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Abstract: This study presents a novel approach in the application of Unmanned Aerial Vehicle
(UAV) imaging for the conjoint assessment of the snow depth and winter leaf area index (LAI),
a structural property of vegetation, affecting the snow accumulation and snowmelt. The snow
depth estimation, based on a multi-temporal set of high-resolution digital surface models (DSMs) of
snow-free and of snow-covered conditions, taken in a partially healthy to insect-induced Norway
spruce forest and meadow coverage area within the Šumava National Park (Šumava NP) in the
Czech Republic, was assessed over a winter season. The UAV-derived DSMs featured a resolution of
0.73–1.98 cm/pix. By subtracting the DSMs, the snow depth was determined and compared with
manual snow probes taken at ground control point (GCP) positions, the root mean square error
(RMSE) ranged between 0.08 m and 0.15 m. A comparative analysis of UAV-based snow depth with a
denser network of arranged manual snow depth measurements yielded an RMSE between 0.16 m and
0.32 m. LAI assessment, crucial for correct interpretation of the snow depth distribution in forested
areas, was based on downward-looking UAV images taken in the forest regime. To identify the canopy
characteristics from downward-looking UAV images, the snow background was used instead of the
sky fraction. Two conventional methods for the effective winter LAI retrieval, the LAI-2200 plant
canopy analyzer, and digital hemispherical photography (DHP) were used as a reference. Apparent
was the effect of canopy density and ground properties on the accuracy of DSMs assessment based
on UAV imaging when compared to the field survey. The results of UAV-based LAI values provided
estimates were comparable to values derived from the LAI-2200 plant canopy analyzer and DHP.
Comparison with the conventional survey indicated that spring snow depth was overestimated, and
spring LAI was underestimated by using UAV photogrammetry method. Since the snow depth and
the LAI parameters are essential for snowpack studies, this combined method here will be of great
value in the future to simplify snow depth and LAI assessment of snow dynamics.
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1. Introduction

Snow is an essential component of the hydrological cycle [1]. It serves as a reliable water resource
and the dynamics of snow cover play a vital function in rebalancing the global energy and water
budget [2]. Due to the unique characteristics of snow, snow cover functions as an energy bank,
radiation shield, insulator, reservoir, and water transport medium in the global climate-ecosystems [3].
Environmental agents interact with snow in complex ways. To predict these interactions between forest
structure and snow accumulation and melting, factors such as air temperatures, incoming shortwave
and longwave radiation, snow albedo, precipitation, wind speed, wind redistribution, and relative
humidity, as well as snow interception by forest canopy or vegetation structure, influencing the
snowpack [4], have to be determined.
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Accumulation and ablation of seasonal snowpack within forested areas exhibit very different
dynamics compared to snow within open field areas [5,6]. Forests reduce shortwave radiation and
increase longwave radiation due to trees as important emitters of longwave radiation. Because the
decrease in shortwave radiation in forests plays a bigger role for the entire energy balance than the
increase in longwave radiation, the snowmelt is much slower in forests compared to open regions [4].

Snow albedo that depends on the snow properties especially snow grain size is generally lower in
forests than in open areas [7]. Wind redistribution, coincident with a precipitation event, can quickly
alter accumulation patterns in open sites [8]. In the forests, snow storage and snow redistribution
depend mainly on forest type (coniferous, deciduous) [4], although the importance of forest structure
has also been highlighted as a significant factor influencing the under-canopy snow accumulation
patterns and timing of snowmelt [9–11]. In case of frequent snowfall, snow interception increases.
The differences between snow storages accumulated in open areas and in forests were reported from
many world’s regions [10,12–15]. The mentioned studies reported by 30–50% lower snow storages
in the coniferous forest compared to the adjacent open area depending on canopy structure. Similar
differences in snow storages in forests compared to open areas have been also proved by [4] based
on measurements at the same study area as the study presented in this paper. Under freezing and
low-wind conditions, the intercepted snow remain in the canopies longer and enhance sublimation
directly to the atmosphere. By rising air temperatures sublimation causes faster upload of intercepted
snow on the forest ground intensifying the ablation rates of the snow cover [3]. Alternatively, with
increasing forest cover, the interception of snow in the canopies reduces the amount of snow that
accumulates on the ground, while shading reduces snow ablation compared to an open site [16]. It is
certain that the effect of forest on snow accumulation and ablation acts to both intensify and reduce the
energy budget of snowpack, consequently creating much greater heterogenous snow cover patterns
compared to open sites [11].

Therefore, efforts to measure snow depth distributions at different places and different scales
are crucial to simulating snow accumulation and ablation processing using, for instance, numerical
models from conceptual to physically based distributed models or hydrological models that simulate
snowpack quantity parameters (snow water equivalent (SWE) and snow depth), as summarized in [2].
These hydrological models are one of the common snow measurement approaches based on numerical
models. The only drawback of these models is the lack of reliable meteorological observations as
model inputs [17] and the complex physics of snow are still not adequately understood which hampers
the development of snowpack models. Further approaches are snow pits and manual probing [18].
These traditional methods are both times consuming and delivering point-scale accuracies. To obtain
basin-scale snow cover observations, conventional non-invasive remote sensing techniques have been
used for monitoring snow dynamics which succeeds the potential of undersampling of point-scale
snow measurements, however, are affected by detection limitations in the lower spatial and temporal
resolution that characterize the measurement of snow cover [8]. Other recently existing methods
include GPS-reflectometry [19–21] and airborne Light Detection and Ranging (LiDAR) mapping [22],
Terrestrial Laser Scanner (TLS) [23–26], digital photogrammetry [27,28], tachymetry [29], Ground
Penetrating Radar (GPR) [30], time-lapse photography [2,31,32], or satellite-based sensors [33]. These
techniques are of high costs (e.g., airborne or helicopter flights) or only useful supplements to weather
stations and manual measurements (e.g., time-lapse photography) [3].

Due to the miniaturization of navigation sensors, it is now possible to choose between
different camera systems, spanning from heavy-weight LiDAR mapping sensors to light-weight
mini-multispectral systems [16] making it possible to explore new, unforeseen research directions.
Especially attractive is the low-cost technique integration of high-resolution unmanned aerial vehicle
(UAV)-based digital photogrammetry, which captures small-scale spatial variabilities of snow cover.
Since the development of the Structure from Motion (SfM) algorithm [34], it is possible to reconstruct
georeferenced point clouds, high precision digital surface models (DSMs), and orthomosaics with a
high spatial resolution, down to the centimeter level, by automatic matching of common features from
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a set of overlapping images [34,35]. Using the SfM method for snow cover image matching is still
considered to be problematic, due to the homogeneity of the snow cover surface, but images acquired
in the visual (VIS, λ = 400–700 nm) part of the electromagnetic spectrum are delivering promising
results. Recent investigations of this technique of snow depth estimation used imagery taken by UAV
for large to small catchments [18,36–41]. These examples have shown vertical accuracies in retrieving
snow depth values from the UAV, reaching accuracies in the range of 0.1–0.3 m. This new technique
provides relatively accurate solutions that may be used, not only to obtain the snow depth at high
resolution in open areas, as in the studies mentioned above but can also provide information on snow
accumulation and melting in forests.

