradient fields are two of the most 
often used similarities [26]. In theory, intensity-based methods are fully automatic, but in practice, 
they are often mathematically ill-posed, in the sense that the registration solution might not be unique 
and a small change within the data might result in large variation in registration results [27]. In 
addition, different types of sensors significantly affect the similarity between images; therefore, the 
choice of similarity measure for the intensity-based methods is very important. In contrast, feature-based 
registration starts with feature primitives extraction from the master and slave images, respectively. 
Features can be points, line segments (edges), or surface patches. Then, algorithms are applied to 
search for matched primitives that will be employed for the establishment of the transformation 
model, which can be both parametric and non-parametric [25]. The slave image is then rotated, 
translated, and scaled, according to the established transformation model, after which the conjugate 
features are identically aligned. 

Unlike the image-to-image registration scenario, the registration between optical images and 
laser scanning data is characterized by registering continuous 2D image pixels to irregularly spaced 
3D point clouds, thereby making it difficult to meet the requirements imposed by traditional methods 
mainly developed for registering optical images. Studies conducted over the past decade in order to 
solve this problem fall into the following three categories: 

(1) LiDAR data is converted to 2D images according to their elevation and intensity values, and 
optical images are then registered to them by traditional image-to-image registration methods. 
Mastin et al. [23] suggested the use of mutual information as a similarity measure when LiDAR point 
clouds and aerial images were to be registered. Parmehr et al. [24] used the normalized combined 
mutual information (NCMI) approach as a means to produce a similarity measure that exploits the 
inherently registered LiDAR intensity and point cloud data, so as to improve the robustness of 
registration between optical imagery and LiDAR data. Abedini et al. [28] applied the scale-invariant 
feature transform (SIFT) algorithm for the registration of LiDAR data and photogrammetric images. 
Palenichka et al. [29] utilized salient image disks (SIDs) to extract control points for the registration 
of LiDAR data and optical satellite images. Experimental results have proved that the SIDs method 
is more effective than the other techniques for natural scenes. However, it is too complex and 
computationally expensive to implement in real world applications. 

Image-based methods make full use of existing algorithms for image registration and are 
therefore the methods typically used for the registration of point clouds and optical images. 
However, due to the inevitable errors caused by the conversion of irregularly spaced laser scanning 
points to digital images (an interpolation process), and the mismatching present between these two 
datasets, the registration accuracy may not be as satisfactory as would be expected. 
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(2) Dense photogrammetric points are first extracted by stereo-image matching, and 3D to 3D 
point cloud registration algorithms, such as Iterative Closest Point (ICP) or Structure from Motion 
(SFM), are then applied to establish a mathematical model for transformation [30–32]. The main 
drawback of this method is that the registration accuracy may be influenced by the result of image 
matching. The matching results may be degraded if not enough salient features can be extracted in 
regions of shadows, forests, desert, seashores, etc. Moreover, methods in this category require stereo 
images covering the same area as covered by point clouds, which increases the cost of data acquisition. 

(3) Some researchers have tried to establish a direct transformation function between the two 
datasets. Habib et al. used planar features [33] to establish a direct-mapping model between optical 
remote sensing images and LiDAR point clouds. Zhang et al. [34] performed the registration of aerial 
imagery and point clouds by utilizing the inherent geometrical constraint of the object boundaries. 
Ding et al. [35] made use of the vanishing points to extract features named 2DOCs (2D orthogonal 
corners) for refining the camera parameters referring to the point clouds. Wang and Neumann [36] 
further proposed a novel feature called 3CS (3 connected segments) to develop a robust automatic 
registration approach, which is claimed to be more distinctive than 2DOCs. 

Methods in categories (1) and (2) include the indirect registration between optical images and 
LiDAR point clouds, because both of them require an intermediate step to either convert irregularly 
spaced point clouds to raster structured images, or to generate photogrammetric point clouds from 
stereo images. Such intermediate processing can cause errors that are sometimes too serious to be 
neglected. For instance, points may be missing or sparsely distributed in a calm and clean waterbody 
due to its absorbent characteristics in the infrared band that a laser scanner often adopts, causing errors 
when these points are converted to image data by interpolation. Such errors can be controlled in some 
way with the methods in category (3). However, one should bear in mind that the automation of this 
type of method is limited by the state-of-the-art algorithms of extracting and matching conjugate 
features, which are far from mature. In addition, the existing transformation functions in literature are 
too mathematically complex to be implemented numerically without any difficulties [28,30]. 

