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Abstract: We propose a new collaborative beamforming (CB) solution robust (i.e., RCB) against major
channel estimation impairments over dual-hop transmissions through a wireless sensor network
(WSN) of K nodes. The source first sends its signal to the WSN. Then, each node forwards its received
signal after multiplying it by a properly selected beamforming weight. The latter aims to minimize
the received noise power while maintaining the desired power equal to unity. These weights depend
on some channel state information (CSI) parameters. Hence, they have to be estimated locally at
each node, thereby, resulting in channel estimation errors that could severely hinder CB performance.
Exploiting an efficient asymptotic approximation at large K, we develop alternative RCB solutions
that adapt to different implementation scenarios and wireless propagation environments ranging
from monochromatic (i.e., scattering-free) to polychromatic (i.e., scattered) ones. Besides, in contrast
to existing techniques, our new RCB solutions are distributed (i.e., DCB) in that they do not require
any information exchange among nodes, thereby dramatically improving both WSN spectral and
power efficiencies. Simulation results confirm that the proposed robust DCB (RDCB) techniques are
much more robust in terms of achieved signal-to-noise ratio (SNR) against channel estimation errors
than best representative CB benchmarks.

Keywords: collaborative beamforming (CB); distributed CB (DCB); robust DCB (RDCB); wireless
sensor network (WSN); scattering; channel mismatch; implementation impairments; channel
estimation errors; synchronization; localization; direction-of-arrival (DoA); scatterers

1. Introduction

Collaborative beamforming (CB) stands out today as a key technique that offers tremendous
capacity, coverage, and power gains [1–24]. Using CB, K autonomous and independent sensor nodes
relay the information from a desired source to a target destination through a two-hop communication
link by estimating then transmitting weighted replicas of the desired signal in the first and second
time slots, respectively. The beamforming weights are designed so as to optimize an objective function
while satisfying some practical constraints. Due to its numerous merits, CB has gained the attention of
the research community. Ref. [2] introduced the CB concept and analyzed its performance in wireless
sensor networks (WSNs). Ref. [12] evaluated the CB’s beampattern characteristics while [13] designed
a technique that narrows down its mainbeam and minimizes its sidelobe effect. Refs. [14,15] proposed
CB solutions that improve WSN energy efficiency and reduce its nodes collaboration time while [17–24]
extended the CB applicability range to scattered environments.

Nevertheless, CB’s implementation require all other beamforming nodes’s information such
as their locations. This can entail an excessively large amount of information exchange among the
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nodes. The optimal beamforming weights may then be efficiently approximated by another set of
weights that can be computed based solely on locally available information at each individual node,
thereby creating a distributed CB (DCB) solution capable of relieving the nodes from the cumbersome
information exchange procedure.

Despite its advantages, CB (or DCB) inevitably suffers in practice from channel estimation errors.
Indeed, the beamforming weights often depend on and, hence, require the estimation of channel state
information (CSI) parameters locally at each node. Unfortunately, such a process could result in several
estimation errors that may cause severe channel mismatch and, hence, dramatically hinder the CB (or
DCB) performance. To overcome this shortcoming, Refs. [25–38] developed new robust CB (RCB or
RDCB) techniques against such estimation errors. These techniques could be roughly divided into two
categories: worst-case and stochastic. The former are designed to handle the worst-case scenario when
errors reach their maximum and, hence, can be extremely inefficient when actually these errors are in
most real-world conditions subject to random perturbations and/or unbounded [38,39]. The latter are
more robust since their design accounts for random errors. Nevertheless, they have some drawbacks
of their own. Indeed, they rely very often on iterative greedy suboptimal search approaches that
explore a daunting number of potential solutions. Unfortunately, WSN nodes find their extremely
limited computing and power capabilities severely burdened and quickly exhausted or depleted.
Besides, their robustness very often deteriorate drastically in the presence of large channel estimation
errors and, hence, become unsuitable for hostile wireless environments. More importantly, almost all
existing stochastic CB techniques suffer from another major drawback: the key fact that they do not
offer distributed solutions. Indeed, the weights depend on other node information which are locally
unavailable. Although robust to small errors, their implementation requires in real-world operating
conditions huge information exchange among all nodes. The required overwhelming data overhead
could starve to "death" the very limited computing and power capabilities of WSN nodes, very often
found already exhausted and depleted (cf. above), and, if not enough, could dramatically degrade
their spectrum efficiency. [32] proposed a stochastic CB solution that is both robust and distributed
(i.e., RDCB) where the total transmission power of the relays is minimized while being subject to an
outage probabilistic quality of service (QoS) constraint. Nevertheless, the RDCB in [32] assumes that
estimation errors relatively are much smaller than the channel estimates and, hence, suffers from severe
performance degradation in harsh environments that characterize real-world operating conditions.

We propose a new RDCB solution robust against major channel estimation impairments,
namely phase synchronization, localization, direction-of-arrival (DoA), and/or channel
scatterers/coefficients estimation errors over dual-hop transmissions from a source to a destination
communicating through a WSN of K nodes. In the first time slot, the source sends its signal to the WSN
while, in the second, each node forwards its received signal after multiplying it by a properly selected
beamforming weights. The latter aims to minimize the received noise power while maintaining the
desired power equal to unity. These weights depend a priori on some CSI parameters. Hence, they
have to be estimated locally at each node, thereby resulting in channel estimation errors that could
severely hinder the CB performance. Exploiting an efficient asymptotic approximation at large K, we
develop alternative solutions that not only account for estimation errors, but also adapt to different
implementation scenarios and wireless propagation environments ranging from monochromatic (i.e.,
scattering-free) to polychromatic (i.e., scattered) ones. Besides, in contrast to existing techniques,
our new RCB solutions are also distributed (i.e., RDCB) in that they do not require any information
exchange among nodes, thereby dramatically improving the WSN spectral and power efficiencies.
Simulations results confirm that the proposed RDCB techniques are much more robust in terms of
achieved signal-to-noise ratio (SNR) against channel estimation errors than the nominal optimal CB
solution (i.e., optimized without being aware of and, hence, accounting for impairments) and RDCB
in [32] benchmarks, yet at much lower complexity, power cost, and overhead, making them suitable
for WSN deployment in the harsh environments that characterize operation in real-world conditions.
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The paper is organized as follows. Section 2 describes the dual-hop communication system model.
The proposed monochromatic RDCB (M-RDCB) and polychromatic RDCB (P-RDCB) techniques
are derived in Section 3. Section 4 analyzes theoretically the performance gains that the new
M-RDCB and P-RDCB solutions could potentially achieve by integrating robustness in their designs in
monochromatic and polychromatic environments. Simulation results are discussed in Sections 5 and 6
draws out concluding remarks.

Notation : Uppercase and lowercase bold letters denote matrices and column vectors, respectively.
[.]il and [.]i are the (i, l)th entry of a matrix and ith entry of a vector, respectively. The operators (.)∗,
(.)T , and (.)H denote the complex conjugate, the transpose, and the complex conjugate transpose or
Hermitian, respectively. ||.|| is the 2-norm of a vector and |.| is the absolute value. The operator � is
the element-wise product. E{.} stands for the statistical expectation and J1(.) is the first-order Bessel
function of the first kind.

