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Abstract: We propose a peak seeking algorithm to extract the damage characteristic-variation of central
wavelength to monitor the crack damage status in aluminum alloy plates using surface bonded
fiber Bragg grating (FBG) sensors. The FBG sensors are sensitive to the uniform and non-uniform
strain distribution along their longitudinal direction, and the effect appears in the power spectrum of
the reflected light from the gauge section. In this paper, we propose a fast-self-adaptive multi-peak
seeking algorithm to detect the central wavelength shifting of the FBG reflection spectrum with the crack
propagation. The proposed peak searching algorithm results point to a significant improvement
compared to other conventional methods. Then the central wavelength shifting is applied to explain
the crack propagation behavior of the aluminum plates under quasi-static tensile test conditions.
The different damages feature changing intervals which are associated with the crack position
and the FBGs location, demonstrating that central wavelength shifting performs as an indicator to
detect structural crack damage.

Keywords: FBG sensor; central wavelength; peak detection algorithm; structural health monitoring

1. Introduction

Structure health monitoring (SHM) is a critical process for enhancing structural integrity or validity.
Sensing technologies using various sensors for intelligent structure have also been investigated [1].
FBG sensors have shown broad application prospects in structure health monitoring due to their
advantages, such as small size, light weight, high resolution, multiplexing capability and immunity to
electromagnetic fields [2]. Furthermore, FBG sensors have shown great potential for monitoring
strain [3], vibration [4] and temperature [5], thus various studies based on the FBG sensitivity
characteristics have been performed to detect different environmental states as strain sensors,
temperature sensors, etc. Recently, FBG sensors have attracted more attention for crack detection in
composite [6] and metallic materials [7]. In particular, the stress concentrated sections caused by crack
damages in structures must be monitored. During a crack event, different fracture features will be
present near the crack tip, such as a stress gradient and a tensile field [8]. Then, grating gauges
can sense inhomogeneous stress/strain and the reflection spectrum of the bonded FBG sensor,
which includes information on strain distribution, which is useful for monitoring the damage status.
Therefore, this study mainly seeks to link the crack damage status directly to the damage features
extracted from the reflection spectrum. In order to focus on the unique spectrum change variables
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that affect the stress/strain changes caused by the crack damage, then the effect of the other factors,
such as the planar Bragg gratings [9], the cross-effect between temperature and strain [10] and curvature
effects [11] have been taken into consideration by using healthy spectra which were acquired in a no
crack state as the reference signals. Then the deformation spectrum can be compared with the basic
signal to eliminate the impact of other factors.

The proposed approach has two key advantages over previous studies. First, the proposed
self-adaptive multi-peak algorithm can effectively extract the damage features of central wavelength
shifts and the experimental results show that the performance of the proposed algorithm is
superior to that of other traditional peak seeking algorithms in pm accuracy and self-adaption.
Second, the different characteristic variation intervals can be associated with different crack
propagation states by a detailed analysis. Additionally, the damage feature proposed in this paper
represents the average strain loaded in the gratings and has a connection with the crack length.

The traditional peak seeking algorithms such as the maximum and extremum algorithm [12],
first-order derivative [13] and the thresholding methods [14] have many limitations, such as poor
anti-noise performance, low computational accuracy. The peak searching methods based on curve
fitting, including Gaussian fitting [15], polynomial fitting [16], three-point peak detection [17]
and the centroid algorithm [18] have high peak detection precision, but their performances are affected
by spectral types, especially for deformation asymmetry spectra. To overcome the mentioned problems,
other algorithms were developed, however, for the super-Gaussian model [19] it is difficult to choose
the modified function parameters and the Monte Carlo methods [20] can hardly meet the precision
demands owing to their nonlinear characteristics. Additionally, several optimization algorithms
such as genetic algorithm [21], self-adaptive neighborhoods search [19], tree search [22], and dynamic
multi-swarm particle optimizer algorithm [23] have been proposed to deal with the multi-peak
detection problem. However, their iterations take a long time to find the optimum solution and their
computational complexity is high. Therefore, it is desirable to develop a multi-peak seeking method to
extract the central wavelength shifts from the FBG reflection spectrum.

The proposed algorithm can be adapted to extract the damage characteristic, the central
wavelength shift which is used to detect the hole-crack damage under fatigue loading. The holes
drilled in plates for assembly or functional requirements will cause regional stress concentrations
and lead to further varying degrees of structural damage under external loading [24]. For the purpose
of monitoring such a complicated damage state, many studies have experimentally and by simulation
examined the reflection spectrum of embedded FBG sensors during damage extension in composite
laminates, which contain local stress singularity regions [25,26]. Then, the damage characteristics
such as central wavelength [27], full width at half maximum (FWHM) [28] and the peak numbers [29]
are reported to detect different damages include debonding [30], ply cracks [31] and delaminations [32].
However, few studies have focused on the linkage of the transverse fatigue hole-edge crack growth
in aluminum alloys plates and the associated FBG sensing characteristics. This paper attempts to
show the strain gradient which is formed along the grating length when the crack tip approaches it,
and produces a variation in the grating pitch. Then the central wavelength damage feature which
corresponds to the located direct-peak will drift with the crack propagation [21]. Finally, a detailed
analysis of the relation between the crack length and the central wavelength shift enables us to monitor
damage status at any loading condition.