This paper proposes a novel method for automatic registration of the two datasets acquired in 
urban scenes by using a direct transformation function based on collinearity equations and point 
features as control information, which falls into method category (3). The proposed method follows 
a coarse-to-precise registration strategy in which optical images are taken as slaves, and the LiDAR 
point cloud as the master. If the optical images have not been geo-referenced, then they will be 
coarsely registered by the conventional image-to-image registration method at first, in which Direct 
Linear Transformation (DLT) [37] is applied as the transformation function with point features 
extracted by a Förstner detection [38] as the control information for the establishment of the DLT. 
Coarse registration is skipped if images have been geo-referenced. In the precise registration stage, 
extended collinear equations (ECE), which map points in the object world onto their corresponding 
pixels in the image space, are adopted as the transformation function. Conjugate points extracted 
from the point cloud and image, respectively, are applied as the control information to calculate the 
unknown parameters of ECE, which are mainly the six exterior elements of the camera. Unlike 
existing studies which extracted conjugate points by various point detectors, in our proposed 
method, they are from the point features detected in the coarse registration stage, and located by 
matched lines on which the conjugate points lie, thereby overcoming the difficulty of extracting 
salient points from irregularly spaced LiDAR data. Automatic line matching is based on the line-
point similarity invariant–an algorithm which will be described in Section 3. The whole procedure is 
shown in Figure 1. 

The main contributions of this paper are twofold: direct registration by extended collinear 
equations and automatic matching of line features through the line-point similarity invariant. The 
first contribution allows for establishing direct correspondence between conjugated line features, 
other than using these features to estimate the exterior orientation elements of the camera acquiring 
the optical image and then georeference it. In the context of the registration of the point cloud and 
optical images, some specific research works were conducted in terms of exterior orientation with the 
help of point clouds. As a matter of fact, many research works conducted exterior orientation 
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elements estimation from line or plane features. Zhang et al. [39] used building corners as registration 
primitives and exterior orientation parameters were refined by bundle adjustment using the corner 
points or centroids of plane roof surfaces as control information. Zheng et al. [40] and Huang et al. [41] 
used tie points after bundle adjustment of the sequence images to register with the laser point cloud 
by the ICP method and the homologous laser points acquired by registration were used to optimize 
the interior and exterior orientation elements of the optical image. Habib et al. [42] described an 
alternative methodology for the determination of exterior orientation for optical images, which uses 
three-dimensional straight-line features instead of points. Mastin et al. [23] proposed a novel 
application of mutual information registration methods, which exploits the statistical dependency in 
urban scenes of optical appearance with measured LiDAR elevation, to infer camera pose parameters. 
Yang et al. [43] proposed a method for estimating the exterior orientation parameters of images in 
the LiDAR reference frame with the conjugate building outlines by extracting them from laser 
scanning points and optical images, respectively, with the help of direct geo-referencing data. 
Sungwoong et al. [44] and Armenakis et al. [45] established the relationships between planes in image 
space and the LiDAR point cloud, respectively, for optimizing the exterior orientation elements of 
optical images. However, the accuracy of the calculated exterior orientation elements by these 
methods is affected by the accuracy of the extracted line and plane features. Moreover, it is 
computationally expensive regarding feature extraction from photogrammetric images and LiDAR 
data, as well as the establishment of the correspondence between conjugate primitives. In our 
proposed approach, the exterior orientation was encapsulated into the extended collinear equations 
in some sense. The basic idea behind the second contribution is to use cheaply obtainable matched 
points to boost line matching via line–point invariants, even if the matched points are susceptible to 
severe outlier contamination because of the huge difference between LiDAR-based images and 
optical images. Therefore, our registration strategy not only establishes a direct transformation model 
which relieves the computational complexity and simplifies the entire registration process, but also 
exploits point feature detection and localization by the line-point similarity invariant. 