The amount of forest cover is often described by estimating canopy closure (CC) or gap fraction.
Also, the leaf area index (LAI) [42] is a variable to specify the forest cover by calculating the leaf area
per leaf area per unit ground area. However, none of the three variables would directly represent
the canopy interception through the amount of forest cover, but it can be an input variable in snow
interception models [10,14,16,43]. Since UAV platforms achieve image quality equal to traditional
airborne photogrammetry, downward-looking UAV imagery can be used as an indirect method for
LAI estimates, which is comparable to digital hemispherical photograph (DHP) analysis of the sky
and canopy [44]. The only difference is the background, which is snow-covered terrain instead of
the sky [45]. Measurements and modeling, however, become more challenging with forest which is
changing due to natural disturbances (e.g., bark beetle and windstorms). Although the application of
UAV to measure either snow depth or LAI is not new, there is still an only limited number of published
studies focusing on the use of these new sensing methods for such purpose. Linking snowpack
distribution and forest LAI measurements by way of downward-looking UAV-based photogrammetry
have not been done yet in forested environments. There are significant interactions between open field
and forest snow processes and the impacts on snowpack evolution under forest canopy [46] which are
not fully understood increasing the need for further investigations.

The objectives of our study were to introduce a workflow for efficient UAV-based snowpack
monitoring, in particular (i) the monitoring of snow accumulation and ablation processes, (ii) the
assessment of canopy characteristics as the effective LAI of crowns using downward-looking UAV
images (iii) to analyze the relationship between the dynamic snow depth and LAI distribution in
diverse Norway spruce stand. Over a complex winter season, spanning from snow accumulation to
ablation, we determined snow depth and LAI distribution in a mid-latitude montane forest small-scale
environment, featuring different structure and health status, including forest-free area, healthy and
disturbed forest resulting from bark beetle infestation. The UAV imaging campaigns for snow depth
and LAI retrieval were accompanied with repeated manual snow depth monitoring, as well as
by ground-based LAI measurements by the LAI-2200 plant canopy analyzer and DHP, used as a
benchmark for testing the accuracy of our approach.

2. Materials and Methods

2.1. Study Test Sites

The study covered two different types of small scale localities within the Šumava National
Park (ŠumavaNP; Bohemian Forest), Southwestern Czech Republic (Figure 1a). Data from one open
area (49◦1′32.67′ ′ N, 13◦30′58.38′ ′ E) with meadow coverage and one forested area (48◦59′8.591′ ′ N,
13◦30′30.998′ ′ E) with dominant Norway Spruce (Picea abies (L.) Karst.), comprising a zone of healthy
standing trees and an area of profoundly disturbed forest, were utilized for this study (Figure 1b).

These areas are located in a mid-latitude montane area with altitudes of 1070–1150 m a.s.l.,
featuring mild topography. Granite intrusions and metamorphic rocks shape the geology of the whole
area. Soils are rather shallow with high permeability (cambisol, podzol) with a significant portion of
hydromorphic and organic soils. Mean annual air temperature at Churanov station is 5 ◦C (located
at 1118 m a.s.l. 8–12 km from study sites) with mean seasonal temperature −3.1 ◦C from December
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to February. Mean annual precipitation reaches 1228 mm (climate station is located near the open
study site). The study area has snow-dominating runoff regime with the highest runoff volume during
spring season caused by melting snow. Seasonal runoff from March to May reaches 41% of total annual
runoff in the Ptaci Brook (data period 1980–2014).
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Figure 1. An overview map of the study area (a). Location of the regions surveyed with the generated
3D point cloud models. These point clouds assist in providing visual information on the snow surface
and terrain type. The red box shows the open area (Filipova Hut) during snow ablation (a) and
snow-free period (b), the green box displays the disturbed spruce forest zone (Ptaci Brook) during
snow-free period (c) snow-covered (e.g., peak accumulation) (d), and snow ablation period (e)).

The study area has experienced significant changes in land use and canopy structure. The
mountains were covered by a virgin forest until the 18th century when it was replaced by a Norway
spruce monoculture for the wood industry. Introduction of the Norway spruce instead of the natural
species required large-scale artificial drainage that affected the natural hydrological regime of the
area. Since then, the region is repeatedly affected by bark beetle outbreaks. The recent large-scale bark
beetle infestation is occurring in consequence of windstorms in Bavarian National Park in 1984 that
started the bark beetle outbreak and were heavily accelerated since Kyrill windstorm in 2007. In result,
the extensive forest disturbance is consequently reaching the boundary part of the mountain range.
As the study sites are located in the National Park, the disturbed forest is left to the natural processes.
Hence, all stages of the forest disturbance, decay and regeneration can be identified in the study area
and affect the processes of snow accumulation and ablation.
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The open area (~0.04 km2) was characterized by medium-high grass and isolated tree vegetation
(Figure 1c,d). A small meandering creek cut the topography. Along the river-creek, some peaty
meadow vegetation occurred. Slopes were NW-SE and NE-SW oriented. Snow conditions were
undisturbed. The open area was accessible during both the winter and summer seasons. Usually,
only moderate to low snow depth variability could be expected here due to meadow coverage and its
year-round exposure to the sun and wind.

The forest area (~0.012 km2), which has been affected by bark beetle (Ips typographus L.) outbreaks
since 1990 [47], reveals large canopy gaps due to the complete collapse of the tree layer (Figure 1e–g).
The effects of windstorms and bark beetles were a natural part of the dynamics of the spruce forest.
Therefore, dynamism in the vegetation is still evident. In 2017, even more, dead trees littered the
ground than in 2016, especially in the upper part of the study plot. The remaining healthy forest canopy
was around 10–25 m tall. Consequently, the forest area could be divided into two parts: an upper
section with fallen branches and rotten wood left on the stand, and a lower section with a healthy
spruce forest containing dead trunks standing among the trees. Lower snow depth variabilities were
expected here because the area was not exposed to high winds due to the surrounding trees, which
protect against the wind and, in part, the sun. Even so, within-plot snow depth, interception, and
snowmelt distributions should be expected to be higher in the forest than in an open area, because of
standing and lying dead trees. The forest area was conveniently accessible by car during summer but
less during winter time due to prepared cross-country ski-tracks. Peak winter accumulations at both
study sites were interrupted by two snowmelt events caused by rain-on-snow conditions and high
snow densities.

2.2. UAV Monitoring

UAV surveys consisted of two snow-free and three snow-covered imaging campaigns, completed
by additional ground measurements of snow depth that were performed in the spring part of the
2017 winter season, covering a phase with the direct consequence of snow accumulation and ablation.
Snow-covered images were obtained during the period of snow accumulation on the 3 March 2017;
and during snowmelt on the 15 March 2017, at the forest site, and on the 24 March 2017 at the open
field area. Snow-free images were taken directly after snowmelt on the 30th of April 2017 at both sites
when snow was already absent, and the ground vegetation was still flattened from the snow cover.