2. System Model

As illustrated in Figure 1, the system of our interest consists of a wireless sensor network (WSN)
comprised of K nodes each of which is equipped with a single isotropic antenna and uniformly and
independently distributed on D(O, R), the disc with center at O and radius R, a receiver Rx, and a
source S both located in the same plane containing D(O, R). We assume that there is no direct link
from the source to the receiver due to high pathloss attenuation [2,15,17–21]. Moreover, let (As, φs)

denote the source’s polar coordinates and s its narrow-band. In this paper, we assume that the signal
bandwith’s reciprocal is large with respect to the time delays of all rays. For this reason, the time
notion is ignored when denoting the source signal. unit power signal. Without any loss of generality,
S is assumed to be at φs = 0. Let (rk, ψk), [g]k, and [f]k denote the k-th node’s polar coordinates,
backward, and forward channel, respectively. [f]k is assumed to be a zero-mean unit-variance circular
Gaussian random variable. Since the WSN nodes are independent and completely autonomous, we
consider here that the k-th WSN is only aware of its coordinates and both its backward and forward
channels while being obvious to those of all other nodes in the network. A dual-hop communication is
established from the source S to the receiver Rx. In the first time slot, the source sends its signal s to
the WSN. Let y denote the received signal vector at the sensor nodes given by

y = gs + v, (1)

where g , [[g]1 . . . [g]K]T and v is the nodes’ noise vector. In the second time slot, the k-th node
multiplies its received signal with the complex conjugate of the beamforming weight wk and forwards
the resulting signal to the receiver. It follows from (1) that the received signal at O is

r = fT (w∗ � y) + n = wH (f� y) + n

= wH (f� gs + f� v) + n

= swHh + wH(f� v) + n, (2)

where w , [w1 . . . wK] is the beamforming vector, h , f� g, f , [[f]1 . . . [f]K]T , and n is the receiver
noise. Let Pw,s and Pw,n denote the received power from the source, and the aggregate noise power
due to the thermal noise at the receiver and the forwarded noises from the terminals, respectively. It
holds from (2) that

Pw(φs) =
∣∣∣wHh

∣∣∣2 , (3)

Pw,n = σ2
v wHΛw + σ2

n , (4)

where Λ , diag{|[f]1|2 . . . |[f]K|2}. Although several approaches can be adopted to properly design
the beamforming weights [35], we are only concerned in this paper with minimizing the aggregate
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noise power while maintaining the beamforming response wHh, and hence, the power received
from the source equal to unity. The latter is nothing else but the well-known minimum variance
distortionless response (MVDR) beamformer [40,41] with a relaxed distortionless response constraint.
Mathematically speaking, we have to solve the following optimization problem:

wopt = arg min Pw,n s.t. Pw(φs) = 1, (5)

where wopt denotes the ideal optimal beamforming vector. The optimization problem in (5) can be
rewritten as

wopt = arg min wHΛw s.t.
∣∣∣wHh

∣∣∣2 = 1, (6)

or, equivalently as

wopt = arg max
wHhhHw

wHΛw
s.t.

∣∣∣wHh
∣∣∣2 = 1. (7)

The solution of the above convex optimization problem can be expressed as

wopt =
Λ−1h
|hHΛ−1h|

, (8)

and, hence, the k-th node’s weight is given by

[
wopt

]
k =

[h]k
|[f]k||[g]k|

. (9)

It follows from (9) that in order to implement wopt, the k-th node must estimate both its backward
[f]k and forward channels [g]k. Unfortunately, in practice, such a process results in channel estimation
errors which may hinder the beamforming performance. As such, wopt is only valid in ideal conditions
where implementation impairments do not exist. In real-world conditions, wopt is substituted by

w̃opt =
Λ̃−1h̃∣∣h̃HΛ̃−1h̃

∣∣ , (10)

where [f̃]k and [g̃]k are the k-th estimates of the backward and forward channels, respectively.
Another drawback of the nominal optimal CB solution (as referred to in the remainder of the
paper) w̃opt (i.e., optimized without being aware of and, hence, accounting for channel parameter
estimation impairments), which must be emphasized herein, is that the k-th node must be aware
of the channel estimates of all other nodes in the WSN. To this end, each node must broadcast its
channel information through the network and, hence, w̃opt’s implementation requires a huge overhead.
The latter might not only cause the depletion of the WSN nodes scarce energy resources and the
deterioration of their spectral efficiency, but also from severely amplified performance losses due
to the cumulatively increasing impact of CSI feedback errors. In what follows, we propose new
RDCB techniques robust against channel parameter estimation errors both in monochromatic and
polychromatic environments. We focus in this work on phase synchronization, localization, DoA,
and/or channel scatterers/coefficients estimation errors.
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Figure 1. System model.

3. Proposed Robust Distributed Collaborative Beamforming (RDCB) Techniques

In order to overcome channel estimation impairments, one should start by taking an in-depth
look into the backward channel structure. The latter falls under two main categories: (i) single-ray
(i.e., monochromatic) channels that ignore the scattering phenomenon to assume only a unique
line-of-sight ray; and (ii) multi-ray (i.e., polychromatic) ones that account for the scattering present in
most real-world environments. As far as the forward channel is concerned, we make no particular a
priori assumption on its structure (i.e., whether it is monochromatic or polychromatic). And so we
assume that its estimate includes an additive channel estimation error term.

3.1. Monochromatic (i.e., Scattering-Free) Environments

In such environments, [g]k can be expressed as

[g]k = e−j$k , (11)

where $k =
2π
λ rk cos (φs − ψk) is the k-th node’s initial phase. Hence, the corresponding beamforming

weight can be estimated from a pilot signal received at each node from the source S, assumed in this
case to be far from the nodes (i.e., As � R) along two options: (1) either each node estimates the
initial phase $k; or (2) it estimates both the direction-of-arrival (DoA) φs and the coordinates (rk, ψk).
The first option requires the implementation of phase synchronization techniques [42,43] while the
second relies both on DoA estimation and localization algorithms [44,45]. Nevertheless, both options
incur estimation errors of different nature that hinder the accuracy of [g]k and, hence, the performance
of CB.

3.1.1. Implementation Option 1 (Phase Synchronization)

This implementation option results in a phase jitter due to synchronization and phase offset
estimation errors among nodes. Therefore, the k-th node’s backward channel estimate [g̃]k is given as

[g̃]k = e−j$k ∆gk , (12)

where ∆gk = e−jδk and δk is the k-th node’s phase jitter that depends on its local oscillator characteristics.
We will show later that w̃opt’s performance deteriorates as δk increases due to channel mismatch (i.e.,
[g̃]k 6= [g]k) it causes. To overcome this challenging issue, we propose in this paper to anticipate the
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inevitable phase jitter by accounting for its impact in the CB design. Actually, one could modify the
optimization problem in (7) as

wMR1 = arg max
wH h̃h̃Hw

wHΛw
s.t.