In the following sections, emphases are placed on the establishment of the extended collinearity 
equations-based transformation function and the matching of line features by the line-point similarity 
invariant. The structure of the paper is organized as follows: Section 2 expounds the details of the 
transformation function; Section 3 describes the extraction of line features from both the images and 
point cloud, as well as automatic line matching based on the line-point similarity invariant; Section 4 
presents experimental results and discussions; and this paper ends in Section 5 with conclusions. 

Extract  points with Förstner operator and perform 
coarse registration if images were not georeferenced

Search matched lines based on line-point 
similarity invariant

Extract line 
segments 

LiDAR point cloud Aerial image 

Precise registration based on extended 
collinearity equations

Product: image 
precisely registered with point cloud

Extract line 
segments 

 
Figure 1. The flow chart of automatic registration of urban aerial images with LiDAR points based on 
the line-point similarity invariant and extended collinearity equations. 
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2. Transformation Function Based on the Extended Collinearity Equations 

In photogrammetry, collinearity equations describe the relationship between the coordinates of 
a 2D image pixel (denoted by α) with respect to the image coordinate system and its corresponding 
object point (denoted by β) coordinates with respect to an object space coordinate system. The 
following is the mathematical expression of the equations: 𝑥 = 𝑥 − 𝑓 𝑎 𝑋 − 𝑋 + 𝑎 𝑌 − 𝑌 + 𝑎 𝑍 − 𝑍𝑎 𝑋 − 𝑋 + 𝑎 𝑌 − 𝑌 + 𝑎 𝑍 − 𝑍  

𝑦 = 𝑦 − 𝑓 𝑎 𝑋 − 𝑋 + 𝑎 𝑌 − 𝑌 + 𝑎 𝑍 − 𝑍𝑎 𝑋 − 𝑋 + 𝑎 𝑌 − 𝑌 + 𝑎 𝑍 − 𝑍  
(1) 

where 𝑥 and 𝑦 are image coordinates of an image pixel and 𝑋 , 𝑌 , 𝑍  are their corresponding 
object coordinates; 𝑥  and 𝑦  denote the coordinates of the principal point of the camera acquiring 
the image; 𝑓 is the camera’s focal length; 𝑋 , 𝑌  and 𝑍  are the object coordinates of the camera 
station at the time when the image was recorded; and 𝑎 , …, 𝑎  are the elements of a rotation 
matrix which describes the three-dimensional attitude, or orientation, of the image with respect to 
the object coordinate system. They are calculated from three rotation angles of the camera with 
respect to the object space coordinate system, usually denoted by 𝜑, 𝜔, and 𝜅 [46]. 

Since LiDAR data can be viewed as object points, while image pixels are their corresponding 
image points, collinearity equations are in fact the mathematical model which describes the mapping 
relationship between the two datasets. Such a model can be employed as the transformation function 
for registration if conjugate points in the image, and in the LiDAR data, can be extracted and matched. 
However, when the point cloud is irregularly spaced, it is very difficult, if not impossible, to extract 
salient points from it, which leads to the difficulty of applying the collinearity equations for 
registration without modification.  

To overcome the abovementioned difficulty, we propose a strategy where point features are 
replaced by line segments. The fundamental idea is as follows: denote two points on a line p in LiDAR 
data by A and B. If the coordinate values of A and B are known, then the line passing through them 
can be expressed by the following parametric equation: 

A B A

A P B A

A B A

X X X X

Y Y Y Y

Z Z Z Z
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= + −

−
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where 𝜆  is a scalar that spans from negative infinity to positive infinity and 𝑋 , 𝑌 , and 𝑍  are the 
coordinates of a point 𝛽 on the line p. Given A and B, then 𝛽 traces out the line as 𝛽 goes from -∞ 
to +∞. Substituting Equation (2) into (1), the resultants 𝛽 below are termed as extended collinearity 
Equations (3): 𝑥 = 𝑥 − 𝑓 𝑎 𝑋 + 𝜆 (𝑋 − 𝑋 ) − 𝑋 + 𝑎 𝑌 + 𝜆 (𝑌 − 𝑌 ) − 𝑌 + 𝑎 𝑍 + 𝜆 (𝑍 − 𝑍 ) − 𝑍𝑎 𝑋 + 𝜆 (𝑋 − 𝑋 ) − 𝑋 + 𝑎 𝑌 + 𝜆 (𝑌 − 𝑌 ) − 𝑌 + 𝑎 𝑍 + 𝜆 (𝑍 − 𝑍 ) − 𝑍  