The UAV platform, the MicroKopter ARF-Okto XL (HiSystems GmbH, Moormerland, Germany,
Figure 2a), was used for imagery acquisition of snow depth distribution and LAI retrieval. This
octocopter is suitable for performing photogrammetric flights over limited areas (<1.5 km2). It was
equipped with a commercial RGB camera: the Panasonic Lumix DMX-GX7 featuring a 16 MP Micro
Four Thirds (17.3 × 13 mm) CMOS sensor fitted with a Panasonic 20 mm f/1.7 prime lens. To achieve
a very high spatial resolution of centimeter-scale ground sampling distance (GSD), the flight altitude
varied between 46 and approximately 73 m. Images were taken each second, with a 400 ISO speed
range. The manual focus was set to infinity, to avoid focusing on single, undesired objects. All images
were captured in the VIS (400–700 nm) part of the electromagnetic spectrum.

We programmed the flight path with waypoints for taking autonomous images including flight
height and flight time. It was set in the corresponding MikroKopter flight planning tablet tool (MK-TT)
and transferred to the copter. The typical flight duration was around 20 min in the summertime, while
in the wintertime with temperatures below −10 ◦C, the flights were much shorter due to the rapid
drain of the Lithium Polymer (LiPO) batteries. To achieve seamless coverage of the study sites, and
to get a sufficient number of point pairs in the imagery, the front and side lap were both set to 80%.
Before a survey flight, well distributed, predefined ground control points (GCPs) were placed over the
study sites to secure accurate georeferencing of the imagery (Figure 2b,c). Some of the GCPs served
as checkpoints (CPs) to assess the accuracy of the model. Permanent GCPs were marked with fixed
wooden sticks to secure the same collection of GCPs during snow cover, but most of them disappeared.
The remaining rods served then as permanent markers and were completed by temporary GCPs, either
bullseyes or colored pink crosses, sprayed over the snow cover (Figure 2b).
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Figure 2. (a) Applied ARF MicroKopter Okto XL equipped with RGB Lumix-GX7 camera (Panasonic
Corporation, Osaka, Japan); (b) Marked ground control points (GCPs) and checkpoints (CPs) with
visible pink spray during all winter campaigns; (c) Yellow geodetic pits and white papers served as
GCPs during the snow-free campaigns.

For accurate positioning of GCPs and additional snow depth samples, the Global Navigation
Satellite System (GNSS) Topcon HiPer SR was used in Real Time Kinematics (RTK) mode. This
device measures the coordinates of the center of the GCPs with a horizontal precision of 0.01 m to
0.03 m and vertical of 0.02 m to 0.05 m at each point. To keep this level of accuracy, for each GCP
and CP measurement the online RTK corrections were used as recommended by the Czech State
Administration of Land Surveying and Cadastre Authority. For RTK corrections, a Virtual Reference
Station (VRS) was used, which was located 5 km from the area of interest. The VRS is calculated based
on real reference stations among the national permanent GNSS reference stations. Detailed technical
specifications of both UAV and the camera system are included in Table 1.

Table 1. Details about the applied unmanned aerial vehicle (UAV) and camera system.

UAV Details

UAV type ARF-OktoXL
Dimension 73 × 73 × 36
Payload 2500 g
Gimbal MK HiSight SLR2
Max altitude 100 m
Max distance 100 m
Flight time Max. 45 min
Realistic flight time 15–28 min

Navigation
NaviCtrl V2.1 (IMU, barometer, GPS controller), MK-GNSS V4 GPS receiver
(American GPS satellites, the European Galileo system, the Russian Glonass
satellite or the Chinese BeiDou satellite system)

Wireless communication Graupner MC-32 HoTT remote controller
LiPo battery Vislero 5000, 14.8V 4S1P Flat

Camera Details

Camera type Lumix DMX-GX7
Sensor type 16MP Live MOS sensor
Sensor size (mm) 17.3 × 13.0 mm (in 4:3 aspect ratio)
Focal length 20 mm
Sensor resolution (MP) 16
ISO range 125–25,600
Weight (g) 402 (g)

2.3. Photogrammetric Processing

Before processing the images, manual pre-selection was done to remove blurred photos.
All suitable images were then processed using Agisoft PhotoScan Pro (version 1.2.6) [48] to reconstruct
snow-free and snow-covered DSMs, together with maps of snow depth distribution and orthomosaics
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from both study sites. PhotoScan is commercial software that enables full control over the all steps
of photogrammetric processing, ranging from image alignment and sparse- and dense-point cloud
generation, to the building of the DSM and orthoimagery [49,50]. During the processing in Agisoft
PhotoScan Pro, the imagery was aligned choosing “accuracy-medium”, key point limit 40,000 and
tie point limit 20,000. The point clouds were generated by using the settings “quality-medium” and
“depth filtering—moderate”. After the initial image alignment process and removing evident outliers,
the sparse clouds were manually georeferenced by identifying the GCP in the matched pictures
and assigning them the coordinates from the GNSS post-processing (S-JTSK Krovak East North
(EPSG 5514)). The checked markers which were GCPs were applied for the optimization procedure,
whereas the chosen unmarked markers, in our case the CPs, served as control points to quantify the
accuracy of the results and thus the total RMSE. For the absolute orientation, eight selected GCPs
for the snow-free campaign were used, while six GCPs served as CPs to evaluate the accuracy of
the alignments at the open site (Figure 5a). Nine GCPs were distributed with six GCPs acting as
CPs for the snow-covered DSM processing at the open site (Figure 5b). Five GCPs were used for the
snow-free image campaigns with four CPs in the forest zone (Figure 6a). For the other two campaigns
of snow-covered imagery, four to five GCPs with four to five CPs were derived (Figure 6a,b). For the
dense cloud reconstruction process “medium reconstruction quality” in Agisoft PhotoScan Pro was
used to balance the computational costs with the required level of detail. The raw point clouds were
exported, with a spatial resolution of 0.10 m, to perform further point cloud editing and classification
in CloudCompare software [51]. Ground points were extracted from the point cloud by removing trees
based on the Cloth Simulation Filter (CSF) [52]. To remove light to hard shadows on snow-covered
point clouds, we used a k-means clustering algorithm after [53]. This algorithm classified the point
clouds based on their RGB attributes with a Nearest Distance type classifier. The clusters were created
on a training subset and then applied for the whole dataset. After classification, segmentation, and
shadow removal, DSMs of 0.10 m resolution were built in GIS software [54]. Co-georeferencing were
applied to georeferencing both snow and bare soil DSMs based on common GCPs used for both
snow-free and snow-covered DSMs [41].

