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Abstract: The Internet of things (IoT) has become a significant part of our daily life. Composed
of millions of intelligent devices, IoT can interconnect people with the physical world. With the
development of IoT technology, the amount of data generated by sensors or devices is increasing
dramatically. IoT-based big data has become a very active research area. One of the key issues
in IoT-based big data is ensuring the utility of data while preserving privacy. In this paper, we
deal with the protection of big data privacy in the data storage phase and propose a searchable
encryption scheme satisfying personalized privacy needs. Our proposed scheme works for all
file types including text, audio, image, video, etc., and meets different privacy needs of different
individuals at the expense of high storage cost. We also show that our proposed scheme satisfies
index indistinguishability and trapdoor indistinguishability.

Keywords: Internet of Things; big data; searchable encryption; personalized privacy needs; index
indistinguishability; trapdoor indistinguishability

1. Introduction

Internet of Things (IoT) has become a significant part of our daily life over the past few years.
A huge number of sensors or intelligent devices have been integrated together to interconnect people
with the physical world, which also generates massive sensing data. Data generated by IoT devices
are collected, disseminated, and exchanged among different people, business, and societies. With
the development of IoT, the amount of data generated by organizations or individuals is increasing
dramatically [1].

Although the massive data generated in the IoT environment is of significant value, exploring
and using the extraordinary value of IoT data will increase the risk of privacy breach [2]. To obtain
profits, the collection, storage, and reuse of our personal data poses a serious threat to our privacy.
Consequently, researchers are faced with the challenge of ensuring the utility of data while preserving
privacy. Various techniques have been developed to protect data privacy. Generally, these techniques
for data privacy can be grouped based on the stages of big data life cycle, as follows [3].

• Data generation: In the data generation phase, access restriction, and falsifying data techniques
are used.

• Data storage: The approaches in the data storage phase are mainly based on encryption techniques.
• Data processing: Anonymization techniques as well as clustering, classification, and association

rule mining-based techniques are used in the data processing phase.

In this paper, we will focus on the protection of big data privacy in the data storage phase of
the big data life cycle. In the IoT environment, the sensing data generated by various sensors and
devices will be collected and uploaded to cloud servers, where cloud servers can provide massive
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storage and cloud computing services. We know that encryption techniques are used for the protection
of big data privacy in the data storage phase. When a large amount of encrypted data is stored in
cloud servers, the first consideration is confidentiality of the data, which can be ensured by secure and
efficient encryption schemes. However, when the data user wants to retrieve the data containing a
specific keyword, the cloud server cannot respond to the data user’s retrieval request, because it cannot
decrypt the encrypted data. All these problems can be solved by searchable encryption schemes [4,5],
such as searchable symmetric encryption [6], public key encryption with keyword search [7], etc. The
searchable encryption scheme mainly includes three entities—data owner, data user, and cloud server.
The data owner outsources the encrypted data to the cloud server. The data user queries the encrypted
data containing a specific keyword to the cloud server. The cloud server stores and retrieves the
encrypted data.

In existing searchable encryption schemes, the data user can access all the data owned by the data
owner, which can result in a privacy breach for the data owner. On the one hand, the data owner may
be willing to share the data with some specific data users, but not with other data users. On the other
hand, the data owner may be willing to share specific data with the data user, but not willing to share
other data. Therefore, the data user accesses all the data owned by the data owner, which can result in
a privacy breach for the data owner. Furthermore, additional information in the data owned by the
data owner can also result in a privacy breach for the data owner. Privacy is subjective, and different
people have different privacy needs. For example, the hidden text in a typical Word file includes a
lot of sensitive personal information [8]. However, this additional information, which may disclose
the privacy of the data owner, is useless for some data users. In data mining, data preprocessing is
used to transform raw data into an understandable format [9]. In natural language processing, text
feature extraction is used to transform a list of words into a feature set that is usable by a classifier [10].
In speech recognition and image recognition, feature extraction is a key step [11,12]. It means that this
additional information may be discarded by the data user in the feature extraction phase. In summary,
the data user accessing all the data owned by the data owner will result in a privacy breach for the
data owner, but will not improve the utility of the data.