𝑦 = 𝑦 − 𝑓 𝑎 𝑋 + 𝜆 (𝑋 − 𝑋 ) − 𝑋 + 𝑎 𝑌 + 𝜆 (𝑌 − 𝑌 ) − 𝑌 + 𝑎 𝑍 + 𝜆 (𝑍 − 𝑍 ) − 𝑍𝑎 𝑋 + 𝜆 (𝑋 − 𝑋 ) − 𝑋 + 𝑎 𝑌 + 𝜆 (𝑌 − 𝑌 ) − 𝑌 + 𝑎 𝑍 + 𝜆 (𝑍 − 𝑍 ) − 𝑍  
(3) 

Supposing that interior elements of the camera are known, and that systematic errors have been 
removed, normal equations can be established by linearization using first order Tylor expansion of 
Equations (4): 𝑣 = (𝑥 ) − 𝑥 + 𝐴 𝛻𝑋 + 𝐴 𝛻𝑌 + 𝐴 𝛻𝑍 + 𝐴 𝛻𝜙 + 𝐴 𝛻𝜔 + 𝐴 𝛻𝜅 + 𝐵 𝛻𝜆 𝑣 = (𝑦 ) − 𝑦 + 𝐴 𝛻𝑋 + 𝐴 𝛻𝑌 + 𝐴 𝛻𝑍 + 𝐴 𝛻𝜙 + 𝐴 𝛻𝜔 + 𝐴 𝛻𝜅 + 𝐵 𝛻𝜆 (4) 

where (𝑥 ) and (𝑦 ) denote the calculated image coordinate of point 𝛼 from Equation (1) given the 
initial values of interior and exterior orientation elements and the coordinates of 𝛽 with respect to the 
space coordinate system. The calculation of coefficients 𝐴 –𝐴 , 𝐴 –𝐴  and 𝐵 , 𝐵  can be found 
in [47]. 

In the case of n pairs of straight lines being matched, the normal Equation (4) can be written as: 
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𝑽 = 𝑨 × , 𝑩 × 𝒕 ×𝝀 × − 𝑳 ×  (5) 

where A and B are the matrices of the coefficients 𝐴 –𝐴 , 𝐴 –𝐴  and 𝐵 , 𝐵 , respectively; t 
represents the unknown corrections to the initial approximations of six exterior elements; 𝝀 is the 
vector of unknown parameters 𝜆  corresponding to different lines; L is the vector of constants 
calculated from the collinear equations using approximated initial values of exterior elements; and V 
is the vector of residual errors. 

The numerical implementation stage begins after straight line segments are extracted from both 
datasets. Each straight line in the point cloud is expressed by its parametric equation, and line 
matching is performed. Matched point pairs are then extracted from the matched line pairs; this is 
achieved through the following process (shown in Figure 2): a point α is selected randomly from a 
matched line segment L’ in the image; then its corresponding point 𝛽 in the LiDAR data must lie on 
the line segment matched with L’ in the point cloud, denoted by L, or its extended part. The accurate 
position of the point 𝛽 is determined by fixing the parameter λ, which is achieved by solving normal 
Equation (5) by least mean squares iteratively, a process known as space resection in 
photogrammetry. It is obvious that this method relies heavily on accurate line matching, a process 
which will be described in detail in Section 3. 

α

LiDAR SpaceImage Space

βTRUE
L'

L

 
Figure 2. In the iterative process, a point 𝛽 approaches its true position: L' and L constitute a matched 
line pair lying on image space and LiDAR space, respectively. The true corresponding point is 
determined as soon as parameter 𝜆 is calculated in the iterative process. 