2.4. Snow Depth Data Acquisition and Analysis

For each of the studied areas, during snow-free and snow-covered period GCPs were measured.
During winter manual point measurements of snow depth (HGCP) were sampled precisely above
the measured GCP positions so that the x, y and z positions of the GCPs and the positions of the
corresponding snow probes could be measured simultaneously. Additional arranged snow depth
samples (HT) were taken at both sites to improve the overall accuracy of the generated surveys. These
HT values were estimated from the means of five individual snow depth measurements taken in a
1m radius. A total of 105 HT samples in a plot of 170 × 125 m at the open site and 36 HT samples in a
rectangle plot of 50 × 50 m at the forested zone were collected for each measurement survey. The idea
was to cross-check the results of these two data sets against each other to ascertain if an increased
quantity of ground measurements would significantly impact the overall precision of the survey when
comparing them with the estimated (HUAV) snow depths. Additionally, to reduce the total error by
obtaining the average of several snow depth readings at the point of observation. It must be noted here
that the additional HT samples at the forest site are conducted every year due to long-term snow-cover
monitoring [4,55,56]. Therefore, the study area at the forest zone was only partly covered by snow
depth probing. These samples, however, were enough for the quality check, and they were also used
during snow accumulation and snow ablation for the computational interpolation of manual snow
depth estimates with the winter LAI obtained by the three methods. We used both datasets of manual
snow depth measurement (HGCP and HT), one with more and one with fewer ground measurement
reference points, to implement a preliminary evaluation of UAV performance in retrieving point values
of snow depth from the DSMs of difference (DoD).
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2.5. LAI Assessment

LAI measurements (Figure 3) were performed respectively at the 3 and 24 March 2017. To test the
reliability of the UAV-based LAI flyovers, additional ground-based measurements using the Li-Cor
LAI-2200 plant canopy analyzer (Li-COR Inc., Lincoln, USA) [57] and DHP, were conducted. During
the first campaign, a little snow was still present at a few tree crowns. Additionally, dead lying wood
on the ground was already snow-free. These optical methods are for indirect field measurements of
LAI, producing the so-called effective LAI index (LAIeff; [58]). The optical detector of the LAI-2200
sensor is composed of five different detectors in concentric rings, each of which views a portion of the
hemisphere, such as 0–13◦ (1st ring), 16–28◦ (2nd ring), 32–43◦ (3rd ring) and 61–74◦ (4th ring) [59].
This allows for the computation of radiation transmission caused by the canopy in the blue part of
the spectrum and therefore calculates the LAI by comparing differential light measurements above
and below the canopy [60]. Above measures served as a reference and were taken before each set of
below-canopy sampling outside the forest. Below-canopy measurements with the LAI-2200 were made
about 1 m above the ground in a grid of 50 × 50 m, at 10 m intervals, for 24 points at the forest site.
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Figure 3. The position of all leaf area index (LAI) field surveys are displaying 24 points. Green points
present the digital hemispherical photography (DHP) position. Orange points correspond to the LAI-
2200 canopy analyzer measurements as the average of four individual LAI values measured in a cross
shape with 1 m distance from the cross arm ends to the center. The blue cross signs show the position of
downward-looking images as seen from the UAV performance by the camera used for the LAI retrieval.
Black dashed line indicates the border between healthy and bark beetle-damaged forest stand.

Each plot was estimated by means of four individual LAI values measured in a cross shape with
~1 m distance from the cross center, similar to the manner employed in [61]. The center point of the cross
of each plot was marked with a blue cross symbol, which could be detected from the UAV platform
to verify the accuracy of it. All readings were carried out in the morning. At both dates, the weather
conditions varied between partly clear sky and overcast conditions. A narrower view cap of 270◦

was used to occlude the influences of the direct sun and the operator in the measurements [57]. Post
processing was conducted with the FV2000 software (Li-COR Inc., Lincoln, NE, USA) [57]. To achieve
LAIeff results closer to the true LAI, while maintaining consistency in comparison with the LAIeff
produced by DHP, the fifth ring was excluded during data processing [62]. Hence, the view of the
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zenith angles corresponds to 58◦ which is approximately equal to the ring with the largest view angle
of the hemispherical camera used in this study.

The camera was mounted on a tripod at a fixed height of 1 m above the ground. The lens aperture
was fixed, and the exposure time was set to auto-mode. The geographic orientation and circular extent
of the hemispherical image were applied in a northerly direction, which corresponds to 0◦. Similar to
the LAI-2200 plant canopy analyzer, the DHP computes the gap fraction through the camera with a
hemispherical lens (fisheye) [63]. In total, 24 points were measured. LAI was processed using the Gap
Light Analyzer (GLA) software (Cary Institute of Ecosystem Studies, New York, USA) [64,65].

The UAV surveys for LAI retrieval were performed in partly sunny to overcast conditions.
Overcast conditions are more preferable to avoid shadows on the forest floor [60], which can hamper
exact LAI retrieval, but images could be analyzed with adequate accuracy. The UAV-based LAIeff
values were estimated from measurements that were taken at two different altitudes (at ~50 m and
~65 m) to determine whether there were observed differences in the LAIeff retrieval between the
optimal height and higher ones. The downward-looking UAV images were taken from nadir position
with a field of view (FOV) of 48◦. To catch approximately the same positions of ground measurements,
images were obtained at an interval of one second. Altogether, 24 points were measured within the
Norway spruce stand and marked by a blue cross sprayed on the snow-cover, like those recorded
by the other two optical methods. All LAI values measured in this study are effective values, so the
clumping of the needles was not taken into account. GLA software, used for LAI assessment by DHP
(Figure 4a,b), was also applied for LAI determination, based on UAV downward-looking images
(Figure 4c,d). This allows for the processing of both custom fisheye lens distortions, and also of
standard lens projections [64,65]. Here, instead of a polar projection, which is used for fisheye lenses,
an orthographic standard projection for rectangle images was used in GLA software. GLA computes
all zenith angles from 0 to 60◦ for its effective LAI. The manual segmentation based on classifying
pixels as either canopy or snow. The environment of the GLA is shown in Figure 3, and the input
parameters are listed in Table 2.
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threshold value—the hardness of determination which pixels would be computed like “clear sky” and
which would be computed as “view obstacles”; (c) Illustration of GLA environment for rectangle lens
with orthographic projection settings. Registration of image remains the same like for the fisheye lens,
as well the thresholding of the image in the LAI ground measurement plot of (d) showing the blue
cross sign as seen from the UAV downward-looking images.

Table 2. Input parameters of GLA. This setting was retained for both fisheye and orthographic
image processing.

Input Parameter GLA Value

Cloudiness index 0.5
Spectral fraction (0.25–25 µm) 1
Beam fraction 0.5
Clear-sky transmission coefficient 0.5
Solar constant (Wm-2) 1367

3. Results

3.1. Study Sites and Data Acquisition

At the open site, the total of 2093 images was acquired on two different dates from March (during
snow ablation) to the end of April (after snowmelt). The sum of two DSMs and orthoimages of
~0.10 m spatial resolution was generated from the field surveys. The absolute accuracy of the derived
DSMs (snow-free and snow-covered maps), relative to the measured surface points are summarized in
Table 3.

At the forest site, featuring different health status of the forest stand, a total of 2494 images were
captured in three campaigns from March (during snow accumulation and snow ablation) to the end of
April (after snowmelt) with the same data acquisition parameters as at the open site. The total of three
DSMs and orthoimages of ~0.10 m spatial resolution was generated and the absolute accuracy of the
derived DSMs (snow-free and snow-covered) of the root mean square (RMSE) for x, y, and z together
with the area total error in m of the CPs are listed Table 3.
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Table 3. Summary of the generated point clouds and the digital surface model (DSM) errors compared to the Global Navigation Satellite System (GNSS) elevation at
ground control points (GCPs) and picked checkpoint (CP) locations of the open area and forest zone.