The paper is organized as follows: in Section 2, a fast-self-adaptive peak seeking algorithm is
proposed to detect the central wavelength by four processes. In Section 3, we present the experimental
design of the fatigue crack monitoring based on FBG sensors. In Section 4, the performances of different
peak seeking algorithms are evaluated and the detected feature variations with crack propagation are
discussed in details. Finally, Section 5 concludes the paper.
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2. Central Wavelength Detection Algorithm

External loads can lead to uniform or non-uniform strain field distributions along the sensor
grating. Takeda [33] found that the central wavelength of FBG reflection spectrum shifts are
proportional to the applied strain (assuming isothermal conditions) when the strain field is uniform,
however, when the grating is under a non-uniform strain, the reflection spectrum becomes broadened
and shows multiple peaks with the shifting central wavelength. Dong [34] proposed that the damage
features extracted from the healthy and deformation spectrum be used to detect, locate and predict
the structure crack evolution. Chong [35] monitored multi-crack locations based on a FBG sensing
network and the relationship between the central wavelength and the compression strain along fiber
gratings simultaneously. The traditional peak seeking algorithms mentioned before have various
disadvantages, such as sensitivity to experimental noise and spectrum shape, low computation
power and being time consuming. Therefore, it necessary to propose a fast and precise damage
feature detection algorithm to monitor the central wavelength shifting and analyse its variation with
the expansion of cracks.

In this paper, a fast-central wavelength seeking algorithm is proposed. First, the improved
wavelet thresholding combined with variational mode decomposition method is applied to denoise
the FBG signals. Then, the peak range detection method is proposed to confirm the number and scope
of target peaks in a multi-peak spectrum. When the crack propagation is near the FBG sensors,
the non-homogeneous strain field results in spectrum broadening and a shift in the spectrum peak.
Considering the subordinate peaks and the low powered clutter, it is necessary to quantity the range
of the primary peak at the 3 dB bandwidth region. Finally, the central wavelength is obtained
by the centroid algorithm and the shifting is defined based on a comparison between the healthy
and damage spectra. The kernel of the algorithm presented in this paper is the peak-recognition which
is developed by fully considering the shape characteristics of spectra, demonstrated to be effective
as a deformation spectrum. The flowchart of the central wavelength shifting detection algorithm is
shown in Figure 1.
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2.1. De-Noising Pre-treatment of the FBG Reflectivity Spectrum

The FBG sensing system is subject to interferences from external noise caused by electrical
devices and the loading environment that affects the peak shape. The peak features such as spectral
broadening, asymmetry, top fluctuation and side lobes then limit the peak detection precision. It is
suggested that smooth de-noising should effectively eliminate top fluctuation. Therefore, FBG signal
de-noising before peak detection is necessary. A variational mode decomposition combined with
the wavelet threshold denoising method is proposed in this paper to deal with the FBG signals. In 2014,
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Konstantin [36] first introduced an entirely non-recursive variational mode decomposition (VMD),
which can concurrently extract the modes which are related to the center frequencies wk on the line
from the input signal. The basic modes are called band-limited intrinsic mode functions (BLIMFs)
uk, corresponding to the sub-energy of the signal. When the decomposition number is predefined,
the energy distribution in each basic mode is decided. Then, inspired by the translation invariant
wavelet widely used in signal processing technology, the VMD combined with changed wavelet
thresholding denoising techniques is developed in this paper.

Based on the previous research [37], the process of the VMD-DWT signal de-noising algorithm is
described as follows:

Step 1: The best decomposition number K is set as 6 and the best balance parameter α is equal
to 200. An input signal with length N is decomposed into the given number K band-limited intrinsic
mode functions (BLIMFs) uk by VMD.