In this paper, we will propose a searchable encryption scheme for personalized privacy protection
in IoT-based big data. The main contributions of our proposed scheme are as follows:

• In our proposed scheme, the data owner generates the file features at different levels, and uploads
the encrypted file features to the cloud server.

• The proposed scheme makes a trade-off between ensuring the utility of the data and preserving
the privacy, and meets the different privacy needs of different individuals.

The rest of this paper is as follows. Section 2 discusses the recent searchable encryption scheme.
Section 3 presents necessary notations and definitions. Section 4 formalizes the searchable encryption
scheme for meeting the personalized privacy needs in big data and presents main security definition.
Section 5 describes the detailed construction of our proposed scheme. Section 6 discusses the security
of our proposed scheme. Section 7 performs real time experimental results and makes a comparison of
our proposed scheme with the existing schemes. The last section is the conclusion of this paper.

2. Related Work

Several different searchable encryption schemes have been proposed to allow the data user to
retrieve the encrypted data [4,5]. In this section, we give a simple review on the existing work of the
searchable encryption schemes.

In 2000, Song et al. [6] first proposed a searchable encryption scheme based on the symmetric
encryption algorithm, which is called searchable symmetric encryption (SSE). However, their scheme
has the following limitations: it is not proven to be a secure searchable encryption scheme; the
distribution of the underlying plaintexts is vulnerable to statistical attacks; and the search time is
linear to the length of the document collection. To overcome these limitations, Goh et al. [13] and
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Chang and Mitzenmacher [14] deployed a masked index table for SSE and introduced the notion of
security for indexes. Curtmola et al. [15] generalized the security definitions of SSE and proposed
two SSE schemes which are secure under the new security definitions. The search time of their
schemes is linear to the number of documents. Subsequently, several SSE schemes were proposed for
improvement. For example, Cash et al. [16] proposed an SSE scheme that supports conjunctive search
and general Boolean queries on outsourced symmetrically encrypted data; Salam et al. [17] proposed
a privacy-preserving data storage and retrieval system in cloud computing; Li et al. [18] proposed
three different SSE schemes that can guard against a coercer by using the deniable encryption idea;
Soleimanian et al. [19] proposed an SSE scheme to be publicly verifiable.

Although SSE schemes have high efficiency, they suffer from complicated secret key distribution.
To resolve this problem, Boneh et al. [7] introduced a searchable encryption scheme based on public key
cryptography, namely public key encryption with keyword search (PEKS). Waters et al. [20] showed
that the PEKS schemes based on bilinear map could be applied to build encrypted and searchable
auditing logs. However, the bilinear pairing operation is very complicated. Di et al. [21] introduced a
PEKS scheme without bilinear pairing. The original PEKS scheme in [7] requires a secure channel to
transmit the trapdoors. To overcome this limitation, Baek et al. [22] proposed a new PEKS scheme
without requiring a secure channel. Byun et al. [23] introduced the off-line keyword-guessing attack
(KGA) and pointed out that the original PEKS scheme in [7] was susceptible to KGA. Rhee et al. [24]
proposed the notion of trapdoor indistinguishability and showed that trapdoor indistinguishability
is a sufficient condition for preventing outside KGAs. Jeong et al. [25] showed that constructing
secure PEKS schemes against inside KGA is impossible under the original PEKS framework in [7].
Xu et al. [26] proposed a PEKS scheme to against inside KGA. More recently, various improved PEKS
schemes have been proposed. For example, Liang et al. [27] proposed a searchable attribute-based
proxy re-encryption system to achieve privacy-preserving keyword search and encrypted data sharing
as well as keyword update; Chen et al. [28] proposed a dual-server PEKS scheme to against inside
KGA launched by the malicious server; Yang et al. [29] proposed a semantic key word searchable
proxy re-encryption scheme for secure cloud storage using lattice-based cryptographic primitives;
Wu et al. [30] designed an efficient and secure searchable encryption protocol using the trapdoor
permutation function for cloud-based IoT; Yin et al. [31] proposed a ciphertext-policy attribute-based
searchable encryption scheme to achieve keyword-based search and fine-grained access control over
encrypted data.