Flight Campaign Date Images
Flight
Height
[m]

Covered
Area
[km2]

Mean Ground
Resolution
[cm/pix]

Number
of GCPs

Number
of CPs

X Error
RMSE
[m]

Y Error
RMSE
[m]

Z Error
RMSE
[m]

XY Error
RMSE
[m]

Total
RMSE
[m]

Filipova Hut (open site;
snow ablation) 24.3. 2017 963 62.2 0.056 1.16 8 6 0.041 0.039 0.055 0.056 0.079

Filipova Hut
(snow-free) 30.4. 2017 1130 72.8 0.036 1.98 9 6 0.066 0.035 0.036 0.075 0.084

Ptaci brook (forest site;
snow accumulation) 3.3. 2017 906 40.3 0.012 0.73 4 5 0.030 0.037 0.059 0.047 0.076

Ptaci brook
(snow ablation) 15.3. 2017 1024 46 0.014 0.84 5 5 0.041 0.050 0.026 0.065 0.067

Ptaci brook (snow-free) 30.4. 2017 564 60.7 0.015 1.12 5 4 0.046 0.030 0.056 0.055 0.078
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3.2. UAV-Based Snow Depth Estimations vs. Manual Snow Depth

A total of five DSMs were generated from the winter during snow accumulation and ablation,
and from the snow-free fieldwork campaigns. The hillshades computed from UAV data during
snow-free and snow-covered time, along with the applied GCPs, are shown in Figure 5a,b, for the open
field. For the forest zone, only the hillshades during peak accumulation and ablation are visualized
(Figure 6a,b) with the corresponding GCPs. GCPs, taken during wintertime also served as reference
snow depth points at the GCP positions (HGCP) and were selected in support of co-georeferencing the
snow-free DSMs with the snow-covered DSMs.
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Figure 5. (a,b) Hillshaded snow-free and snow-covered DSMs and detail surface visualization of
the open site (Filipova Hut) with the applied ground control points (GCPs) and checkpoints (CPs).
GCPs taken during snow cover served as well as reference snow depth points at the GCP positions
(HGCP; pink crosses). Overlapping snow-free and snow-covered GCPs were selected in support of
co-georeferencing the snow-free DSM with the snow-covered DSM. (c) Map of interpolated spatial
distribution of the snow height differences between the supplementary HT probes and estimated HUAV

measurements underlying the bare soil hillshade (d) DSM of difference (DoD), produced by subtracting
the snow-covered DSM from the snow-free DSM.
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Figure 6. (a,b) Hillshaded snow-covered DSMs during snow accumulation and ablation, and detail
surface visualization of the forest site (Ptaci Brook) with the applied ground control points (GCPs)
and checkpoints (CPs). GCPs taken during snow cover served as well as reference snow depth points
at the GCP positions (HGCP; pink crosses). Overlapping snow-off and snow-on GCPs were selected
in support of co-georeferencing the snow-free DSM with the snow-covered DSMs. (c,d) Maps of the
interpolated spatial distribution of the snow height differences between the supplementary HT probes
and estimated HUAV measurements underlying the bare soil hillshade. (e,f) DSMs of difference (DoDs).
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The difference between the supplementary HT probes and estimated HUAV measurements are
visualized as interpolated maps (Figures 5c and 6c,d ), showing the spatial distribution of the snow
height differences. Three DoDs were created (Figures 5d and 6e,f ) based on standard photogrammetric
procedure Usually, by subtracting the snow-free DSMs from the snow-covered DSMs, the snow depth
values appeared negative in the maps, which were classified as outliers but not masked out, and
depicted as zero values in the maps, for readability. This discrepancy has already been noted during
photogrammetric surveys [27,28,40] and can be attributed to the effect of compressible vegetation and
instrumental precision [28,66].

The snow height differences were ascertained as mean values within 1 m buffer to be comparable
with the HT samples determined from the mean of five snow depth measurements taken in 1 m
radius. White gaps of the created DSMs mark the filtered vegetation (e.g., trees and bushes) and
might be due to shadows or poor matching over some area of the snow surface (any resulting couple
points in the horizontal plane due to the homogeneity of snow). Kernel Interpolation was used to
display the spatial distribution of the snow height differences between HT probes and estimated HUAV

measurements (Figures 5c and 6c,d ). The Kernel Interpolation allows the prediction of the output
surface with smoother barriers [67] and uses the shortest distance between points so that points on
the sides of the specified nontransparent (absolute) barrier are connected by a series of straight lines.
It is advantageous because it leaves the parts out which are not snow-covered, or where trees were
removed from the point cloud.

The snow height differences were ascertained as mean values within 1 m buffer to be comparable
with the HT samples estimated from the mean of five snow depth measurements taken in 1 m radius
(Figure 6). White gaps of the created DSMs display the filtered trees and dead lying trunks on
the ground and might be due to shadows or poor matching over some area of the snow surface
(any resulting couple points in the horizontal plane due to the homogeneity of snow). The snow depth
validation outcomes are summarized in Table 4. Statistics include the mean bias, the correspondent
SD, the mean absolute error (MAE), and the RMSE between HGCP and HUAV, as well as HT and
HUAV. Mean bias quantifies the mean magnitude of the over- (positive values) or under- (negative
values) prediction of the DSM concerning manual snow depth measurements. The SD quantifies the
variability of the error. Both MAE and RMSE determine the accuracy between the manual snow depth
observations (HGCP and HT) and the estimated UAV-based snow depth values extracted from the
DoDs in relevant to HGCP points and HT area. The results indicate an overall average performance
for all the surveyed areas, with results agreeing with relevant literature. For instance, [37] reached
an accuracy of the DSMs relative to the measured variable surface points due to dynamic conditions
with varying RMSE from 0.04 m to 0.19 m with few problematic flights showed larger RMSE of up to
0.32 m [38] estimated snow depth distribution with an RMSE of 0.30 m. Better results below 0.30 m
were predicted by [41] with RMSE between 0.05 m and 0.18 m.

One-to-one (1:1) comparisons between all snow depth measurements (HGCP and HT) and
estimated HUAV snow values are provided in Figure 7a,b. The error does not change sufficiently
with the snow depth (Figure 7a), showing a moderate overall correlation by all values taken at GCP
positions, whereas the overall correlation coefficient is considerably weaker when comparing HT
measurements with HUAV estimated snow depth values (Figure 7b). Most of the HUAV snow depth
values are underestimated, especially in the open area (Figure 7b). The similar slope of regression
line both in Figure 7a,b suggest the relative good robustness of result when using fewer measurement
points. However, the much more significant variance in Figure 7b shows that only 10 GCPs cannot
capture the variability of snow depth in such complex terrain (many small depressions and elevations
due to windthrow, hampered the results). The decision to use a denser grid of arranged ground
measurements increased the spatial coverage, snow depth variability and therefore much more
confident. In addition to the above consideration, we extracted snow depth profiles of the estimated
HUAV measurements from the DoDs (Figures 5d and 6e,f ) and plotted them along with the manual
taken HT snow depths (Figures 5c and 6c,d ). Figure 8 shows the produced transects in respectively
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West-East and North-South directions (four profiles for each snow event in total) during snow ablation
at the open site and snow accumulation and ablation at the forest site.