We will conclude this section with some comments on the extended collinearity equations. If the 
optical image is acquired by an aerial photogrammetric camera with a positioning and orientation 
system (POS) as its direct geo-referencing device, then exterior orientation elements obtained by POS 
can be used as initial values in the iterative least mean squares adjustment process. If, on the other 
hand, there are no direct geo-referencing devices applied during image acquisition, or if the optical 
image is acquired by satellites whose ephemeris parameters are not provided, then other 
transformation functions, such as polynomial functions, can also be extended by the process stated above. 

3. The Extraction of Registration Primitives and Automatic Matching Based on Line-Point 
Similarity Invariant 

As mentioned above, our proposed method requires line matching. However, there are few 
existing algorithms for that purpose in existing literature. Bay et al. [47] proposed matching lines on 
the basis of their appearance and topological layout. Wang et al. [48] proposed a so-called mean–standard 
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deviation line descriptor (MSLD) for matching line segments automatically using just their 
neighborhood appearance, without resorting to any other constraints or prior knowledge.  
Lourakis et al. [49] utilized two lines and two points to build a projective invariant for matching 
planar surfaces with points and lines. Fan et al. [50] proposed matching lines by line–point invariants 
between a line and its neighboring points. Two kinds of line–point invariants have been introduced 
in the literature; one is an affine invariant derived from a line and two points, and the other is a 
projective invariant derived from a line and four points. In summary, most of the existing line 
matching methods employ textural features of the local area, or relationships between lines, such as 
distances, ratios of distances, differential seat angles, invariants, etc. Great differences are witnessed 
in terms of the textural and spectral information of LiDAR data and optical images, since they are 
acquired by entirely different sensors. Bearing these things in mind, and with the help of the ideas 
presented in existing literature [51], the line-point similarity invariant is applied to line matching in 
this paper.  

3.1. Line Features Extraction from LiDAR Data and Optical Image 

A coarse to precise strategy was applied to extract line features from LiDAR data as follows: 
Firstly, coarse building roof edge lines were detected by converting the point cloud into an image, 
and then common line detectors were applied, as stated in the literature [51]. The infinitesimal feature 
analysis method, which combines the scanning property of an airborne LiDAR system, was then 
introduced to refine coarse edge lines: when the scanning angle of a laser beam is larger than a given 
threshold value (Figure 3a), then the echo of the beam should be reflected from a building facade. If 
an edge line is projected onto the ground, then a vertical plane V which contains the edge line and is 
perpendicular to the ground can be formed. After slightly moving the plane along its normal 
direction, an approximate cuboid is formed. The term infinitesimal is used to indicate that the 
distance the plane moves should be small enough (1.5–2 times the average distance laser points), as 
shown in Figure 3b. The number of points contained in the cuboid can be easily counted. If the points 
are more than the necessary number of samples required for fitting a plane by the least mean square 
(LMS) technique, then a plane can be fitted by LMS, that is, the building facade. The same procedure 
can be applied to refine the roof plane. The intersection line of the refined roof plane and the fitted 
building facade is exactly the refined edge line. This procedure is then applied to all edges detected 
in the first step, finishing the extraction of precise lines. If the width of eaves is greater than 1.5–2 times 
the average distance of laser points, such as the scenario shown on the right of Figure 3a, we simply 
leave them out since we require only enough line features for the registration purpose, other than 
completely extracting precise roof edges; and there should be enough line primitives in urban areas 
even when some lines are neglected. 

 

dV

 
(a) (b) 

Figure 3. Line features extraction based on LiDAR point clouds: (a) LiDAR point clouds echoed from 
the wall; (b) the small cuboid formed by moving the wall or the roof plane along its normal direction. 
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Much literature exists concerning line features extraction from images. The Line Segment 
Detector (LSD) [52] method is employed in this paper. Compared with conventional methods that 
first apply the Canny edge detector, followed by a Hough transform, the LSD method is believed to 
be more accurate, yielding a smaller amount of false positive and false negative detections, and 
requires no parameter tuning. 