Step 2: A translate wavelet is executed using thresholding for each BLIMF. Based on literature
research, the high-order BLIMFs parts which are significantly corrupted by noise can be locally
excluded. Then, the DWT system 5 is adopted as the wavelet basic, and the decomposition level
is set as 6 [38]. According to the previous research, soft thresholding shows greater efficacy than
the hard one in FBG signals [38]. Thus, in this paper, soft thresholding is applied to all BLIMF samples.
Additionally, when the samples’ extrema exceed the threshold, the extrema need to get reduced by
an amount equal to the threshold in a smooth way. When considering the energy distribution impact
in each basic mode uk, the improved wavelet thresholding is expressed in the Equation (1):

d̂l =


sign(di)

|di| − Ti

exp
(
|di |

T −1
)2

, |di| ≥ Ti

0, |di| < Ti

(1)

where, di presents the ith thresholding of BLIMFs, and the standard deviation of the noise is estimated

by the components median σ = median(|ci |:i=1,2....N)
0.675 . Additionally, the per mode thresholding Ti which

is corresponding to the variance noise energy are described in Equation (2):

T = 100σ
√

2Eilg(N)/lg(j + 1) (2)

Here, the Ei shows the ith energy of BLIMFs and it can be estimated by the following equation:

Êk =
E2

1
β

ρ−k, (k = 2, 3, 4) (3)

Here, E2
1 is the energy of the first BLIMFs and the shifting iterative procedure parameters β, ρ are

specifically given as 0.719 and 2.01 [39].
Step 3: After the processes of de-noise on each scale separately, then, we reconstruct the de-noising

signal by summing all the threshold denoising BLIMFs.
Processed by the improved wavelet method proposed in this paper, the noise contained

in spectral signal is effectively removed, laying the foundation for the multi-peak detection
operation. Figure 2 shows the evaluation results of the de-noising performance with different
methods, such as the Empirical Mode Decomposition combined with the changed thresholding
wavelet (EMD-changed wavelet), EMD combined with detrended fluctuation analysis (EMD-DFA),
EMD-wavelet, VMD-changed wavelet. It is apparent that the VMD-changed wavelet method efficiently
filters the noises and conserves details from the partial superposition signals.
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Figure 2. (a). FBG reflection spectrum with noise; (b) The de-noised spectrum signal of FBG by
the proposed algorithm.

2.2. Flow of the Multi-Peak Central Wavelength Detection Algorithm

The multi-peak central wavelength detection algorithm is used to handle the issue of precise
multi-peak detection, particularly with regards to the deformation reflection spectrum. The improved
algorithm is divided into two-sub-tasks: multi-peak splitting and central wavelength detection.
The first section is a spectral splitter that splits the reflection spectrum and seeking the multi-peak
pre-positions. The second section is a Bragg wavelength detector that extracts the central wavelength
from each split spectrum. Those two sections contain six steps as the algorithm flow in Figure 3 shows.
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2.2.1. Pre-position of the Peak and the Peak Region Segmentation

In this section, the de-noised spectral signal are processed with the Hilbert transform to achieve
the peak number and pre-position detection of the multi-peak spectral signal. According to the previous
research [40], the peak position of the reflection spectrum corresponds to the zero-crossing points of
the transformed signal.

The Hilbert transform in the time domain is a convolution integral between the real continuous
spectrum signal x(t) and (πt)−1. Then we denote the Hilbert transform of x(t) as Equation (4):

x̂(t) = H[x(t)] = x(t) ∗ 1
πt

(4)

According to one of the Hilbert transform relations, the phase spectrum is only different between
x̂(t) and x(t), when the amplitude spectrum and energy spectrum are the same.

The reflection spectra of four FBGs in plate 1 are shown in Figure 4a and the Hilbert transform
signal results are shown in Figure 4b. It can be seen that the central wavelength of each peak
in Figure 4a corresponds to the zero-crossing points of the transformed signal in Figure 4b.
However, the zero-crossing points also be related to the extreme points in FBGs reflection spectrum.
Then the peak group-threshold and the peak-slope is proposed to eliminate the interference of
subordinate peaks. The peak group is a vector of the number of points around the top part of the peak
that are taken as the initial estimate of the peak center and width, which is defined by the boundary
length of the pole points on both sides of the transformed signal in Figure 4b. According to the previous
research [41], the noise can limit the peak threshold, so to avoid the noise and the sidelobe effect,
O’Haver [42] proposed the autopeaksplot algorithm and definite the minimized primary peak
threshold in one peak cycle range. Considering the data number collected by SM125 at one pause is
16,001, therefore in this paper, the peak threshold data number is set as 600 and the wavelength length
approaches 1 nm. In the interval between the left and right pole points in Figure 4b, the intensity
of the transformed signal x̂(λ) has a sharp increasing shape, which can be expressed as a large
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positive slope. The following peak detection through looking for zero-crossings points in the Hilbert
transform signal whose peak-thresholds exceed 1 nm and in a sharply increasing slope shape.
Additionally, the spectral intensity of x(λ) in Figure 4a and x̂(λ) in Figure 4b have the same fluctuation
trend in the FBG reflection peak region. By this way, the peak number and the peak pre-position in
the reflection spectrum can be estimated. T1
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Compared with the traditional constant thresholding peak detection method, the proposed
automatic peak detection algorithm can overcome the limitation that the lower value peaks are
not detected and false spurious peaks resulting from the existence of sidelobes or peak distortion
(shown in Figure 5a) are detected. The Hilbert transform of the FBG signals returned the peak number
and the peak pre-judgment position. Then, the 3 dB threshold bandwidth which is associated with
the half-power bandwidth of the peak is defined as the peak range with the purpose of precision
central wavelength detection (shown in Figure 5b).