Table 4. Statistics of the evaluation between estimated (HUAV) snow depths and ground measurements
at both study sites. The subtracted HGCP snow depth values from the estimated HUAV measurements
are based on one pixel. On the contrary, the subtracted HT samples from the estimated HUAV are based
on the mean value within 1 m radius.

HGCP-HUAV
(One Pixel-Base;
z values)

Open Area
(Snow Ablation)
n = 14

Forest
(Snow Accumulation)
n = 9

Forest
(Snow Ablation)
n = 10

Mean bias [m] 0.22 0.21 0.29
SD [m] 0.11 0.19 0.19
MAE [m] 0.09 0.16 0.13
RMSE [m] 0.08 0.15 0.09

HT-HUAV
(Mean Value of 1 m
Radius; z values)

Open Area
(Snow Ablation)
n = 105

Forest
(Snow Accumulation)
n = 36

Forest
(Snow Ablation)
n = 36

Mean bias [m] 0.08 0.14 0.14
SD [m] 0.14 0.29 0.27
MAE [m] 0.19 0.24 0.22
RMSE [m] 0.16 0.32 0.31Sensors 2019, 19, x 15 of 28 
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Figure 7. (a) Snow depth measured by UAV (HUAV) compared to the reference snow depth measured
at GCP positions (HGCP) at all study sites. (b) Snow depth measured by UAV (HUAV) compared to
the reference snow depth measured in a denser network (HT) at all study sites. The dataset in (b)
features a significantly higher snow depth variability (R2 = 0.20) than dataset formed by snow depth
measurements taken at GCP positions (R2 = 0.60). Graphs show the regression functions (dashed lines)
and 1:1 correspondence (solid lines).

Comparison of the estimated HUAV snow depth and manual probing HT in Figure 8 reveals that
the HUAV measurements run a relatively similar course like manual probing but by nearly two orders
of magnitude lower, especially in the case of the open area (Figure 8a–d). Systematically superposition
of manual probe locations is observed compared to the lower corresponded run of the estimated HUAV

snow depth profile (Figure 8a–d). Except one HUAV point is higher than HT as shown in Figure 8a due
to different underlying vegetation structure. The forest transects (Figure 8e–h) show more variability
between the HUAV snow depths and HT data along the profiles. These transects show partly the
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HUAV snow depths reproducing all of the features revealed by the manual probes, despite the several
confounding effects (e.g., tree canopy, tree stumps, and dead lying wood on the ground or changing
vegetation structure). In few locations along the profiles, the HUAV values indicate changes up to 0.5 m
lower than revealed by the probes within the healthy forest part (e.g., Figure 8e) during both snow
conditions displaying zero distributions. Higher appearing HUAV values than HT can be explained
by snow-covered wood features, such as lying dead trunks or dead wood on the ground or due to
different underlying vegetation structure, especially at the forest site (Figure 8a,e,f,g,h).Sensors 2019, 19, x 16 of 28 
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Figure 8. (a–d) Snow depth profiles between estimated HUAV measurements and manual probing HT

across the open area in West-East and North-South direction during snow ablation (profiles A’-B’ to
G’-H’). (e–h) Snow depth profiles between estimated HUAV measurements and manual probing HT

across the forest site in West-East and North-South direction during snow accumulation (profiles A-B
to G-H) and ablation (profiles A’-B’ to G’-H’).
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3.3. Optical Indirect Estimation of LAIeff

By taking LAI-2200 canopy analyzer and DHP as benchmarks, the correlations between the
measured values of the UAV-based LAIeff and the reference values were calculated and plotted
in Figure 9a,b. 1:1 relationship across these methods were significant in a few instances. A high
relationship was obtained between the two reference methods DHP and LAI-2200 (Figure 9a).
The correlations between the UAV-based LAIeff data and LAI-2200 were less strong (Figure 9a).
The correlations between UAV-based LAIeff observations and DHP were as good as between both
reference methods (Figure 9b). Most of the observed values were all distributed above the 1:1 line
(Figure 9a,b). The observed LAI values using UAV and DHP methods were underestimated (Figure 8a).
A similar 1:1 relationship was shown in the scatter plot in Figure 9b. The observed UAV values were
almost all above the 1:1 line except some values between 0 and 3. In both cases, the observations
provided overestimations. RMSE indicates the accuracy of all utilized methods; Figure 9a shows
the UAV-based LAI estimation has a lower accuracy comparing to the observed DHP values with
LAI-2200 observations. On the contrary, Figure 9b shows a higher accuracy by comparing the UAV
and DHP methods.
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Figure 9. Comparison of effective LAI values produced by LAI-2200 as a reference (plot a; y-axis);
hemispherical digital photographs (DHP) as a reference (plot b; y-axis), and UAV (x-axis in both plots)
processed in FV2000 and Gap Light Analyzer (GLA) software. Graphs show the regression functions
(dashed lines) and 1:1 correspondence (solid lines).

3.4. Relationship between Indirect Winter LAIeff and Snow Depth

To provide better visualization of the HT measurements and LAIeff values taken by the different
sampling methods, these data points were also interpolated using Kernel Interpolation. All data
presented in Figure 10a,b were considered for data interpolation. However, only the overlapping
data points within the figures were valid. The interpolated HT values during both snow conditions
are shown in Figure 10c,d, whereas the interpolated LAI data are presented in Figure 10e,f. During
snow accumulation, HT ranged between 0.38 m and 0.99 m (Figure 10c), while during snow ablation
the HT measurements varied between 0.19 m and 0.68 m (Figure 10d). In both cases, higher snow
depth values appeared in the upper part of the study plot where the forest was mostly damaged,
and less vegetation canopy was existent. On the contrary, the lower part, which mainly consisted
of healthy trees, was below the tree canopy and therefore, lower snow depth was present. This
trend goes hand-in-hand with the ground-measured LAI and UAV-based LAI estimates that show an
opposite pattern (Figure 10e–j). The higher the LAI values, the lower the snow depth, and vice versa.
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The apparent north-south trend how visible in Figure 10c–j is not affected by the applied interpolation
technique, but it reflects the captured data in the field and thus makes it clear how canopy structure
plays a primary control on snow depth.
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Figure 10. Field plot sampling design. (a,b) Snow depth measurements (HT) taken at 10 m interval
during snow accumulation and snow ablation period with visualized ground-based measurements
of LAI and UAV downward-looking positions at 24 points. Interpolated HT probes during snow
accumulation (c) and ablation (d). Interpolated ground measurements of LAI-2200 (e); digital
hemispherical photography (DHP) (f); UAV-based LAIeff at 50 m (g) and 65 m (h) during snow
accumulation; UAV-based LAIeff at 50 m (i) and 65 m (j) during snow ablation. All data were
interpolated within the data overlap frame, which displays the overlapping area of snow depth
sampling (HT) and ground-based measurements of LAI. Different colors indicate different values
of snow thickness and LAI values. Black dashed line separates the healthy forest from the bark
beetle-infected forest stand.
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The LAI-2200 plant canopy analyzer measured the highest LAI values, with maximum LAI
estimates of 5.34 in the denser part of the forest, while the UAV-based LAI measurements showed the
lowest maximum values of 3.27 and 3.30, taken at 50 m and 65 m, respectively. Overall, all methods
showed the same pattern of LAI estimates (Figure 10e–j), with higher LAI values indicating lower
snow depth. It is well accepted that snow storages in the coniferous forest characterized by high LAI
values are lower compared to open environments, or as in this case, damaged portions, because
of the processes of interception, sublimation, evaporation and wind redistribution [5,10,15,67].
Consequently, there is also a statistically significant correlation between LAIeff and manual HT,
particularly during snow accumulation (Figure 11a). Considering that the relationship was developed
from ground-measurements and by UAV at two different altitudes, the fit is entirely fair (Figure 11a).
The R2 between HT and the LAI-2200 plant canopy analyzer was the highest during snow accumulation
(Figure 11a). LAIeff-UAV (50 m) and DHP showed similar correspondence. The lowest relationship was
between LAIeff-UAV (65 m) and the LAI-2200 plant canopy analyzer. The influence of winter LAI can
be seen in its control of the snow depth within the different forest stands during snow accumulation
and ablation. LAIeff-UAV (50 m) and DHP presented the best fit during snowmelt, whereas LAIeff-2200
and LAIeff-UAV (65 m) exhibited an instead scattered relationship (Figure 11b).
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Figure 11. The plotted relation between effective LAI (LAIeff) estimates and manual snow depth
samplings (HT) during snow accumulation (a) and during snow ablation (b) at the zone of overlapping
ground-based measurements. Dashed lines represent linear regressions.