3.2. Line Matching Based on Line-Point Similarity Invariant 

As has been stated in the beginning of the present section, line matching based on the line-point 
similarity invariant is a key step in the proposed registration method. The basic principle of the line-
point similarity invariant can be summarized as follows: Points are denoted as 𝑎 , and lines as 𝑞 , in 
a LiDAR-derived intensity image; in the optical image, they are denoted as 𝑏  and 𝑝 , respectively. 
In this paper, line features are denoted by coefficient vectors. For instance, a line 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 
can be denoted as 𝑞 = (𝐴, 𝐵, 𝐶) . Given two sets of line features extracted respectively from the 
LiDAR intensity image (𝐿 = 𝑞 , 𝑞 ⋯ 𝑞 )  and the coarse-registered optical image  (𝐿 = 𝑝 , 𝑝 ⋯ 𝑝 ), and a set of matched points S = 𝑠 , 𝑠 ⋯ 𝑠 , where 𝑠 = (𝑎 , 𝑏 ), 0 ≤ 𝑚 ≤ 𝑘 , 
which was detected by the Förstner algorithm in the coarse registration stage. Suppose that a line 𝑞 
lies on the LiDAR intensity image, and line 𝑝 is its corresponding optical image, as shown in Figure 4. 
After coarse registration, the optical image has been projected on the same coordinate frame as the 
LiDAR intensity image. The relationship between corresponding lines and points can be expressed 
by an affine transformation approximation: 𝑞 = 𝑯 𝑝 (6) 

where 𝑯 is the matrix representing the affine transformation and 𝑯  is the inverse transpose. 
Now assume that 𝑎  and 𝑎  lie in the neighborhood of 𝑞, and 𝑏  and 𝑏  lie in the neighborhood 
of 𝑝. We present 𝑎 , 𝑎  and 𝑏 , 𝑏  as homogeneous coordinates 𝑎 , 𝑎 , 𝑏 , 𝑏 , allowing them to 
also satisfy the affine transformation: 𝑏 = 𝑯𝑎 , (𝑖 = 1,2) (7) 

a1

a2

b1

b2

q
p

LiDAR intensity image Optical aerial image

p”

p’
 

Figure 4. The corresponding relationship between points and lines in a local area. 

Let:  𝐷(𝑎 , 𝑎 , 𝑝) = |𝑞 𝑎 ||𝑞 𝑎 |
 𝐷(𝑏 , 𝑏 , 𝑞) = |𝑝 𝑏 ||𝑝 𝑏 | (8) 

Then, D is the ratio of the respective distance of two points to a line. Substituting Equations (6) 
and (9) into these new Equations (8), the following equality holds: 
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𝐷(𝑎 , 𝑎 , 𝑝) = 𝐷(𝑏 , 𝑏 , 𝑞) (9) 

Equation (9) states that the distance ratio is unchanged after the affine transformation. This 
property is named the line-point similarity invariant, and it can be utilized for line matching. Armed 
with the line-point similarity invariant, the whole process for the automatic line matching consists of 
the following steps: 

1. Define a rectangular search region surrounding line q in the LiDAR intensity image, whose 
length and breadth are determined by 2𝛼 ∙ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑞) and 2𝛽 ∙ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑞), respectively (Figure 5). 
Parameters 𝛼 and 𝛽 control the size of the rectangle, which can be determined empirically. It 
is optimal in many cases that the parameters are 1.5 to 2 times the length of line 𝑞. One side of 
the rectangle is parallel to line 𝑞. Since the optical image has been coarsely registered to the 
LiDAR intensity image, a corresponding search region that is approximately the same as this 
one can be formed in the optical image. Find all matching points within these two search regions 
from set S. Carry out the same process for each extracted line in the intensity image.  

 
Figure 5. Search region determination. 