Sensors 2019, 19, 1056 9 of 26

Sensors 2019, 19, x 8 of 25 

 

detected and false spurious peaks resulting from the existence of sidelobes or peak distortion (shown 

in Figure 5a) are detected. The Hilbert transform of the FBG signals returned the peak number and 

the peak pre-judgment position. Then, the 3 dB threshold bandwidth which is associated with the 

half-power bandwidth of the peak is defined as the peak range with the purpose of precision central 

wavelength detection (shown in Figure 5b).  

 

(a) 

 

(b) 

Figure 5. (a) Conventional peak detection using a global threshold. (b) Peak detection using  

proposed algorithm. 

2.2.2. Central Wavelength Seeking 

Based on the pre-position of the peak and the peak region segmentation, a 3 dB window function 

is added to suppress the side lobes in the pre-processing. Then, the centroid algorithm is used to 

detect the precise central wavelength in multi-peak (in Figure 6). Compared with other algorithms, 

the centroid algorithm has a high precision and is more robust than the direct-peak location algorithm 

when noise raw data is processed [41]. Additionally, the centroid algorithm requires higher 

computation than the Gaussian or polynomial fitting in the FBG reflection spectrum [43]. The 

centroid algorithm produces a point corresponding to the geometric centroid of a spectrum, 

Figure 5. (a) Conventional peak detection using a global threshold. (b) Peak detection using
proposed algorithm.

2.2.2. Central Wavelength Seeking

Based on the pre-position of the peak and the peak region segmentation, a 3 dB window
function is added to suppress the side lobes in the pre-processing. Then, the centroid algorithm
is used to detect the precise central wavelength in multi-peak (in Figure 6). Compared with other
algorithms, the centroid algorithm has a high precision and is more robust than the direct-peak location
algorithm when noise raw data is processed [41]. Additionally, the centroid algorithm requires higher
computation than the Gaussian or polynomial fitting in the FBG reflection spectrum [43]. The centroid
algorithm produces a point corresponding to the geometric centroid of a spectrum, calculated by
Equation (5), where N is the size of the spectrum points vector, λi is the ith point wavelength, and Ii is
the ith point reflectivity intensity:

λB =
∑N

i=1 λi Ii

∑N
i=1 Ii

(5)
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3. Damage Monitoring Experiment Design

The experimental platform with surface bonded FBG sensors on an aluminium alloy plate is set
up to monitor the hole-edge crack states by analysing the damage characteristics which are extracted
from healthy and deformation reflectivity spectra. The crack defects will reduce the light intensity
and disturb light transmission. Then, the central wavelength shift ∆λB is a direct indication of the strain
along the specimen. By analysing the changing damage features, it was observed that the magnitude
of ∆λB, measured by each FBG, increases after the crack passes the grating area, and has a relationship
with the crack lengths. Additionally, the experiment results will also be used to verify the effectiveness
of the proposed peak seeking algorithm.

3.1. Specimens: Material and Geometry

Five parallel experiments with the same design and operation were carried through to reduce
the uncertainty (shown in Figure 7c). The coupons (shown in Figure 7a,b) are made of aerial 2024-T3
aluminum alloy with dimensions of 300 × 100 × 2 mm, and were manufactured at the Beijing Institute
of Aeronautical Materials. A 10 mm in diameter hole was drilled in the intermediate plate, and a 3 mm
electric discharge machining (EDM) pre-crack was produced on both sides of the hole to accelerate
the expansion of fatigue cracks. The yield strength of the specimen materials is 360 MPa, the ultimate
strength is 490 MPa, the Poisson’s ratio is 0.33 and the Young’s modulus is 72 GPa. According to
a previous study [44], pre-cracks around holes are highly relevant to the stress concentration and will
be a hot spot to develop fatigue damage.

3.2. FBG Sensors Network Design

The FBG sensor network design is critical for damage detection. Considering the effect of the crack
damage on the axial strain profile, the FBG sensors are placed at the end of the crack tip in this paper.
Based on the previous finite element analysis under different crack lengths [8] showing that when
some FBG sensors were arranged uniformly along the crack propagation direction with a distance
of 1 mm, the grating can sense the crack-tip strain singularities with sensitivity, the other FBG sensors
were symmetrically distributed along the radial direction that the crack would propagate along.
Thus, sixteen FBG sensors were uniformly symmetrically bonded by a liquid cyanoacrylate adhesive
on each side of the hole. The detailed sensor layout is shown in Figure 7b, where the red lines represent
FBG sensors near the target region. The Young’s modulus of the FBG sensor adhesive is 0.0017 GPa,
and the length is 10.01 mm.
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3.3. Experimental Setup

The experimental platform for fatigue hole-edge crack damage detection contains three major
parts: an optical sensing and data acquisition system, a fatigue crack measurement system,
and a fatigue load-cycling system, which are shown in Figure 8.