∣∣∣wHh
∣∣∣2 = 1, (13)

where [h̃]k = [f̃]k[g̃]k, [f̃]k = [f]k + ∆ fk
, and ∆ fk

is the error incurred when estimating the k-th
node’s backward channel without a priori knowledge of its structure (i.e., whether monochromatic or
polychromatic) using a training sequence sent from the receiver. The robust proposed beamforming
vector is then given by

wMR1 =
Λ̃−1h̃
|h̃HΛ̃−1h|

. (14)

As can be observed from (14), wMR1 depends on both the actual and estimated channel values.
Because nodes are of course unaware of the actual channel, we need to substitute

∣∣h̃HΛ̃−1h
∣∣ by an

equivalent quantity that depends only on known parameters. To this end, we propose to investigate
the asymptotic expression for this term at large K. It follows from the definitions of h̃, Λ̃, and h that

(h̃HΛ̃−1h)H(h̃HΛ̃−1h) =

(
K

∑
k=1

[g̃]Hk [f̃]Hk [f]k[g]k
|[f]k|2

)H( K

∑
p=1

[g̃]Hp [f̃]Hp [f]p[g]p
|[f]p|2

)

= K + K(K− 1)
∑K

k=1∆gk

K
∑K

p=1,p 6=k∆H
gp

K− 1
+ K

∑K
k=1 ∆2

fk

K

+ K(K− 1)
∑K

k=1
∆gk [f]

H
k ∆ fk

|[f]k |2

K

∑K
p=1,p 6=k

∆H
gp [f]p∆ fp
|[f]p |2

K− 1
. (15)

By resorting to the law of large numbers, we have for large K that 1
K ∑K

k=1∆gk ' E{∆gk},
1

K−1 ∑K
p=1,p 6=k∆H

gp ' E{∆H
gp},

1
K ∑K

k=1 ∆2
fk
' E{∆2

fk
}, 1

K ∑K
k=1

∆gk [f]
H
k ∆ fk

[f]2k
' E{∆gk}E

{
[f]Hk
|[f]k |2

}
E
{

∆ fk

}
,

and 1
K−1 ∑K

p=1,p 6=k
∆H

gp [f]p∆ fp
|[f]p |2

' E{∆H
gp}E

{
[f]p
|[f]p |2

}
E
{

∆ fp

}
. Assuming that δk and ∆ fk

are independent

and uniformly distributed over [−
√

3σg,
√

3σg] and [−
√

3σf ,
√

3σf ], respectively, one could obtain for
large K ∣∣∣h̃HΛ̃−1h

∣∣∣ ' √
K + K(K− 1)E2{∆gk}+ KE{∆2

fk
}

'

√√√√K(1 + σ2
f ) + K(K− 1)

sin2
(√

3σg

)
3σ2

g
, (16)

where σg and σf are the variances of δk and ∆ fk
, respectively. As the number of nodes in WSNs is

typically large, we can substitute (16) in (14) to obtain

wMR1 '
Λ̃−1h̃√

K(1 + σ2
f ) + K(K− 1)

sin2(
√

3σg)
3σ2

g

. (17)

A straightforward inspection of (17) reveals that [wMR1 ]k is exclusively dependent on [f̃]k, [g̃]k, σg,
and σf . The first and second are locally estimated by the k-th node while [g̃]k and σg depend on its local
oscillator characteristics and the adopted phase synchronization technique and, hence, could be stored
in its local memory before WSN deployment. Furthermore, [wMR1 ]k is independent of the forward and
backward channels of all other nodes. This is an important DCB feature since it avoids any information
exchange among WSN nodes thereby saving their scarce energy resources and improving the WSN
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spectral efficiency. It is worth noting in the absence of backward channel phase estimation errors
(i.e., σg = 0) and forward channel estimation errors (i.e., σf = 0) that wMR1 reduces to the nominal
M-DCB solution given in [18] by

wM =
Λ−1h

K
, (18)

thereby underlining unambiguously both the challenges and the merits of implementing DCB
robustness to channel parameter estimation errors.

3.1.2. Implementation Option 2 (Localization and direction of arrival (DoA) Estimation)

With option 2, each node must perform both self-localization and DoA estimation with, once
again, some inevitable estimation errors that hinder the channel information accuracy. In such a case,
the estimated backward channel can be written as

[g̃]k = e−j 2π
λ (rk+δrk ) cos(ψk+δψk ), (19)

where δrk is the error on the radial coordinate rk and δψk is the combined error on the angle coordinate
ψk and φs (φs = 0). Adopting similar steps as in Section 3.1.1, one can prove that the proposed RDCB
can be expressed in this scenario as

wMR2 '
Λ̃−1h̃√√√√√K(1 + σ2

f ) + K(K− 1)E

e
j 2π

λ

(
νk−2Rµk sin

(
δψk

2

))
2

, (20)

where expectation is taken over νk, µk, δψk , νk = δrk cos(ψk + δψk ), and µk =
rk
R sin

(
ψk +

δψk
2

)
. As could

be observed from (17), each node is able to compute its own weight using only its local information,
thereby avoiding any information exchange that may dramatically deteriorate the WSN power and
spectral efficiencies. However, every node needs to compute the expectation in the right hand
sight (RHS) of (17), thereby burdening the proposed beamformer’s implementation complexity.
In what follows, we prove owing to the adoption of a mild assumption that its possible to derive
this expectation term in (20) in closed form. Assuming that νk and µk are statistically independent,

we have E

e
j 2π

λ

(
νk−2Rµk sin

(
δψk

2

)) = Eνk

{
ej 2π

λ νk
}

Eµk ,δψk

e
−4jπRµk sin

(
φ−δψk

2

). The pdf of νk can

be determined as

fνk (ν) =
1

2π
√

3σr

[ ∫ √3σr

ν

1√
δ2

r − ν2
dδr +

∫ −ν

−
√

3σr

1√
δ2

r − ν2
dδr

]
,

=
1

π
√

3σr

[
ln

(
1 +

√
1− ν2

3σ2
r

)
− ln

(
|ν|√
3σr

)]
with |ν| ≤

√
3σr. (21)
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Therefore, its average is determined by

Eνk

{
ej 2π

λ νk
}

=
∫ √3σr

−
√

3σr

1
π
√

3σr
ej 2π

λ νk

[
ln

(
1 +

√
1− ν2

3σ2
r

)
− ln

(
|ν|√
3σr

)]
dν.

=
2
π

∫ 1

0
cos

(
2π

λ

√
3σrt

)
ln

(
1 +
√

1− t2

t

)
dt

= 1F2

(
0.5; 1, 1.5;−3

(
β
(π

3

) σr

2R

)2
)

= ξr

(π

3

)
, (22)

where β(φ) = 4πR
λ sin

(
φ
2

)
. Please note in the second line that we resort to the variable change t = |ν|√

3σr
.