Table 1 shows a simple comparison of some existing searchable encryption schemes. In the design
of searchable encryption scheme, privacy is a key concern. However, in all the existing searchable
encryption schemes, the data user can access all the data owned by the data owner, which can result in
a privacy breach for the data owner.

Table 1. A comparison of some existing searchable encryption schemes.

Type Limitation Characteristic Literature

SSE need key distribution

masked index [13,14]
boolean queries [16]

against the coercer [18]
publicly verifiable [19]

PEKS lower search efficiency

without bilinear pairing [21]
without secure channel [22]

keyword update [27]
against inside KGA [28]

synonym keyword search [29]
fine-grained access control [31]

3. Preliminaries

A summary of the notations used in this paper is presented in Table 2.
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Table 2. Summary of notations.

Notation Description

λ The security parameter
G A cyclic group of order q
g A generator of G
negl(λ) A negligible function with respect to λ
G A cyclic group of order q
g A generator of G
(pko, sko) The public/private key pairs for the data owner
(pku, sku) The public/private key pairs for the data user
n The number of the file of the data owner
Fi The i-th file of the data owner(1 ≤ i ≤ n)
n f + 1 The number of the file feature level
l A file feature level (0 ≤ l ≤ n f )
Li The set of the authorized file feature level of Fi
Fil The file feature of Fi at level l
F The file features set {Fil : 1 ≤ i ≤ n, 0 ≤ l ≤ n f }
F ′ The encrypted file features set
Wl0 The keyword set of the file features set {Fil0 : 1 ≤ i ≤ n}
w A keyword in Wl0
Ind The index set
Ind′ The encrypted index set
Tw,l The trapdoor with respect to w and l

The set of all binary strings of length n is denoted as {0, 1}n , and the set of all finite binary strings
is denoted as {0, 1}∗.

An index table (or dictionary) denotes the data structure of the form I[key] = value. Given a key,
the value matching the key is returned.

A function µ : N→ N is negligible if for every positive polynomial p(·) and all sufficiently large
λ, µ(λ) < 1

p(λ) . We similarly write f (λ) = negl(λ) to mean that there exists a negligible function µ(·)
such that f (λ) ≤ µ(λ) for all sufficiently large λ.

The following basic cryptographic primitives can be found in [32].
A symmetric encryption scheme is a tuple E = (Gen, Enc, Dec) of probabilistic, polynomial-time

(PPT) algorithms, where Gen takes the security parameter λ as input, and outputs a secret key k; Enc
takes a key k and a message m ∈ {0, 1}∗ as input, and outputs a ciphertext c = Enc(k, m); Dec takes a
key k and a ciphertext c as input, and outputs m if c = Enc(k, m).

For any symmetric encryption scheme E = (Gen, Enc, Dec), any adversary A and any value λ for
the security parameter, the chosen-plaintext attack (CPA) indistinguishability experiment SEcpa

A,E (λ) is
defined as:

1. A random key k is generated by running Gen(λ).
2. The adversary A is given input λ and oracle access to Enc(k, ·), and outputs a pair of messages

m0, m1 of the same length.
3. A random bit b ∈ {0, 1} is chosen, and then a ciphertext c = Enc(k, mb) is computed and given to

A. c is called the challenge ciphertext.
4. The adversary A continues to have oracle access to Enc(k, ·), and outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise. In the case SEcpa

A,E (λ) = 1,
we say that A succeeded.