2. Considering that not all matched points in a search region are correct, a similarity measure is 
defined according to formula (10), after the distance ratios have been calculated with (9), 
which means that if line 𝑝  matches with line  𝑞 , and the point pair 𝑎 , 𝑏  are correctly 
matched, then 𝑆𝑖𝑚(𝑞, 𝑝) tends toward 1. The similarity measure of each of the matched points 
in both search regions is calculated, and lines 𝑝 and 𝑞 are labeled as a matched pair when 𝑆𝑖𝑚(𝑞, 𝑝) approaches 1. 𝑆𝑖𝑚(𝑞, 𝑝) = 𝑒 ( , , ) ( , , )‖ (10) 

3. Lines matched by step (2) may lack robustness. The right part of Figure 4 demonstrates this more 
clearly: both line pairs 𝑝 , 𝑞  and 𝑝 , 𝑞  meet the requirement of the line-point similarity 
invariant, but neither 𝑝  nor 𝑝  is matched to line 𝑞. To overcome this problem, the distance 
between the two lines is introduced as an auxiliary similarity measure. This definition was 
illustrated by Figure 6, where A, B are the end points of line 𝑝, and the distances from points A 
and B to the line 𝑞 are denoted by 𝑑  and 𝑑 , respectively. The distance from 𝑞 and 𝑝 is then 
defined by Equation (11). If 𝐷 is greater than two times the average distance of laser points, 
then line p is labeled as not matching with line 𝑞. 𝐷 = 12 (11) 
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Figure 6. Distance between two straight line segments. 

4. To speed up the matching process, the following strategy is adopted: considering that a pair of 
initially-matched lines should be nearly parallel after the coarse registration, because most 
distortions have been eliminated, we set a threshold of angle tolerance and compare it to the 
acute angle spanned by a given pair of matched lines. Pairs with a spanned angle larger than the 
threshold are labeled as mismatched, and are deleted from the candidates waiting for matching. 
Matching speed is accelerated greatly in this way. 

5. Repeat steps (1) to (4) until all lines have been traversed. 

4. Experimental Results and Discussions 

An aerial image and airborne LiDAR point cloud in Changchun, China, were used as test 
datasets. They were acquired by a Leica ALS70 airborne laser scanning system (Leica Geosystems 
AG, Heerbrugg, Switzerland). As shown in Figure 7, the area is dense, with buildings and plants. The 
average point distance of the LiDAR data is 0.7 meters. The vertical and horizontal accuracies are 
approximately 0.10–0.15 m and 0.2–0.3 m, respectively, which were evaluated by ground control 
points. Images were acquired by a Leica RCD105 digital frame camera. The size of the aerial image 
used for the experiment was 5412×7216 pixels, with an approximate ground resolution of 0.14 m. 

 

(a) 

  
(b) (c) 

Figure 7. Experimental data: (a) location map of experimental area (b) LiDAR point clouds and  
(c) aerial optical image. 
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In the first step of the proposed method, coarse registration is performed by DLT. The DLT 
parameters were calculated by matched points extracted by the Förstner operator from both the 
image and LiDAR data, followed by the extraction of line segments (Figure 8). It is found that there 
are plenty of line segments distributed uniformly in the point cloud, and each line is surrounded by 
a certain number of matched points; thus, the condition of the line-point similarity invariant is 
satisfied. Though the aerial image has been coarsely registered, some roof surfaces are still obviously 
shifted from their true positions (shown in the top row of Figure 9), indicating that precise registration 
is necessary. 

  
(a) (b) 

  
(c) (d) 
Line features in LiDAR point clouds 
Line features in optical image 
Line features refined by infinitesimal feature analysis method 
Point features in LiDAR point clouds 
Point features in optical image 
Wrong pairs of matched points 

Figure 8. Extracted lines and points: (a) and (b) show the features extracted from LiDAR data; while 
(c) and (d) show the features extracted from optical images. 

The proposed method is then performed for the precise registration, and the results are 
compared visually with the ones obtained by coarse registration. As shown in Figure 9, the 
registration accuracy has been greatly improved by the proposed method. 
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Figure 9. Visual comparison showing the coarse registration results, on the top row, and the precise 
registration results, on the bottom row. 