We also remove the imaginary part of the equation as it is a sinus function which is odd and, hence, its
integral over a zero-centered interval is null. Besides, we have

Eµk ,δψk

e
−4jπRµk sin

(
φ−δψk

2

) = Eδψk


+∞

∑
p=0

(
4πR sin

(−δψk
2

))p

p!
(−j)pE(µp

k )


= Eδψk


2J1

(
4πR sin

(
δψk
2

))
4πR sin

(
δψk
2

)


' 1F2

(
0.5; 1.5, 2;−3

(
π

Rσψ

λ

)2
)

= ξψ(0). (23)

Injecting (22) and (23) in (20) yields (24)

wMR2 '
Λ̃−1h̃√

K(1 + σ2
f )+K(K− 1)1F2

(
0.5; 1, 1.5;−3

(
π σr

λ

)2
)2

1F2

(
0.5; 1.5, 2;−3

(
π

Rσψ

λ

)2
)2

. (24)

in which wMR2 depends only on the coefficients of own estimated channels, σr, σψ, and σf . Since each
terminal can locally estimate its own channel, the proposed M-RDCB solution does not incur any
noticeable overhead, computation, or power costs. Whereas σr, σψ, and σf can be easily broadcast
over the WSN at very negligible increase in such three cost items. It is also worth noting in absence
of localization and DoA estimation errors (i.e., σr = σψ = 0) and forward channel estimation errors
(i.e., σf = 0) that the proposed M-RDCB, wMR2 , reduces once again to the nominal M-DCB solution
wM given in Equation (18) above.

3.2. Polychromatic Environments

We assume here that the source is scattered by a given number of scatterers located in the same
plane containing D(O, R). These scatterers generate out of the transmit signal L rays or “spatial
chromatics” (with reference to their angular distribution) that form a polychromatic propagation
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channel. The l-th ray or chromatic is characterized by its angle deviation θl from the source direction
φs and its complex amplitude αl . In such a case, the backward channel of the k-th node is given by

[g]k =
L

∑
l=1

αle−j 2π
λ rk cos(φs+θl−ψk). (25)

It is noteworthy that (25) reduces to (11) when there is no scattering (i.e., θl = 0 and αl = 1/L).
It follows from (25) that each node must estimate in polychromatic environments its polar coordinates
(rk, ψk) and the l-th ray’s DoA φs + θl and its amplitude αl . This would often result in errors which may
cause a channel mismatch, thereby hindering the proposed beamforming performance. The backward
channel estimate of the k-th node is then given by

[g̃]k =
L

∑
l=1

(
αl + δαl

)
e−j 2π

λ (rk+δrk ) cos(θl−ψk+δkl), (26)

where δαl and δkl are the errors on αl and the combined phase (θl − ψk), respectively. It follows then
from (26) that

h̃HΛ̃−1h =
L

∑
l=1

L

∑
m=1

K

∑
k=1

α̃∗l α
jβ(θl−θm+δkl)κklm
e ej 2π

λ ϑkl +
K

∑
k=1

[g̃]Hk [g]k[f]k∆H
fk

|[f]k|2
, (27)

where κklm = rk sin
(

ψk − θl+θm+δkl
2

)
and ϑkl = δrk cos (ψk − θl − δkl). Exploiting the law of large

numbers and assuming that κklm and ϑkl are statistically independent, we obtain at large K

|h̃HΛ̃−1h|2 ' K

(
L

∑
l,m,n,q=1

α̃l α̃
H
m α̃H

n α̃q

(
ξr(ρn,l)χψ(θ, 0) + (K− 1)ξr

(π

3

)
τψ(θ, 0)

)

+
L

∑
l,m,n=1

m=q

α̃l α̃
H
n σ2

α

(
ξr(ρn,l)χψ(θ, 0) + (K− 1)ξr

(π

3

)
τψ(θ, 0)

))
, (28)

where σ2
α is the variance of δα and χψ(θ, φ) is determined as follows

χψ(θ, φ) =

Eδψ

2J1

(√
β
(
ρl,m−φ+δψk

)2
+β
(
ρn,q−φ+δψk

)2
+2β

(
ρl,m−φ+δψk

)
β
(
ρn,q−φ+δψk

)
cos( ρl,n+ρm,q

2 )

)
√

β
(
ρl,m−φ+δψk

)2
+β
(
ρn,q−φ+δψk

)2
+2β

(
ρl,m−φ+δψk

)
β
(
ρn,q−φ+δψk

)
cos( ρl,n+ρm,q

2 )

, (29)

where θ = {θl , θm, θn, θq}, ρl,m = θl − θm, and

τψ(θ, φ) = Eδψ

(
4J1
(

β
(
ρl,m − φ + δψk

))
J1
(

β
(
ρn,q − φ + δψk

))
β
(
ρl,m − φ + δψk

)
β
(
ρn,q − φ + δψk

) )
. (30)

Injecting (28) in (14) yields the following new P-RDCB:

wPR =
Λ̃−1h̃

K2

(
L

∑
l,m,n,q=1

α̃l α̃
H
m α̃H

n α̃q

(
ξr(ρn,l)χψ(θ, 0) + (K− 1)ξr

(π

3

)
τψ(θ, 0)

)

+
L

∑
l,m,n=1

m=q

α̃l α̃
H
n σ2

α

(
ξr(ρn,l)χψ(θ, 0) + (K− 1)ξr

(π

3

)
τψ(θ, 0)

))− 1
2

. (31)
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Obviously, we observe from (31) that the k-th node requires knowledge of both χψ(θ, 0) and
τψ(θ, 0) to be able to derive its corresponding weight [wPR]k. However, to avoid the costly calculations
of the integrals in (29) and (30), we derive in the sequel their expressions in closed form.

Let us first focus on χψ(θ, 0). Assuming that δkl is sufficiently small to satisfy sin(δkl) ' δkl ,
χψ(θ, 0) could be rewritten as

χψ(θ, 0) ' Eδk,l ,δk,n

(
2J1
(

β(π)
√

Z + c
)

β(π)
√

Z + c

)
, (32)

where Z = aδk,l + bδkn is a random variable whose pdf is

fZ(z) =


0 ; z < −(a + b)

√
3σψ or z > (a + b)

√
3σψ,(

z +
√

3σψ(a + b)
)

/(12abσ2
ψ) ; −(a + b)

√
3σψ ≤ z ≤ (a− b)

√
3σψ,

√
3/(6bσψ) ; (a− b)

√
3σψ ≤ z ≤ (b− a)

√
3σψ,(

−z +
√

3σψ(a + b)
)

/(12abσ2
ψ) ; (b− a)

√
3σψ ≤ z ≤ (a + b)

√
3σψ,

(33)

where a = 1
2

(
sin(ρl,m)+sin

(
ρn,q

2

)
cos

(
ρl,m

2

)
cos

(
ρl,n+ρm,q

2

))
, b = 1

2

(
sin(ρn,q) + sin

(
ρl,m

2

)
×

cos
(

ρn,q
2

)
cos

(
ρl,n+ρm,q

2

))
, and c = sin2

(
ρl,m

2

)
+ sin2

(
ρn,q

2

)
+ sin

(
ρl,m

2

)
sin
(

ρn,q
2

)
cos

(
ρl,n+ρm,q

2

)
.