Definition 1. A symmetric encryption scheme E = (Gen, Enc, Dec) is CPA-secure if for all PPT adversaries
A there exists a negligible function negl such that

Pr[SEcpa
A,E (λ) = 1] ≤ 1

2
+ negl(λ),
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where the probability is taken over the random coins used by A, as well as the random coins used in the CPA
indistinguishability experiment.

For any adversary A and any value λ for the security parameter, the computational Diffie-Hellman
(CDH) experiment CDHA,Setup(λ) is defined as:

1. Run Setup(λ) to obtain output (G, q, g), where G is a cyclic group of order q (with bit length λ)
and g is a generator of G.

2. Randomly choose a, b ∈ Zq.
3. A is given G, q, g, ga, gb and outputs h ∈ G.
4. The output of the experiment is defined to be 1 if h = gab, and 0 otherwise.

Definition 2. The CDH problem is hard relative to Setup if for all PPT adversaries A there exists a negligible
function negl such that

Pr[CDHA,Setup(λ) = 1] ≤ negl(λ).

4. System Model

The searchable encryption scheme for personalized privacy protection mainly includes three
entities, i.e., the data owner, the data user, and cloud server. The data owner outsources the encrypted
file features to the cloud server. The data user queries the encrypted file features containing a specific
keyword to the cloud server. The cloud server stores and retrieves the encrypted file features. As
the existing searchable encryption schemes, in this paper, the data owner is considered fully trusted.
The data user is considered malicious, which means it may attempt to learn more information than it
can retrieve. The cloud server is considered honest but curious in the sense that it may try to learn
as much information as possible from the stored encrypted data and correctly execute the searchable
encryption protocol.

Given n files Fi, 1 ≤ i ≤ n, and a non-negative integer l, let Fil denote the file feature of Fi at level l.
Specially, let Fi0 = Fi, i.e., the file feature of Fi at level 0 is still Fi.

Let n f + 1 denote the number of the file feature level (FFL). The data owner wishes to store the
file features set F = {Fil : 1 ≤ i ≤ n, 0 ≤ l ≤ n f } on the cloud server. The objectives of the data owner
are as follows:

• For 1 ≤ i ≤ n, 0 ≤ l ≤ n f , the file feature Fil are stored on the cloud server such that the
confidentiality of Fil is preserved.

• The data user queries for a keyword w and an FFL l to retrieve all authorized file features Fil such
that w ∈ Fil0 for a given l0 in a secure and efficient way.

4.1. Formal Definition

The searchable encryption scheme for meeting the personalized privacy needs consists of the
following algorithms:

• Setup(λ): This algorithm is run by the data owner. It takes the security parameter λ as input, and
outputs the global parameter Λ.

• KeyGen(Λ): This algorithm is run by the data owner and the data user, respectively. It takes the
global parameter Λ as input, and outputs public/private key pairs (pko, sko) and (pku, sku) for
the data owner and the data user, respectively.

• Store(F , pku, sko): This algorithm is run by the data owner. It takes the file features set F , the data
user’s public key pku and the data owner’s private key sko as input, and outputs the encrypted
file features set F ′ and the encrypted index set Ind′.

• Trapdoor(w, l, pko, sku): This algorithm is run by the data user. It takes a keyword w, an FFL l,
the data owner’s public key pko, and the data user’s private key sku as input, and outputs the
trapdoor Tw,l .
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• Search(F ′, Ind′, Tw,l): This algorithm is performed interactively between the cloud server and the
data user. It takes the encrypted file features set F ′, the encrypted index set Ind′, and the trapdoor
Tw,l as input, and outputs all authorization file features Fil such that w ∈ Fil0 for a given l0.