FBG sensors (FSSR5025) from the Changcheng Institute of Metrology and Measurement
(Beijing, China) were used to acquire the strain information in the regions vulnerable to fatigue crack
damage. The optical demodulator system (SM125, Micro Optics Inc., Danbury, CT, USA) was used
to record the reflection intensity spectrum at various crack lengths from 1–30 mm; the measurement
accuracy is 1 pm resolution and the stability is less than 1 pm. A spectrometer of 1 pm resolution
is used to obtain the real FBG reflection spectrum. The real cracks were monitored by a traveling
optical microscope with a charge coupled device (CCD) camera during the fatigue cycling load testing
by a hydraulic MTS fatigue machine at constant temperature. The theoretical peak value is equal to
the standard spectrometer results. A constant amplitude tensile loading was applied to the bottom
of the specimens with the top boundary fixed, the maximum amplitude was 75 Mpa, the stress ratio
was 0.1 and the load frequency was 5 Hz. In addition, the fatigue testing experiments were paused
under the maximum strain for data acquisition, and the processing was repeated twice to eliminate
any operational error during each of the pauses and account for system hysteresis.
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Fiber Bragg gratings are some of the most used devices to measure strain and deformations
in many smart structures. In these applications, the FBG measures the total deformation including
strain due to forces applied to the structures as well as thermal expansion [45]. The relative Bragg
wavelength shifts in response to axial strain change ∆ε and temperature change ∆T are defined
as ∆λε/λB and ∆λT/λB, respectively, which can be described as the following formula:

∆λε

λB
= (1− Pε)∆ε (6)

∆λT
λB

=
(

α f + δ f

)
∆T (7)

where Pε = 0.22 is the effective photoelastic coefficient of the fiber glass; α f and δ f are
the thermal-expansion coefficient and the thermal-optic coefficient of common single-mode
fiber, respectively.

In practice, The Bragg wavelength of an FBG sensor depends mainly on strain, but it shifts
slightly with any temperature change. With a change of 1 ◦C, the measurement strain typically has
an error of 11 µε [46]. On the other hand, this cross-sensitivity of the FBG with temperature may
become a problem in applications that require the discrimination the total deformation. For accurate
strain measurementa by FBG sensors, it is necessary to compensate the influence of temperature
change. In order to overcome this inconvenience, researchers proposed many schemes by mixed
fiber gratings [47], different-dimeter fiber grating [48], and fiber gratings partly embedded in glass
tubes [49,50].

In this paper, the damage monitoring experiment aims to detect the strain effect caused by
crack propagation with FBG sensors. Therefore, the thermal-strain cross effect may be limited
in the experiment design part and the measurement signal needs to be processed to eliminate
the temperature influence.

In order to control temperature effects, the damage monitoring experiment was carried out
under the constant temperature with a central air-conditioning control system set at 27.6 ◦C, and data
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acquisition time within seconds, therefore the slight temperature fluctuations during the process are
assumed negligible.

Additionally, the reference signals of each FBG which was bonded on the specimen were
acquired before the fatigue experiment under no crack environment with the loading fixed at 75 MPa,
and the temperature set at 27.6 ◦C. Then, the crack propagation after fatigue cycles and the damage
signals of each FBGs were detected at different crack lengths under fatigue testing paused at 75 MPa
with same temperature and bending state of the reference signal. Besides, the central wavelength
shift of each FBG is defined as the difference between the damage signals and the reference signals.
Then the central wavelength shift at every crack of the FBGs are subject to the strain change without
thermal expansion and bending effect.

Furthermore, the Bragg wavelength relative shift is proportional to the axial strain, or in other
words, FBG converts strain into wavelength shifts, which is an absolute parameter, immune to optical
power drifts along the measurement chain. In addition, strain is exerted on the attached optical sensor,
which in turn modifies the sensor spectral response. However, on account of the hysteresis error of
the optical measuring system of this sensor due to the hysteresis and non-linear phenomena taking
place in such substrate materials do not obey Hooke’s law perfectly [51]. In details, when substrate
materials are under an external force, the micro-strain between every micro-grain inevitably displays
inhomogeneity [52]. Additionally, strain lagging the stress within the elastic deformation range may
appear. Moreover, there is a non-strict linear relationship between strain and stress and the strain curve
in loading process ε1 does not coincide with that in unloading process ε2, which is shown Figure 9.
Moreover, the plastic hysteresis can be defined as the difference between ε1 and ε2 [53].
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Even the hysteresis is a limiting factor concerning the global performance of the device,
the accurate and reliable modelling of its effects allows the sensor to achieve sufficient accuracy. To this
end, plastic materials are accurately modelled in order to compensate for hysteresis. However, recently,
hysteresis modelling has seen great progress [54,55], resulting in suitable techniques to model hysteresis
compensation that can be employed, such as the compensation block [56] and a proposed parabolic
approximation technique [57], which allows the device to show a full linear response.