Please note that we assume both δkl and δkn in (33) to be uniformly distributed random variables over
[−
√

3σψ, −
√

3σψ]. Furthermore, if R/λ is picked large enough so that 4πR
√

z + c/λ > 3/4 holds,
we have

χψ(θ, 0) =
1

4π2

√
2λ3

R3

∫
z

cos
(

β(π)
√

z + c− 3π
4
)

(z + c)3/4 dz

=
1

4π2

√
2λ3

R3

∫
z

2 cos
(
z′ − 3π

4
)√

β(π)z′(z + c)3/4
dz′. (34)

Finally, the closed form expression of the above expectation could be easily found using the

primitive G of
(

1
12abσ2

ψ
z′ +

√
3(a+b)

12abσψ

)
cos

(
4πR

λ

√
z′ + c− 3π

4

)
/ (z′ + c)3/4 given by

G(z′)=β(π)−5/2

(
A′
(
S
(
0.8
√

z′
)
−C
(

0.8
√

z′
))
−

z′
(
2z′ sin

(
z′ − 3π

4
)
+ 3 cos

(
z′ − 3π

4
))

12abσ2
ψ

)
, (35)

where S(x) and C(x) are the Fresnel S and C functions, respectively, and

A′ =
1

12
√

2abσ2
ψ

(
5cβ2(π) + 3.8

)
− 5
√

3(a + b)
12
√

2abσψ

β2(π). (36)
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As far as τψ(θ, 0) is concerned, its closed form expression could also be obtained following similar
steps. Indeed, for small δkl and large R/λ, we have

τψ(θ, 0) ' λ3

8π4R3


∫ √3σψ

−
√

3σψ

cos

(
β(π)

(
sin
(

ρl,m
2

)
+

cos
( ρl,m

2

)
2 δk,l

)
− 3π

4

)
(

sin
(

ρl,m
2

)
+

cos
( ρl,m

2

)
2 δk,l

)0.75 dδk,l



×


∫ √3σψ

−
√

3σψ

cos

(
β(π)

(
sin
(

ρn,q
2

)
+

cos
(

ρn,q
2

)
2 δk,n

)
− 3π

4

)
(

sin
(

ρn,q
2

)
+

cos
(

ρn,q
2

)
2 δk,n

)0.75 dδk,n

, (37)

and, hence, it can be solved using the primitive in (35). Please note that the results obtained so far
hold for any given angular spread (AS) which is nothing but the variance of the random variables
θls characterizing the scattering’ strength. However, when AS is relatively small (i.e., low scattering
effects), one could derive much more compact and simple expressions both for χψ(θ, 0) and τψ(θ, 0).
In such a case, θls are small and so are ρl,ms. Consequently, (29) boils down to

χψ(θ, 0) ' Eδk,l ,δk,n

2J1

(
2β(π) sin

(
ρl,m+ρn,q+δk,l+δk,n

4

))
2β(π) sin

(
ρl,m+ρn,q+2δψk

4

)
 .

' Eδk,l ,δk,n

(
1− β(π)

2
sin
(

ρl,m + ρn,q + δk,l + δk,n

4

)2
)

' 1− β(π)

2

(
1
2
+

1
3σ2

(
cos

(√
3σψ

)
− 1
))

, (38)

after exploiting in the second line the Taylor series expansion around 0 of the Bessel function. Besides,
for small AS, τψ(θ, 0) could be rewritten as

τψ(θ, 0) '
(∫ √3σ

−
√

3σ

2J1 (ρl,m + δk,l)

ρl,m + δk,l
dδk,l

)(∫ √3σ

−
√

3σ

2J1
(
ρn,q + δk,n

)
ρn,q + δk,n

dδk,n

)
. (39)

After performing the variable change x = δk,l/(
√

3σψ) and exploiting the equivalence between
the Bessel and hypergeometric functions, we obtain

τψ(θ, 0) '

∫ 1

0

2F3

(
2, 3

2 ; 2, 2, 3,−12π2
(

R
λ

)2
ρ2

l,mσ2
ψx
)

√
xdx


∫ 1

0

2F3

(
2, 3

2 ; 2, 2, 3,−12π2
(

R
λ

)2
ρ2

n,qσ2
ψx
)

√
xdx


' 43F4

(
1
2

, 2,
3
2

;
3
2

, 2, 2, 3,−12π2
(

R
λ

)2
ρ2

l,mσ2
ψ

)
3F4

(
1
2

, 2,
3
2

;
3
2

, 2, 2, 3,−12π2
(

R
λ

)2
ρ2

n,qσ2
ψ

)
. (40)

It follows from (31), (34), (35), (38), and (40) that wPR depends solely on locally available
information at each node, thereby lending itself to a power- and spectrum-efficient RDCB
implementation over WSNs even in polychromatic (i.e., scattered) environments. It is worth noting
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once more, in the absence of localization, DoA, and scatterers estimation errors (i.e., σr = σψ = σα = 0),
that the proposed P-RDCB, wPR, reduces to the nominal P-DCB solution in given [18] by:

wP =
Λ−1h

K2

(
L

∑
l,m,n,q=1

αlα
H
m αH

n αq (χ(θ, 0) + (K− 1)τ(θ, 0))

)− 1
2

. (41)

where

χ(θ, 0) =
2J1

(√
β(ρl,m)

2+β
(
ρn,q
)2
+2β(ρl,m)β

(
ρn,q
)
cos( ρl,n+ρm,q

2 )

)
√

β(ρl,m)
2+β

(
ρn,q
)2
+2β(ρl,m)β

(
ρn,q
)
cos( ρl,n+ρm,q

2 )
, (42)

and

τ(θ, 0) =
4J1 (β (ρl,m)) J1

(
β
(
ρn,q
))

β (ρl,m) β
(
ρn,q
) . (43)

thereby highlighting yet again both the faced hurdles and the gained advantages of implementing
DCB robustness to channel parameter estimation errors.

In what follows, we analyze the performance of the the proposed M-RDCB and P-RDCB solutions.

4. Theoretical Performance Analysis of Robustness Gains

In this section, we assess analytically the performance of the new RDCB solutions (i.e., M-RDCB
and P-RDCB) in terms of achieved average SNR (ASNR) against the nominal optimal CB solution w̃opt

in (10) so as to assess the theoretical potential gains they could achieve by integrating robustness in their
designs. Let γw = E {Pw(φs)/Pw,n} denote the ASNR achieved by any CB w where the expectation
is taken over all node coordinates, forward and backward channels, and channel estimation errors.
Unfortunately, the derivation of γ in closed form turns out to be a tedious task, if not impossible. In this
work, we propose to study instead another practically appealing metric that is the average signal to
average noise ratio (ASANR) γ̄w = P̄w(φs)/P̄w,n where P̄w(φs) = E {Pw(φs)} and P̄w,n = E {Pw,n}.
Please note that [17–23] have shown that γ and γ̄ have approximatively the same behaviors. Let us
first derive the average received power P̄w (φ) from any source located at φ using w.