4.2. Security Definition

The searchable encryption scheme for meeting the personalized privacy needs must satisfy the
index indistinguishability and the trapdoor indistinguishability under chosen keyword-FFL pair
attack. As per literature [15], we define two challenge-response games GameI and GameT between
the adversary A and the challenger C to show the index indistinguishability and the trapdoor
indistinguishability under chosen keyword-FFL pair attack, respectively.

The adversary A plays GameI with the challenger C and attempts to distinguish an encrypted
index of the given keyword-FFL pair from some encrypted indexes. If A wins GameI , then A has
obtained some useful information from some encrypted indexes.

GameI :
Setup: Challenger C runs Setup(λ) and KeyGen(Λ) to generate the global parameter Λ and the

public/private key pairs (pko, sko) and (pku, sku) of the data owner and the data user respectively,
and sends Λ, pko and pku to A.

Adaptive query: The adversary A makes the following queries to C:

- The adversary A adaptively selects the keyword-FFL pair (w, l) for the encrypted index
query. C responds with Ind′[w′].

- The adversary A adaptively selects the keyword-FFL pair (w, l) for the trapdoor query. C
responds with Tw,l .

Challenge: The adversary A sends two challenged keyword-FFL pairs (w0, l0), (w1, l1) to C. C picks
a random number b ∈ {0, 1} and sends the encrypted index Ind′[w′b] of the keyword-FFL pair
(wb, lb) to A.

Guess: The adversary A outputs b′ ∈ {0, 1} and wins the game if b′ = b.

Definition 3. We say the searchable encryption scheme for meeting the personalized privacy needs satisfies
the index indistinguishability under chosen keyword-FFL pair attack if for all PPT adversaries A there exists a
negligible function negl such that

Pr[A wins GameI ] ≤
1
2
+ negl(λ).

Adversary A plays GameT with challenger C and attempts to distinguish a trapdoor of the
given keyword-FFL pair from some trapdoors. If A wins GameT , then A has obtained some useful
information from some trapdoors.

GameT :
Setup: C runs Setup(λ) and KeyGen(λ) to generate the global parameter Λ and the public/private

key pairs (pko, sko) and (pku, sku) of the data owner and the data user respectively, and sends Λ,
pko and pku to A.

Adaptive query: A makes the following queries to C:

- Adversary A adaptively selects the keyword-FFL pair (w, l) for the encrypted index query.
C responds with Ind′[w′].

- Adversary A adaptively selects the keyword-FFL pair (w, l) for the trapdoor query. C
responds with Tw,l .

Challenge: Adversary A sends two challenged keyword-FFL pairs (w0, l0), (w1, l1) to C. C picks a
random number b ∈ {0, 1} and sends the trapdoor Twb ,lb of the keyword-FFL pair (wb, lb) to A.

Guess: Adversary A outputs b′ ∈ {0, 1} and wins the game if b′ = b.
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Definition 4. We say the searchable encryption scheme for meeting the personalized privacy needs satisfies the
trapdoor indistinguishability under chosen keyword-FFL pair attack if for all PPT adversaries A there exists a
negligible function negl such that

Pr[A wins GameT ] ≤
1
2
+ negl(λ).

5. Proposed Scheme

In this section, we present our proposed searchable encryption scheme for meeting the
personalized privacy needs. It consists of the following algorithms.

Setup(λ) is run by the data owner. It takes the security parameter λ as input, and performs
the following:

1. Choose a cyclic group G of prime order q and a generator g of G.
2. Choose a symmetric encryption scheme E = (Gen, Enc, Dec).
3. Choose two collision-resistant hash functions H1 : G→ {0, 1}λ and H2 : {0, 1}∗ → {0, 1}λ.
4. Set the global parameter Λ = (G, q, g, E , H1, H2).