In this paper, the hysteresis effect limiting method is applied in the developed damage
measurement experiments and yielded to a more linear response of the sensor for a reliable
reconstruction of the strain field. Firstly, the data acquisition under the maximum strain stabilization
paused with the loading fixed as 75 MPa was proposed and the processing was repeated twice to
eliminate the operational errors during each of the pauses. This process limited the system hysteresis
under the loading and unloading cycles to be minimum.

In addition, the relation between the component strain and the strain on a surface-attached optical
fiber is governed by the effectiveness of shear transfer through the adhesive and the polymeric coating on
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the optical fiber [58]. When considering adhesive affect strain transfer in the surface-attached sensor under
the loading state and the sensor’s performance may be reduced due to single-input-multiple-output.
To decrease the adhesive effect, FBG sensors were bonded by a liquid cyanoacrylate adhesive on
the specimen due to the fact the Young’s modulus of the adhesive that is between the specimen and sensors
is close to the Young’s modulus of the specimen material (the Youn’s moduli of the adhesive and FBG
coating are 72 GPa, 0.00175 GPa and 0.0017 GPa), therefore, the strain can be perfectly transferred between
the plate and FBG sensor.

4. Results and Discussion

The damage monitoring experimental procedure was carried out as described in Section 3, and in
this section, the healthy and damage signals received are used to evaluate the effectivity of the central
wavelength algorithm and monitor the damage crack propagation.

4.1. Evaluate the Effectivity of the Central Wavelength Algorithm

To validate the feasibility and dependability of the multi-peak central wavelength detection
algorithm, the traditional algorithms such as direct-peak located algorithm, centroid algorithm,
polynomial fitting algorithm and Gaussian fitting algorithm are applied for comparison. The traditional
algorithms have high requirements for the spectral type and the environmental noise. In order
to evaluate the algorithm effectively, the detected error and the standard deviation are proposed
as the assessment indicators. The detected error is the discrepancy between the measured peak value
and the theoretical peak value equaling to the standard spectrometer results. The detected error [59]
occurs because the measurement of the data is not precise due to the algorithm. In the mathematical
field of numerical analysis, the absolute value [60] and the relative value [61] of the measured
and theoretical peak values were expressed as the algorithm error, which is described as follows:

Absolute error = measured peak value-theoretical peak value (8)

Relative error = |measured peak value− theoretical peak value|/theoretical peak value (9)

Considering the stability of the optical demodulator system (SM125) is 1 pm., the accuracy of
the signals acquired by the system would be influenced, then the highest precision of the peak seeking
algorithm would also be limited to pm level. Moreover, in order to evaluate the peek seeking algorithms’
performance, the data processed by the different algorithms were the same. Therefore, the uncertainty
fluctuation of the data has the same variation effect on each of these algorithms. In summary, the absolute
error and relative error can be presented as the assessment indicators.

It is observed that the proposed peak seeking algorithm have the best performance in algorithm
precision with the minimum absolute error within the range of (−2 pm, 2 pm), while the maximum
algorithm had a maximum error in the range of (−15 pm, 15 pm), as shown in Figure 10.
Furthermore, the absolute error contains positive and negative errors considering the power fluctuation
or other signal measurement effects.

Additionally, considering the accuracy of the measurement equipment, the relative error results
shows that the proposed algorithm has the minimum value while the maximum algorithm has
the maximum relative error (in Figure 11). Therefore, the accuracy and the stability of the proposed
algorithm shows superiority over other algorithms. Even though they have the same computational
complexity when considering the vector input size, the proposed algorithm performs better due to its
implementation details.
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Figure 10. The absolute error of five peak seeking algorithms at different crack lengths. (a) The absolute
error of five peak seeking algorithms in FBG1, (b) The absolute error of five peak seeking algorithms
in FBG2.

When algorithm robust is considered, the detection wavelength standard deviation σ given by
Equation (10) is proposed as an indicator:

σ =

√√√√ 1
N

N

∑
i=1

(λa − λb)
2 (10)

where σ is the standard deviation of the calculated peak wavelength and the theoretical peak
wavelength, N is the number of the spectrum collection times, λa is the peak wavelength calculated by
algorithm and λb is the theoretical peak wavelength.