4.1. Implementation in Scattering-Free Environments—Option 1

Let us first derive the average beampattern achieved by w̃opt. Exploiting the Taylor series
expansion around 0 of the exponential function, we obtain

P̄w̃opt (φ)=
1
K
+

K− 1
K

[
+∞

∑
p=0

βp(φ)

p!
(−j)pE(µp

k )E(∆gk )

][
+∞

∑
m=0

βm(φ)

m!
(−j)mE(µm

k )E(∆gk )

]
, (44)

where β(φ) = 4π(R/λ) sin(φ/2). Besides, we know that

Jn(x) =
+∞

∑
p=0

(−1)p

p!(n + p)!

( x
2

)2p+n
, (45)

where Jn stands for the Bessel functions of first kind. Injecting (45) in (44) leads to

P̄w̃opt (φ) =
1
K
+

(
1− 1

K

) ∣∣∣∣2 J1(β(φ))

β(φ)

∣∣∣∣2 sin2
(√

3σg

)
3σ2

g
. (46)

It follows from (46) that P̄w̃opt (φs = 0) = (1/K) + (1 − (1/K))(sin2
(√

3σg

)
/(3σ2

g)).
Consequently, using the nominal optimal DCB, w̃opt, the power received at Rx decreases with σg
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due to the channel mismatch. This is not surprising since the design of w̃opt does not account for
such errors. On the other hand, the average beampattern achieved by the proposed M-RDCB can be
calculated as

P̄wMR1
(φ) =

K + K(K− 1)
sin2(

√
3σg)

3σ2
g

∣∣∣2 J1(β(φ))
β(φ)

∣∣∣2
K + K(K− 1)

sin2(
√

3σg)
3σ2

g

· (47)

The above result verifies that P̄wMR1
(φs = 0) = 1 for any given estimation errors. Consequently,

the proposed beamformer is much more robust than the nominal optimal DCB.

4.2. Implementation in Scattering-Free Environments—Option 2

If Option 2 is adopted, the average beampattern achieved by w̃opt can be expressed as

P̄w̃opt(φ) = E

[
K
K2 +

K(K− 1)
K2

K

∑
k=1

K

∑
l=1,l 6=k

exp

(
− j4πR

[
µk sin(

φ− δψk

2
)− µl sin(

φ− δψl

2
)

])

× exp
(

j
2π

λ
(νk − νl)

)]
. (48)

Let ξψ(φ) = Eµk ,δψk

e
−j4πRµk sin

(
δψk
−φ

2

). It has already been shown in (22) that

ξr

(π

3

)
= 1F2

(
0.5; 1, 1.5;−3

(
π

σr

λ

)2
)

, (49)

where 1F2
(
0.5; 1, 1.5; x2) is the the hypergeometric function which has a peak at 0 and decreases when

x grows large. Besides, we have

ξψ(0) ' 1F2

(
0.5; 1.5, 2;−3

(
π

Rσψ

λ

)2
)
· (50)

Injecting (49) and (50) in (48) yields

P̄w̃opt (φ) =
1
K
+

(
1− 1

K

)
ξr

(π

3

)
ξψ(φ). (51)

It follows from (51) that P̄w̃opt (φs = 0) decreases with σr and σψ due to the channel mismatch. On
the other hand, the average beampattern achieved by the proposed M-RDCB, which accounts for such
errors, can be determined as

P̄wMR2
(φ) =

K + K(K− 1)|ξψ(φ)ξr
(

π
3
)
|2

K + K(K− 1)|ξψ(0)ξr
(

π
3
)
|2

. (52)

It follows from (52) that P̄wMR2
(0) = 1 for any localization and DoA estimation errors, in contrast

to the nominal optimal DCB, thereby validating again the robustness of the proposed M-RDCB against
channel estimation errors. Furthermore, we observe from (51) and (52) that the proposed M-RDCB
achieves an important gain over its counterparts in terms of the received desired power, a gain that
substantially increases at higher channel estimation errors.



Sensors 2019, 19, 1061 14 of 22

Now, let us turn our attention to the noise powers. Using either w̃opt, wMR1 , or wMR2 , the average
noise power can be calculated, respectively, as

P̄wopt,n =
σ2

v
K2 E

{
( f̃k − ∆ fk

)H( f̃k − ∆ fk
)

| f̃k|2|

}
+ σ2

n

=
σ2

v (1 + σ2
f )

K2 + σ2
n , (53)

and

P̄wMR1
,n =

σ2
v (1 + σ2

f )

K(1 + σ2
f ) + K(K− 1)

sin2(
√

3σg)
3σ2

g

+σ2
n , (54)

with Option 1 or

P̄wMR2 ,n =
σ2

v (1 + σ2
f )

K(1 + σ2
f ) + K(K− 1)ξψ(0)ξr

(
π
3
)+σ2

n . (55)

with Option 2. It could be readily shown from (53)–(55) that P̄wopt,n ≥ P̄wMR1
,n, P̄wMR2 ,n, making

γ̄wopt ≤ γ̄wMR1
, γ̄wMR2

since P̄w̃opt (φs)� P̄wMR1
(φs) , P̄wMR2

(φs).

4.3. Implementation in Scattered Environments

From (10) and (25), Pw̃opt(φ) turns out to be a complex quotient of several random variables and,
hence, deriving the closed form expression of its average is extremely difficult, if not impossible. To
circumvent this daunting issue, we propose in this paper to derive instead its asymptotic expression
for large K. When w̃opt is implemented in polychromatic environments, the following theorem holds:

Theorem 1. For large K and any given AS, we have

Pw̃opt(φ) '
( L

∑
l,m,n,q=1

α̃l α̃
H
m α̃H

n α̃q

(
ξr(ρn,l)χψ(θ, φ) + (K− 1)ξr

(π

3

)
τψ(θ, φ)

)
+

L

∑
l,m,n=1

m=q

α̃l α̃
H
n σ2

α

(
ξr(ρn,l)χψ(θ, φ) + (K− 1)ξr

(π

3

)
τψ(θ, φ)

))

× 4K

(
L

∑
l=1

L

∑
m=1

α̃H
l α̃mξr(ρn,l)

J1(β(ρm,l))

β(ρm,l)

)−2

. (56)

Proof. See Appendix A.

Since J1(x)/x has a maximum at 0 and decreases rapidly with x, we have J1(β(ρm,l))/β(ρm,l) �
χψ(θ, 0) and, hence, Pw̃opt(0) < 1. This means that the nominal optimal DCB is unable to satisfy the
constraint in (5) due to channel estimation errors. Now, the next theorem introduces the asymptotic
expression for PwPR(φ).
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Theorem 2. For large K and any given AS, we have

PwPR(φ) '
( L

∑
l,m,n,q=1

α̃l α̃
H
m α̃H

n α̃q

(
ξr(ρn,l)χψ(θ, φ) + (K− 1)ξr

(π

3

)
τψ(θ, φ)

)
+

L

∑
l,m,n=1

m=q

α̃l α̃
H
n σ2

α

(
ξr(ρn,l)χψ(θ, φ) + (K− 1)ξr

(π

3

)
τψ(θ, φ)

))

×
( L

∑
l,m,n,q=1

α̃l α̃
H
m α̃H

n α̃q

(
ξr(ρn,l)χψ(θ, 0) + (K− 1)ξr

(π

3

)
τψ(θ, 0)

)
+

L

∑
l,m,n=1

m=q

α̃l α̃
H
n σ2

α

(
ξr(ρn,l)χψ(θ, 0) + (K− 1)ξr

(π

3

)
τψ(θ, 0)

))−1

. (57)

Proof. See Appendix A.