KeyGen(Λ) is run by the data owner and the data user, respectively. It takes the global parameter
Λ as input, and performs the following:

1. Randomly select two elements ko and ku in Zq as the private keys of the data owner and the data
user, respectively.

2. Compute gko and gku in G as the public keys of the data owner and the data user, respectively.

Store(F , pku, sko) is run by the data owner. It takes the file features set F , the data user’s public
key pku = gku and the data owner’s private key sko = ko as input, and performs the following:

1. Compute k1 = H1((gku)ko ).
2. For 1 ≤ i ≤ n, 0 ≤ l ≤ n f , randomly select idil ∈ {0, 1}λ as the identifier of Fil , run

algorithm Gen(λ) to generate the encryption key ekil of Fil , and compute id′il = Enc(k1, idil),
ek′il = Enc(k1, ekil), F′il = Enc(ekil , Fil).

3. Create the index table F ′ such that F ′[idil ] = F′il for every 1 ≤ i ≤ n and 0 ≤ l ≤ n f .
4. Given an FFL l0, create the keyword set Wl0 of the file features set {Fil0 : 1 ≤ i ≤ n}.
5. For w ∈Wl0 , compute w′ = Enc(k1, H2(w)).
6. For 0 ≤ l ≤ n f , compute l′ = Enc(k1, H2(l)).
7. For 1 ≤ i ≤ n, construct the set Li of the authorized FFL of the file Fi. In other words, l ∈ Li

implies the date user has authorization to access the file feature Fil .
8. Create the index table Ind′ such that Ind′[w′] = {(id′il , ek′il , l′) : w ∈ Fil0 , l ∈ Li, 1 ≤ i ≤ n} for

every w ∈Wl0 .
9. Send F ′ and Ind′ to the cloud server.

Trapdoor(w, l, pko, sku) is run by the data user. It takes a keyword w, an FFL l, the data owner’s
public key pko = gko and the data user’s private key sku = ku as input, and performs the following:

1. Compute k2 = H1((gku)ko ).
2. Compute Tw,l = Enc(k2, H2(w)), Enc(k2, H2(l)).

Search(F ′, Ind′, Tw,l) is performed interactively between the cloud server and the data user. It
takes the encrypted file features set F ′, the encrypted index set Ind′ and the trapdoor Tw,l as input,
and performs the following:

1. The cloud server: Given Tw,l = (T1, T2), search Ind′[T1] to obtain the set S = {(s1, s2, s3) ∈
Ind′[T1] : s3 = T2} and send S to the data user.

2. The data user: Given S , create two index tables S1 and S2 such that S1[rs] = Dec(k2, s1), S2[rs] =

Dec(k2, s2) for every s = (s1, s2, s3) ∈ S , where k2 = H1((gku)ko ) and rs (s ∈ S) are randomly
selected in {0, 1}λ. Send S1 to the cloud server and store S2.
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3. The cloud server: Given S1, create the index tableR such thatR[rs] = F ′[S1[rs]] for every key rs

in S1 and sendR to the data user.
4. The data user: Given S2 andR, compute Dec(S2[rs],R[rs]) for every key rs in S2.

Remark 1. Please note that k1 = H1((gku)ko ) = H1((gku)ko ) = k2, then T1 = w′, T2 = l′. Thus, s1 = id′il ,
s2 = ek′il , S1[rs] = idil , S2[rs] = ekil ,R[rs] = F ′[S1[rs]] = F′il for every s = (s1, s2, s3) ∈ S , where w ∈ Fil0 ,
l ∈ Li, 1 ≤ i ≤ n. Therefore, our proposed scheme is correct.

Given an FFL l0, creating the keyword set Wl0 of the file features subset {Fil0 : 1 ≤ i ≤ n}means
that Fil0 , 1 ≤ i ≤ n must be text. Thus, our proposed scheme works for all file types including text,
audio, image, video, etc. as long as there exists an FFL l0 such that the file feature of the file at l0 is text.

If the authorized FFL set of the ordinal file is only created by the data owner, then the data user
cannot access to the unauthorized file features, thus our proposed scheme meets the different privacy
needs of different individuals.