It is observed that the proposed algorithm has the smallest σ, which shows the best robustness
of five overall algorithms in Figure 12. The reasons for the other four algorithms poor performance
are various that the direct-peak located algorithm precision may be affected by the noise, additionally,
the fitting algorithm such as the Gaussian fitting algorithm and the polynomial fitting algorithm do
not take the FBG asymmetry spectrum into consideration.
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Figure 11. The relative error of five peak seeking algorithms at different crack lengths. (a) The relative
of five peak seeking algorithms in FBG1, (b) The relative of five peak seeking algorithms in FBG2.
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The analysis of the experiment results shows that the proposed algorithm guarantees the best
combination of versatility, precision and accuracy. Consequently, the algorithm in this paper could
satisfy the requirements of detecting the promising central wavelength.

4.2. Analysis the Central Wavelength Shifts with Crack Propagation

The central wavelength shifting of the FBG reflection spectrum is chosen as the damage feature
due to its sensitivity characteristic to the strain distribution caused by crack propagation.

The wavelength shift, ∆λB, is a parameter related to the strain level in the structure, but it is
dependent on the loading and geometry configuration. However, the rapid increase in the magnitude
of ∆λB is caused by damage event that reduces the stiffness of the structure. Based on the coupled
mode theory, the central wavelength determined by the FBG period Λ and the effective refractive
index ne f f . At constant temperature, the load-induced Bragg wavelength λB0 shifts with the grating

period Λ for the light propagating direction and the mean effective index of refraction, no:

λB0 = 2noΛ (11)

What is more, according to the previous research [8], no crack is present and a uniform strain,
εz builds up around the grating area as the structure is loaded. The FBG response is a uniform
wavelength shift in the reflected peak, ∆λ. Moreover, there is a linear relationship between the change
of the central wavelength and the axial uniform strain εz when the grating axial placed far away
the crack tip (shown in Figure 12). The relation is expressed as Equation (12):

∆λB
λB0

=

(
1−

n2
0

2
(p12 − ν(p11 − p12))

)
εz = (1− pe)εz = Kε ∗ εz (12)

where the new strain optic constant pe is determined by experimentally. This relation points out that
the sift in wavelength of the Bragg peak is proportional to the applied axial strain. When it is uniform,
shifts occur without modification of the initial spectrum shape (shown in Figure 13).
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Figure 13. The force analysis of the FBG sensor when axial places on the aluminium plate under
axial loading and the FBG reflection spectrum shift under no strain field, tension stress field
and compression field.

When the crack propagation to the FBGs, the materials around the crack tip under high stresses
field, and the effect of the stress on z direction shrinkage is constrained by the surrounding materials.
Then the strain filed at the crack tip εz is small, represented to as a plane-strain state, leading to
the characteristic singular stress distribution at the crack tip.

According to the finite element analysis of fatigue crack propagation near the FBG sensor by ANSYS
software, the fiber grating senses the nonhomogeneous strain (shown in Figure 14), the reflectivity among
the grating and the pitch distance has been non-uniformity changed (shown in Figure 15).
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On constant temperature condition, when the nonhomogeneous strain distribution along
the grating, the central wavelength changes no more than a linear function with the strain.
In a non-uniform strain field, where the strain components are functions of the axial position z.
Consequently, the Bragg wavelength shifts have a function of strain in z direction, then the specific
expression is Equation (13):

∆λB(z)
λB0

=
λB(z)− λB0

λB0
= εz(z)−

n2
0

2

(
p12εz(z) +

1
2
(

p11 + p12)(εx(z) + εy(z)
))

(13)

While the spectrum response of a Bragg grating is quite simple to interpret when the strain
is homogeneous, its response in the presence of strain gradients becomes more complicated to
characterize. Indeed, the reflection spectrum becomes broadened with multiple peaks and is said to
be chirped.

The crack length versus the FBG reflection spectrum is presented in Figure 16. This is worth noting
that in the initial stage of crack propagation, considering the structure loading or crack singularities
field distance from the grating is enough, the reflection spectrum displays a very narrow symmetric
Gaussian shape, and only the central wavelength makes a shifting with the crack (in Figure 16).
Then, when the crack propagates close to the FBG, in the plastic zone located at the head of the crack
tip, the grating senses a higher average strain and the central wavelength shifts to a higher wavelength.
Additionally, when the grating is locates in the crack singularity field, the inhomogeneous strain field
in the grating direction will change, the strain gradient load on the grating increases, then the central
wavelength will move in a long wavelength direction. The original grating was broken when it reached
the maximum chirp status and the subordinate peak initially appeared in the short-wavelength
direction with the bandwidth broadened (in Figure 16 zone A) [8]. If the crack continues to grow,
the grating will gradually experience the influence of the crack singularity (the region dominated
by stress concentration). Non-linear behaviours of the structure which are caused by the material
nonlinearity (plasticity) and a change of configuration can be sensed by the grating gauge when
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the crack crosses it. The tensile stress loaded on the grating and the central wavelength continues
shifting to the longer wavelength as the peak splitting in the FBG reflection spectrum increases,
then subordinate peaks appear in the long-wavelength direction (in Figure 16 zone B). Moreover, it is
notable that the different FBGs layouts present different reflection spectrum results when the crack
shifts away from the sensors (in Figure 16 zone C).Sensors 2019, 19, x 19 of 25 
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It is possible to observe some differences in the evolution of the wavelength shift because
the position of the sensor and the crack related to the applied moments is different. The FBGs are
placed perpendicular to the crack propagation direction with a distance of 1 mm, and their reflection
spectrum gradually recovers its original shape, then the spectrum returns to the Gaussian shape
and the central wavelength tendency shift to the short-wavelength direction (in Figure 17a, the FBG
spectrum in red cycle are presented the moments that crack propagates to the FBG3).
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Figure 17. The FBG3 and FBG4 reflection spectrum in various crack lengths. (a) The reflection spectrums
of FBG3 in different crack lengths, (b) The reflection spectrums of FBG4 in different crack lengths.