It follows from (57) that PwPR(0) = 1 when K is large enough. Therefore, the power received from
the source S is substantially improved if wPR is implemented in lieu of w̃opt. Furthermore, we have

lim
K→∞

PwRP,n

Pw̃opt,n
=

(
limK→∞(1/K)h̃HΛ̃−1h̃

)2(
limK→∞(1/K)h̃HΛ̃−1h

)2

=


2 ∑L

l,m=1 α̃H
l α̃mξr(ρm,l)

J1(β(ρm,l))
β(ρm,l)

ξr
(

π
3
) (

∑L
l,m,n,q=1 α̃l α̃H

m α̃H
n α̃qτψ(θ, 0) + ∑L

l,m,n=1
m=q

α̃l α̃H
n σ2

α τψ(θ, 0)

)


2

�


∑L

l,m=1 α̃H
l α̃mξr(ρm,l)

J1(β(ρm,l))
β(ρm,l)

ξr
(

π
3
) (

∑L
l,m,n=1

m=q
α̃l α̃H

n τψ(θ, 0)

)(
σ2

α + |α̃m|2
)


2

. (58)

Since J1(β(ρm,l))/β(ρm,l)� τψ(θ, 0) and both σ2
α and |α̃m|2 are lower than 1,

(
PwPR,n/Pw̃opt,n

)
> 1

holds when K is large enough. Consequently, in such a condition, γ̄wPR > γ̄w̃opt , thereby proving the
superiority of the new P-RDCB against the nominal optimal DCB in polychromatic environments.

5. Numerical Evaluation Results

This section evaluates numerically the performance of the proposed M-RDCB and P-RDCB
techniques and gauge them against the nominal optimal CB solution w̃opt in (10) and to the RDCB
in [32] to emphasize on one hand the need for and the benefits of implementing robustness in DCB,
and to assess on the other hand the performance gains of the proposed solutions against the best
representative RDCB benchmark. The empirical quantities are obtained by averaging over 105 random
realizations of of rk, ψk, [f]k for k = 1, . . . , K and αl , θl for l = 1, . . . , L. In all simulations, we assume
that the number of rays or chromatics is L = 6, R/λ = 1, and the noises’ powers σ2

n and σ2
v are 10 dB

below the source transmit power.
Figure 2 plots the ASANR and ASNR achieved by the proposed beamformer in monochromatic

(i.e., scattering-free) environments versus the variances of channel errors σ2 = σ2
g = σ2

f , σ2
r , and σ2

ψ for
different values of K. Figure 2a considers implementation Option 1 which results in a phase jitter while
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Figure 2b considers implementation Option 2 which results in localization and DoA estimation errors.
We observe from these figures that the analytical and empirical curves of γ̄wMR1

and γ̄wMR2
match

perfectly thereby validating the correctness of the derivations in Section 4. Furthermore, we notice
that the ASNR and ASANR curves remain very close for K ≤ 8 or coincide almost perfectly otherwise,
thereby proving the insightfulness of the ASANR metric. As far as the proposed M-RDCB performance
is concerned, it is able to achieve optimal performance, even for small K, when the channel estimation
errors are relatively small to moderate (i.e., σg ≤ 1 in Option 1 or σr ≤ 0.2 and σψ ≤ 0.1 in Option 2).
This confirms the robustness of the new M-RDCB. For extremely large errors, however, it looses only a
fraction of a dB. Actually, with the advances made during the two last decades in the field of phase
synchronization, localization, and DoA estimation, these channel estimation errors are often very
small, making our beamformer’s performance optimal if advanced parameter estimation algorithms
are adopted. Nevertheless, the latter naturally come with increased complexity and cost, which
certainly burden those of WSN nodes. In this context,the proposed M-RDCB offers the possibility
of using inaccurate but low-cost estimation algorithms at negligible performance losses, making it a
more appealing and practical for cost-effective WSN deployment in real-world conditions. All these
observations corroborate all the results of Section 3.

σg

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
S
A
N
R

an
d
A
S
N
R

(d
B
)

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

Analytical γ̄wMR1

Numerical γ̄wMR1

Numerical γwMR1

γ̄wM1

K = 4

K = 8

K = 16

K = 32

(a) ASANR and ASNR vs. phase jitter and K.

σr

0 0.05 0.1 0.15 0.2 0.25 0.3

A
S
A
N
R

an
d
A
S
N
R

(d
B
)

6.5

7

7.5

8

8.5

9

9.5

10

Analytical γ̄wMR2

Numerical γ̄wMR2

Numerical γwMR2

γ̄wM2

σψ = 0.1

σψ = 0.3

σψ = 0.45

σψ = 0.6

(b) ASANR and ASNR vs. localization errors for different
levels of DoA estimation errors and K = 16.

Figure 2. Average signal to average noise ratio (ASANR) and average signal to noise ratio (ASNR) of
proposed monochromatic robust distributed collaborative beamforming (M-RDCB) in monochromatic
environments under: (a) implementation Option 1, and (b) implementation Option 2.

Figure 3 displays the achieved ASANR gain of proposed M-RDCB against the nominal optimal
DCB and the M-RDCB in [32] for different values of K. Figure 3a considers the first implementation
option while Figure 3b considers the second. We observe from these figures that M-RDCB largely
outperforms both benchmarks for any given K , σψ, σr, and σα. For instance, when Option 1 is adopted,
it achieves for K = 32 ASANR gains of 4.3 and 3.7 dB against the nominal optimal DCB and RDCB
in [32], respectively. If Option 2 is adopted, these ASANR gains increase, respectively, to as much as
9.4 and 9.2 dB when σψ = 0.65 and σr = 0.3. As could be observed from Figure 3, these gains increase
rapidly with both K and channel estimation errors. These observations corroborate all the results of
Section 4 and verify the net superiority of robust M-RDCB techniques in scattering-free environments.
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Figure 3. ASANR gain of proposed M-RDCB in monochromatic environments under: (a)
implementation Option 1, and (b) implementation Option 2.

Figure 4 shows the ASANR, ASNR, and the ASANR gain of the proposed P-RDCB in
polychromatic (i.e., scattered) environments. Figure 4a,c,e plot its achieved ASANR and ASNR versus
K, δr, δψ, and σα while Figure 4b,d,f compare its achieved ASANR with those of the nominal optimal
DCB and RDCB in [32]. As expected, wPR approaches the optimal ASANR performance level even in
polychromatic environments, and that is for all tested AS values. In such environments, wPR achieves
ASANR gains of until 10.4 and 9.4 dB against both benchmarks, respectively. As can be observed from
Figure 4b,d,f these gains increase rapidly with both K and channel estimation errors. For instance,
according to Figure 4f, the ASANR gain over the two benchmarks increases by approximatively 225%
against both when σ2

r is twice as large or 73.5% and 68%, respectively, when α is four times as large.
These additional observations further verify the high robustness of the proposed P-RDCB against
channel estimation errors, key practical feature that allows its cost-effective integration in real-world
WSN applications. Again, according to Figure 4, we verify that the analytical and empirical values of
γ̄wPR match perfectly when K > 8 or are very close otherwise. All these observations corroborate once
more the discussion of Section 4.
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Figure 4. ASANR, ASNR, and ASANR gain of proposed P-RDCB in polychromatic environments.