Our proposed scheme can be extended to the multi-user scenario. Let no and nu be the number
of the data owners and the data users, respectively. In the multi-user scenario, the public/private
key pairs are first generated for every data owner and the data user; the file features stored on the
cloud server is an no-ary vector, where the i-th element is the encrypted file features set of the i-th data
owner; the index stored on the cloud server is an no × nu matrix, where the i-th row and j-th column
element is the encrypted index set that the i-th data owner created for the j-th data user.

It is obvious that our proposed scheme needs increasing storage space when n f is getting bigger.
In particular, our proposed scheme has similar storage space to the existing searchable encryption
schemes when n f = 0.

6. Security Analysis

In this section, we show that our proposed scheme satisfies the index indistinguishability and the
trapdoor indistinguishability under chosen keyword-FFL pair attack.

Theorem 1. If E = (Gen, Enc, Dec) is CPA-Secure and the CDH problem is hard relative to Setup, then our
proposed scheme satisfies the index indistinguishability under chosen keyword-FFL pair attack.

Proof. If there exists a PPT, and adversary A wins GameI , then there exists a simulator B such that
SEcpa

B,E (λ) = 1 or CDHcpa
B,Setup(λ) = 1.

In the setup phase, C runs Setup(λ) and KeyGen(Λ) to generate the global parameter Λ =

(G, q, g, E , H1, H2), and the public/private key pairs (pko = gko , sko = ko) and (pku = gku , sku = ku) of
the data owner and the data user respectively. Then, C sends Λ, pko = gko and pku = gku to A.

In the adaptive query phase, assume A makes nq − 1 queries to C adaptively. The q-th query
can be:

- A adaptively selects the keyword-FFL pair (wq, lq) for the encrypted index query. C responds
with Ind′[w′q] = {(id′ilq , ek′ilq , l′q) : wq ∈ Di, lq ∈ Li, 1 ≤ i ≤ n}, where Li is the authorized FFL set

of Fi, id′ilq = Enc(k1, idilq), ek′ilq = Enc(k1, ekilq), l′q = Enc(k1, H2(lq)), k1 = H1((gko )ku).
- A adaptively selects the keyword-FFL pair (wq, lq) for the trapdoor query. C responds with

Twq ,lq = (Enc(k2, H2(wq)), Enc(k2, H2(lq)), where k2 = H1((gku)ko ).

In the challenge phase, A sends two challenged keyword-FFL pairs (w0, l0), (w1, l1) to C. C picks
a random number b ∈ {0, 1} and sends the encrypted index Ind′[wb] = {(id′ilb , ek′ilb , lb) : wb ∈ Di, lb ∈
Li, 1 ≤ i ≤ n} of the keyword-FFL pair (wb, lb) to A, where id′ilb = Enc(k1, idilb), ek′ilb = Enc(k1, ekilb),

l′b = Enc(k1, H2(lb)) and k2 = H1((gk1)ku).
In the guess phase, A outputs its guess b1 ∈ {0, 1} indicating whether the challenge Ind′[wb] is

the encrypted index of (w0, l0) or (w1, l1).
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From the perspective of A, id′ilq = Enc(k1, idilq) and ek′ilq = Enc(k1, ekilq) are random values in

{0, 1}λ for every 1 ≤ i ≤ n and 2 ≤ q ≤ nq. Please note that k1 = H1((gku)ko ) = H1((gko )ku) = k2.
Then the information obtained by the adversary A in GameI was the same as the information obtained
by a simulator B in the CPA indistinguishability experiment SEcpa

A,E (λ) and in the CDH experiment
CDHA,Setup(λ). Thus, if A wins GameI then SEcpa

B,E (λ) = 1 or CDHB,Setup(λ) = 1, i.e.,

Pr[A wins GameI ] ≤ SEcpa
B,E (λ) + CDHB,setup(λ)

≤ 1
2
+ negl(λ).