A method for quantitative registration accuracy evaluation was also proposed: line segments 
were firstly sketched manually both in the point cloud and the optical image, respectively, and line 
segments in the image were then mapped onto the point cloud by collinearity equations. Formula (11) 
was finally applied to calculate the distance between a line segment in the point cloud and the 
corresponding one mapped from the image. A smaller distance indicates a more precise registration. 
In our experiment, forty-nine such line segments were manually selected. They were independent 
from the observed ones used for the establishment of the registration model and had different 
directions. Statistics of maximum error (MAX), mean error (MEAN), and root mean square error 
(RMSE), of the distances between the forty-nine pairs of line segments were used for the accuracy 
evaluation. Table 1 shows that after coarse registration, the MAX, MEAN, and RMSE are 1.52 m, 0.61 
m, and 0.45 m, respectively. They decrease to 0.52 m, 0.24 m, and 0.13 m, respectively, after precise 
registration. Considering that the average LiDAR point distance is about 0.7 m, and that the ground 
resolution of the optical image is about 0.14 m, we conclude that the proposed registration method is 
effective and precise. Figure 10 shows a 3D perspective view of the colorized LiDAR point clouds in 
the low-density urban setting of Changchun, generated with the registered image and LiDAR data. 
Although both the image resolution and point density are low, the high quality of registration is 
readily ascertained through the buildings, trees, and other objects shown in the scene. 

Table 1. Distances between check pair lines and their statistics. 

Registrations Error statistics (Unit: Meter) 
MAX MEAN RMSE 

Coarse registration by initial exterior 
orientation elements 2.76 1.36 0.84 

Coarse registration by Förstner operator and 
DLT transformation model 1.52 0.61 0.45 

Precise registration by extended collinearity 
equations 

0.52 0.24 0.13 
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Figure 10. 3D visualization of a rural scene in Changchun using the colorized 3D LiDAR point. 

It is worthwhile to mention that in our experiment, two types of images were generated based 
on the point cloud before the Förstner algorithm was performed to extract point features from them: 
an intensity image and elevation image. The former used intensity values (normalized to 0–255) 
recorded by the LiDAR system, while the latter used elevations (also normalized to 0–255) as the 
digital numbers of a pixel. The mismatch ratio of points in the intensity image and optical image is 
40.2%, and it is as high as 75.2% in terms of the elevation image and optical image, indicating that the 
coarse registration based on point features and DLT could not be accurate enough, no matter whether 
an intensity image or elevation image was used to extract point features from the point cloud. 

5. Conclusions 

A new registration method based on the line-point similarity invariant and extended collinearity 
equations is proposed in order to solve the automatic registration problem when LiDAR data and 
optical images are to be integrated in urban scenes. The main contributions of this paper are 
summarized as follows: (1) infinitesimal feature analysis which fully utilizes the scanning 
characteristics of a LiDAR system is proposed to refine roof edge lines, thus solving the problem of 
inaccurate edge lines extraction from LiDAR data; (2) a rigorous mathematical model for direct 2D to 
3D registration is developed based on traditional collinearity equations, achieving direct registration 
between 2D images and a 3D point cloud; and (3) matched lines can be searched automatically with 
the guidance of matched points extracted by the Förstner operator, with the help of line-point affine 
similarity in a local area. Point features and line features are effectively combined in the proposed 
method, achieving precise registration with a high efficiency. 

The accuracy of the proposed registration method mainly relies on the accurate extraction of line 
segments from the point cloud, because it is the master dataset, and registration primitives used for 
the establishment of the extended collinearity equations are line segments detected from it. The 
infinitesimal feature analysis method for line extraction from the point cloud guarantees that the 
errors of the extracted lines are no greater than the average distance of points in the dataset. Thus, if 
the resolution of the image to be registered is around the average distance of laser scanning points, 
then a subpixel registration accuracy is expected. 

In mountain areas and suburbs lacking in line segments, curves can serve as candidates that are 
able to mimic linear features. However, how to extend collinear equations to curves remains a 
technical problem worthy of further study. In addition, the image resolution and LiDAR point 
density will affect the accuracy and quantity of extracted features; this, in turn, will influence the 



Sensors 2019, 19, 1086 14 of 16 

 

precision of the final result. For registration application, determination of the optimal image 
resolution for a given point density, and vice versa, requires extensive experiments. 
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