6. Conclusions

We have proposed a new DCB solution robust against major channel estimation impairments,
namely, phase synchronization, localization, direction-of-arrival (DoA), and/or channel scatterers
estimation errors over dual-hop transmissions from a source to a destination communicating through
a WSN of K nodes. Exploiting an efficient asymptotic approximation at large K, we have developed
alternative RCB solutions that not only account for estimation errors, but also adapt to different
implementation scenarios and wireless propagation environments ranging from monochromatic to
polychromatic ones. Besides, in contrast to existing techniques, our new RCB solutions are distributed
in that they do not require any information exchange among nodes, thereby dramatically improving
both WSN spectral and power efficiencies. Simulation results have confirmed that the proposed
RDCB techniques are much more robust in terms of achieved SNR against channel estimation errors
than best representative CB benchmarks, yet at much lower complexity, power cost, and overhead,
making them suitable for WSN deployment in the harsh environments that characterize operation in
real-world conditions.
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Appendix A

Let
gk(φ) = e−j 2π

λ rk cos(φ−ψk), (A1)

denote the channel from a source located at φ to the k-th node. From the definition of w̃opt in (10),

lim
K→∞

Pw̃opt(φ) = lim
K→∞

(
h̃HΛ̃−1h(φ)

)H (h̃HΛ̃−1h(φ)
)(

h̃HΛ̃−1h̃
)2

=
∑L

l,m,n,q=1 α̃lα
H
m α̃H

n αq (limK→∞(1/K)Π1 + limK→∞(1/K)Π2)

limK→∞
(
h̃HΛ̃−1h̃H

)2 , (A2)

where h(φ) = f� g(φ),

Π1 =
K

∑
k=1

e−j rk
R (β(ρl,m+δk,l−φ) sin(x−ψk)+β(ρn,q+δk,n−φ) sin(y−ψk))e−j 2π

λ (ϑk,n−ϑk,l), (A3)

and

Π2 =
K

∑
k=1

e−j rk
R (β(ρl,m+δk,l−φ) sin(x−ψk)e−j 2π

λ ϑk,l
K

∑
p 6=k

e−j rk
R (β(ρn,q+δk,n−φ) sin(y−ψp)e−j 2π

λ ϑp,n . (A4)

Exploiting the fact that rk and ψk are mutually independent, we have

lim
K→∞

1
K

Π1 = lim
K→+∞

1
K

K

∑
k=1

e−j rk
R (β(ρl,m+δk,l−φ) sin(x−ψk)+β(ρn,q+δl,n−φ) sin(y−ψk))e−j 2π

λ (ϑk,n−ϑk,l)

= KErk ,ψk

(
e−j rk

R (β(ρl,m+δk,l−φ) sin(x−ψk)+β(ρn,q+δk,n−φ) sin(y−ψk))
)
Eϑk

(
e−j 2π

λ (ϑk,n−ϑk,l)
)

= Kχψ(θ, φ)ξr(ρn,l). (A5)

Furthermore, we have

lim
K→∞

1
K

Π2 = lim
K→+∞

1
K

K

∑
k=1

e−j rk
R (β(ρl,m+δk,l−φ) sin(x−ψk)

K

∑
p 6=k

e−j rk
R (β(ρn,q+δk,n−φ) sin(y−ψp)e−j 2π

λ (ϑp,n+ϑk,l)

= K(K− 1)Eδψ

(
4J1 (β (ρl,m − φ + δk,l))J1

(
β
(
ρn,q − φ + δk,n

))
β (ρl,m − φ + δk,l) β

(
ρn,q − φ + δk,n

) )
Eϑp

(
e−j 2π

λ (ϑp,n)
)
Eϑk

(
e−j 2π

λ (ϑk,l)
)

= K(K− 1)τψ(θ, φ)ξ2
r

(π

3

)
. (A6)
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Let us now turn our attention to the denominator of the right hand side of (A2). Using the law of
large numbers, one could obtain

lim
K→∞

(h̃HΛ̃−1h̃)H(h̃HΛ̃−1h̃) = lim
K→+∞

1
K

(
L

∑
l,m=1

K

∑
k=1

α̃∗l αme−jβ(ρm,l+δkl)κklm e−j 2π
λ ϑkl

)2

= K2

(
L

∑
l,m=1

K

∑
k=1

α̃∗l αmEδψ

(
e−jβ(ρm,l+δkl)κklm

)
Eϑk

(
e−j 2π

λ (ϑk,l)
))2

' 4K2

(
L

∑
l=1

L

∑
m=1

α̃H
l α̃mξr(ρn,l)

J1(β(ρm,l))

β(ρm,l)

)2

. (A7)

Substituting (A5)–(A7) in (A2) yields to (56). As far as limK→∞ Pwp is concerned , we have

lim
K→∞

PwPR(φ) = lim
K→∞

(
h̃HΛ̃−1h(φ)

)H (h̃HΛ̃−1h(φ)
)(

h̃HΛ̃−1h
)2

=
limK→∞(1/K)Π1 + limK→∞(1/K)Π2

limK→∞
(
h̃HΛ̃−1hH

)2 . (A8)

Besides, we have

lim
K→∞

(h̃HΛ̃−1h)H(h̃HΛ̃−1h) = K
L

∑
l,m,n,q=1

α̃lα
H
m α̃H

n αq

(
Eϑk

(
e−j 2π

λ (ϑk,n−ϑk,l)
)

× Erk ,ψk

(
e−j rk

R (β(ρl,m+δk,l) sin(x−ψk)+β(ρn,q+δk,n) sin(y−ψk))
)

+ Eδψ

(
4J1 (β (ρl,m − φ + δk,l))J1

(
β
(
ρn,q − φ + δk,n

))
β (ρl,m − φ + δk,l) β

(
ρn,q − φ + δk,n

) )
Eϑk

(
e−j 2π

λ (ϑp,n)
)
Eϑk

(
e−j 2π

λ (ϑk,l)
))

' K
L

∑
l,m,n,q=1

α̃lα
H
m α̃H

n αq

(
ξr(ρn,l)χψ(θ, 0) + (K− 1)ξ2

r

(π

3
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τψ(θ, 0)

)
= K

L
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l,m,n,q=1

α̃l α̃
H
m α̃H

n α̃q

(
ξr(ρn,l)χψ(θ, 0) + (K− 1)ξ2

r

(π

3

)
τψ(θ, 0)

)
+ K

L

∑
l,m,n=1

m=q

α̃l α̃
H
n σ2

α

(
ξr(ρn,l)χψ(θ, 0) + (K− 1)ξ2

r

(π

3
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)
. (A9)

Finally, limK→∞ PwPR(φ) could be easily obtained using (A5)–(A9).
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