4. Discussion

4.1. Snow Depth Validation of Open vs. Forest Site

Snow depth variabilities were captured over the meadow and complex underlying topography
in the forest. High snow accumulation zones were linked with topographical depressions, especially
at the open area, whereas only some parts were linked more efficiently at the forest site during both
snow events. However, as with any remote sensing technique, errors can exist at any stage of image
acquisition or analysis. The comparison between measured and estimated snow depth for the HGCPs

probes ranged between 0.08 m for the open area through 0.15 m during spring snow accumulation in
the forest and 0.09 m during spring snow ablation within the forest stand. The snow depth estimates
compared between a denser network of snow probes varied between 0.16 m for the open field through
0.32 m during snow accumulation to 0.31 m during snow ablation for the HT measurements at the
forest site. With an increasing number of sample points, the results deteriorated, especially at the forest
site. Notably, it makes a difference between randomly selected fewer snow probes (HGCP) taken within
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canopy gaps or near the canopy edges than a denser network of snow probes (HT) taken as well under
canopy positions. In the forest a denser network of snow probes is more sensible to sources in the
context of uncertainty, it highlights the complexity of the terrain and vegetation-induced variability in
snow properties. However, the results confirmed that the overall robustness of our model capturing
snow depth variabilities over more sample points does not differ much at the open site. A similar
finding is supported by [18] that a higher number of manual snow probes do not necessarily affect the
overall precision of the survey regarding the RMSE as well.

Likewise, the accuracy of the precision didn’t improve by taking more ground samples in this case.
However, these statistics are based on a more limited validation power (point-scale measurements)
than using other methods, e.g., Airborne laser scanning (ALS). ALS is capable of accurately mapping
snow depth for small to large aerial extents, and at high spatial resolution accuracy of snow depth
estimates of 0.15 m as reported by [22]. Additionally, using terrestrial laser scanning (TLS) might be
more efficient to improve ground mapping in the forest environment. Data acquisition with TLS is
time and manpower consuming, and only possible at easily accessible spots [38]. This study proves
that snow depth statistics are consistent with previous studies [18,41,64,68–71]. It also confirms that
the UAV application can reach high-quality snow depth estimates in different environments and
vegetation, although lower errors were expected at the open area compared to the forest site.

Apparently, ground properties play a crucial role in the precise creation of accurate DSMs [5].
In case of the open field, meadow coverage (tall grass) at the base of the snow cover and scattered
boulders had a strong influence on the results. There is a source of systematic error between HGCP and
HUAV that can be assigned to the effect of vegetation, in particular to the grass cover. The height of
the dense montane grass cover, which is in the study area dominated by Carex Rostrata and Nardus
stricta L. [72], can reach up to 20–30 cm in the summer (Figure 12a). The grassland creates compact
formations, covering the forest-free areas, where the optical imagery cannot reach the ground, which
results in a corresponding shift of surface elevation. In winter, the grass is pressed down to the ground
by the snow cover (Figure 12b), forming a snow-free layer of one centimeter below the snowpack.
In the areas affected by forest disturbance, the lying trunks of dead trees and branches, the detection
of the ground make a compact layer, which can result in an artificial shift of between the values,
determined by geodetical surveying and the photogrammetric reconstruction. We assume that the
snow-free DSM ground elevation is higher than the snow-covered DSM, causing the underestimation
of HUAV results, and overestimation of HGCP and HT, as previously reported by [36,38,73]. This is also
visible by the produced transects. Interpretation of the difference in snow depth profiles between the
estimated HUAV measurements and manual probing HT is complicated especially in the forest zone
by the fact that photogrammetric techniques do not work accurately above and below tree canopies
resulting in zero snow depth values. Thus, extra care in interpretation needs to be taken in forests.
Profiles of estimated HUAV along the open area showed better correspondence with manual probing.
This might be explained by the relatively homogenous terrain of a wide shallow slope characterized by
meadow coverage. However, despite the lower or higher shifts of the estimated HUAV measurements,
we tried to minimize it by appropriate scheduling of the imaging campaign. The open field status was
captured in early spring, just after the snowmelt (30 April 2017), before the start of the new vegetation
season. The same applies to the forest site, which the dead wood on the ground could potentially cause
error mapping during snow-free period and winter (Figure 12c,d), and also by difficulties applying
UAV images above, below, and around trees, resulting in more significant gaps in the DSMs. Where
available, the use of aerial LiDAR data as a reference dataset can significantly reduce this source of
uncertainty and help to get a more accurate representation of the ground surface.

Vegetation effects are not the only issue. As the number of ground-based snow depth measurements
is small, these data represent only a reduced variability concerning the complete range of variation of
UAV-based snow depth evaluation. When estimating the snow depth for each pixel, the overall error
derives from the two generated DSMs used for the subtraction. The error source on an SfM made DSM
is divided into two categories: the photogrammetric reconstruction error; and, the georeferencing
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error. The photogrammetric error depends on the overall quality of the dataset, while the GNSS or
post-processing quality cause the georeferencing error, the GCPs manual identification in the image,
and the GNSS accuracy height point measurements [41]. This, in turn, depends on the quality of the
sparse point cloud and, therefore, the quality of the methodology with which the images were acquired
at the end [5]. For the future, an even better qualitative assessment of the snow-covered surface can be
reached by applying the combined mapping of VIS and near-infrared (NIR) images, as has been done
by [5,38]. Furthermore, a promising HUAV approach might be to capture not only UAV images in the
nadir position, but to combine them with oblique photos, taken by the same platform. The oblique
imagery would enable minimizing the ground coverage by the tree crowns for the forest locations
and to get more complex coverage of the ground. As the photogrammetric software, based on SfM
technique allows a combination of the nadir and oblique imagery, such an approach could provide a
better description of the ground surface below the tree stamps.
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Figure 12. (a,b) Photographs of the meadow coverage with up to 0.40 m high grass and partly scattered
rocks during summer and wintertime at the open area; (c,d) Dead wood lying on the ground during
the snow-free period and at the base of the snow-cover.