The FBGs are bonded at the place where the crack crosses, and it is obvious that the reflection
spectra continue to deform when the crack passed through fiber grating owing to the damaged gauges
(in Figure 17b, the FBG spectrum in red cycle are presented the moments that crack propagates to
the FBG4). However, the wavelength shift continues to vary, following the increase of load and strain
in the specimen.

It is observed that the central wavelength shifting of the FBG sensors located symmetrically along
both sides of the hole show similar turning points and increasing tendency with the crack (in Figure 18).
In the initial stages of crack propagation, the shift of the central Bragg wavelength was less than 0.1 nm
during this process as a result of a small offset between the center of the FBG and the intersection
point between the FBG and the neutral line. Then, with the crack propagation, the central
wavelength increases as the average strain sensed by the grating gradually increases (in Figure 18,
region A). Additionally, when the crack extends close to the grating and the gauges sense increasing
non-homogeneous strain, the curve rises quickly (in Figure 18, region B). Therefore, it is obvious that
a jump in the wavelength shift is observed when the crack passes the position of the gratings. The crack
changes the local compliance of the material and load distribution, making the area that surrounds
the sensor less stiff and more deformed, therefore, an increase in the strain is measured.
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(c) The central wavelength shifting of FBG11 and FBG14.
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In the end, for the FBGs bonded up and down perpendicular to the crack direction, the change
of central wavelength becomes steady and a back return trend is seen when the crack passes away
from the sensor, as the field around the grating returns to an approximately uniform strain condition,
shown in region C in Figure 18a,c. For the FBGs crossed by the crack, such as FBG2,9, the spectrum
maintains its deformation shape and the central wavelength still increases, as shown in region C in
Figure 18b.

The processing period is divided into three stages: gradual increase, quick increase and steady
increase. Since the turning points are different in the three periods of each curve on account of
the sensor placed at different positions, the analysis of central wavelength slopes and turning points
in the three stages caused by the changing average strain and strong stress concentration during
the crack extension could help us to judge whether the crack is approaching the FBG sensors’ position.
However, when the sensors are in the symmetrical position on both sides of the hole, the two curves
are also imperfectly superposed due to the signal uncertainty. The reasons for the differences are many,
such as the discrepancy of elastic properties, the crack orientation, as well as the geometry features,
and an analysis of these factors will be studied in the future. In this way, the central wavelength can be
used to monitor whether the crack is propagating towards the FBG sensors. Accordingly, the central
wavelength can be regarded as a damage parameter to monitor the fatigue crack propagation lengths
when the FBGs are located at the near-end stress field.

5. Conclusions

In this work, a self-adaptive multi-peak detection algorithm is developed to extract the damage
characteristic variation of the central wavelength to detect the crack damage status in aluminum
alloy plates using FBG sensors. The peak searching results reflect that the proposed algorithm
presents a significant improvement in accuracy and robustness compared to other conventional
methods. Additionally, the ability of fiber Bragg gratings bonded on aluminum materials to detect
and track cracks by connecting the response of a sensor to a specific fracture/damage phenomenon was
demonstrated. The central wavelength shifts detected from the FBG reflectivity spectrum are sensitive
to the uniform and non-uniform strain distribution along their longitudinal direction, and can be used
as a tool to monitor and evaluate different damage status during a crack growth event in quasi-static
tensile tests for aluminum plates. The curve of the characteristic parameter variation during a crack
growth event is divided into three regions: gradual increase, quick increase, and steady increase,
corresponding to the initial stages of crack propagation at a far distance from the FBGs, the crack
proportion near and through the FBGs stage, and the cracks far away from the FBGs stage, caused by
the tensile and compressive stress in the crack tip plasticity area. This technique was successfully
validated under experimental cycle loading conditions, and very promising results demonstrate
the possibility of crack quantitative detection based on FBG sensors.
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