Therefore, our proposed scheme satisfies the index indistinguishability under chosen keyword-FFL
pair attack if E = (Gen, Enc, Dec) is CPA-Secure and the CDH problem is hard relative to Setup.

Similarly, we can prove the following theorem:

Theorem 2. If E = (Gen, Enc, Dec) is CPA-Secure and the CDH problem is hard relative to Setup, then our
proposed scheme satisfies the trapdoor indistinguishability under chosen keyword-FFL pair attack.

7. Performance Analysis

As shown in Table 3, we present a comprehensive comparison of the computation cost between
our proposed scheme and some existing searchable encryption schemes. The notations used in Table 3
are as follows:

1. Tbp: Time cost for a bilinear pairing.
2. Th: Time cost for a hash function.
3. Texp: Time cost for an exponentiation operation in G.
4. Tmul : Time cost for a multiplication operation in G.
5. Tenc: Time cost for an encryption process of E .
6. Tdec: Time cost for a decryption process of E .

Table 3. Computation cost: a comprehensive comparison.

Scheme
Computation

Storage Phase Trapdoor Phase Search Phase

Boneh et al. [7] Tbp + 2Th + 2Texp Th + Texp Tbp + Th
Rhee et al. [24] Tbp + 2Th + 2Texp 2Th + 3Texp Tbp + 2Th + 2Texp + Tmul
Xu et al. [26] 2Tbp + 4Th + 4Texp 2Th + 2Texp 2Tbp + 2Th
Chen et al. [28] Th + 4Texp + 2Tmul Th + 4Texp + 2Tmul 7Texp + 3Tmul
Our scheme Texp + 3Th + 5Tenc Texp + 3Th + 2Tenc Texp + Th + 2Tdec

To meet the basic security level for comparison, SHA-256 and AES-256 is selected as the
collision-resistant hash function and the symmetric encryption scheme, respectively. The cyclic
group G of order q is generated by a point on an elliptic curve E(Fp), where q and p are the 256-bits
and 521-bits prime numbers, respectively. To evaluate the efficiency of the five schemes, we perform
our experiments on a computer with 2.4 GHz Intel Core i7 and 8 GB RAM.

As shown in Figures 1–3, our proposed scheme is the most efficient in storage phase and
search phase. In trapdoor phase, our proposed scheme has a higher computational cost than that of
Boneh et al. [7], although it is still lower than other schemes. In summary, the performance of our
proposed scheme is more efficient than four schemes studied in [7,24,26,28].
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Figure 1. Computation cost at storage phase.
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Figure 2. Computation cost at trapdoor phase.
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Figure 3. Computation cost at search phase.

8. Conclusions

In this paper, we have proposed a searchable encryption scheme for meeting personalized privacy
needs. Our proposed scheme mainly includes three entities, i.e., the data owner, the data user, and
cloud server. The data owner outsources the encrypted file features to the cloud server. The data user
queries the encrypted file features containing a specific keyword to the cloud server. The cloud server
stores and retrieves the encrypted file features. Compared with the existing searchable encryption
schemes, our proposed scheme works for all file types including text, audio, image, video, etc., and
meets different privacy needs of different individuals at the expense of high storage cost. We also show
that our proposed scheme satisfies index indistinguishability and trapdoor indistinguishability under
chosen keyword-FFL pair attack. In other words, our proposed scheme is secure against inside KGA.
Performance analysis shows that our proposed scheme is efficient in storage phase, trapdoor phase,
and search phase.

Considering the decreasing costs of storage, storage cost is not a problem if n f + 1, i.e., the number
of the FFL is small in our proposed scheme. However, storage cost is still a problem if n f is too large in
our proposed scheme. Thus, choosing an appropriate n f is an important work in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

IOT Internet of Things
SSE searchable symmetric encryption
PKES public key encryption with keyword search
KGA keyword guessing attac
FFL The file feature level
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