4.2. Validation of the Winter LAI

The assessment of the effect of different forest structures, forest disturbances, and open sites,
on snow accumulation and snowmelt, is often done using modelling approaches (e.g., hydrological
models, snowpack models, and land surface schemes of climate models) and collecting field data [8,39]
based on measured or simulated field data. This means that these conceptualizations need input
parameters to model real physical processes. Depending on the model, different predictors can be used
to explain the variability of snow accumulation and ablation in distinct areas, as was done by [4]. They
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used the following predictors, i.e., elevation, slope, slope orientation, LAI, canopy openness, amount
of shortwave radiation, irradiance, mean daily irradiance, snow depth, air temperature, and the date
of sampling. To collect all these data is time intensive. Why shouldn’t it be used for the estimation
of LAIeff, based on downward-looking images, where snow background is used instead of the sky
fraction since UAV digital photogrammetry is a reliable tool to measure snow depth? Substituting this
two-in-one approach for the heretofore standard methods helps resolve many of the aforementioned
problems, although additional test data is still required to provide a reference standard.

Although the LAI estimates tested using UAV produced, overall, sufficient LAIeff values, even at
different altitudes compared to the other devices, i.e., the LAI-2200 plant canopy analyzer, and DHP,
small discrepancies between these methods appeared. Indeed, there was constant underestimation
of the UAV-based LAI compared with the reference data. That might be the fact that snow was
still present at few tree crowns during snow accumulation that caused these underestimations, even
though the correspondence during snow ablation between UAV-based LAIeff and LAIeff LiCor-2200
or DHPeff were slightly better due to the snow uncovered wood on the ground causing higher LAIeff
values. It has also been approved that there is an overestimation of the LAIeff performed by LAI-2200
plant canopy analyzer compared to the other method results [44]. Here, a cap of 270◦ was used to
hide both the sun and the operator from the sensor’s view and reduce the required clearing size
for above-canopy readings in a denser forest. This cap is also preferable if the goal is to measure
LAIeff [57]. Nonetheless, a narrower view cap of 90◦ would probably be more appropriate, due to the
diverse vegetation structure and the dynamic changes in spruce forest LAI in the study plot. Likewise,
the LAIeff values obtained by DHP present slightly overestimated than the LAIeff UAV estimated.

It is essential, therefore, to know from which altitude the LAI value should be taken, to compare
with the ground measurements [61]. It was assumed that the optimal flight altitude for LAIeff UAV
estimates would be around 50 m. The difference in the results could have been caused by a different
shooting zenith angle or camera zenith angle since the DHP and UAV methods had nearly similar
software configurations, and, except for the different backgrounds, almost identical sampling methods
in the experiment [74]. LAI extraction might be affected by the shooting angle regarding the proportion
of leaf elements that might be influenced by the shooting angle of the different FOV of the cameras.
To detect the same area with a smaller viewing angle (48◦) on the UAV mounted camera, the observation
height should be about tan (74◦)/(48◦) = 1.5 times the tree height, which varied in the test plot from
15 m to 20 m, with an average value of 17.5 m. Thus, the optimal flight altitude would be ~26 m.
However, the tested flight heights at 50 m and 65 m show differences in capturing LAI (Figure 13).
As the research area was covered by healthy and bark-beetle damaged trees, the LAI values were
not kept at a very stable level. Variations in LAIeff values appear mainly due to the heterogeneous
structure of the forest. In the future, additional NIR or oblique imagery could be applied to improve
the assessment quality of the DSM for snow depth mapping, as well as the LAI retrieval.

Moreover, in the case of UAV-based LAI estimates, the calculated LAI values might depend on
the amount of snow cover because it also accounts the interception of snow-free dead lying branches
and trees on the ground during snow ablation that the other methods are not taking into consideration.
The ideal condition to perform UAV-based LAI retrieval is to have more snow on the ground because
there will be fewer objects such as dead lying branches and trees interfere with the images, which could
potentially affect the calculation of the LAIeff values. However, this much is sure: that LAI decreased
with increasing flight altitude during both snow accumulation and snowmelt, as observed in Figure 13
a,b. The lower the altitude is, the smaller is the area seen by the camera and the more significant is the
variety of different scenes, whereas higher flights produce more averaged LAI values [61]. A similar
trend was observed by [45,61,75].
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Figure 13. (a) Results of the UAV-based LAIeff estimates. On the y-axes, the effective LAI is marked,
and the flight altitude is plotted on the x-axis. The boxes identify the middle 50%, the median, and the
maximum standard deviations for LAI points of UAV-based measurements at 50 m and 65 m altitude
during snow accumulation. (b) Results of the UAV-based LAIeff estimates at 50 m and 65 m altitude
during snowmelt.

4.3. Validation between Snow Depth and LAI

As expected, LAIeff values negatively correlated to HT data appeared at the investigated forest
site more often during snow accumulation than during ablation (Figure 11). That was predicted
by all methods used here. The lower the HT measurements were, but the higher the LAI values,
and vice versa. In general, increased LAI values mean more leaves in reality, leading to more surface
covered by the canopy rather than by snow cover [44]. So, the presence of trees alters the processes
that shape, in particular, snow cover accumulation. As a consequence, the amount of forest canopy,
often described by estimates of LAI, are inversely related to snow accumulation [74]. However,
a considerable variability between LAIeff values and HT were observed in measured comparisons
between forest snow ablation and forest accumulation.

It is proven that the forest canopy interacts directly and indirectly with snow, and therefore impacts
in significant ways on snow cover, especially during snowmelt periods [43]. The most direct is snow
interception (e.g., canopy structure). Intercepted snow can be stored in the canopy, sublimated directly
to the atmosphere when it is getting warmer [45,75], or change phase before reaching the underlying
snow cover [76,77]. Since the investigated forest site consists of a paired forest and clearing structure,
snow accumulates and melts differently. During snow accumulation, the clearing part contained the
immense quantity of snow, where the LAI values were low. Whereas in the adjacent dense, healthy
forest, less snow accumulated, due to increased interception and an increase in longwave radiation.

With respect to snow melting, snow should last longer in the clearing part than in the denser
forest. Concerning the low correlation between snow depth and LAI during snow ablation, and the
tendency of some outliers showing a slight correlation of higher LAI values with higher snow depth.
The reason for that might be that some of the intercepted snow sluffed off the canopy, particularly in
areas of denser forest due to the higher LAI values, and was added to beneath-forest accumulation [12].
In fact, this assumption should be treated with care. It is clear that the snow variability cannot be
determined via two parameters only, e.g., snow depth and LAI. There are more processes influencing
snow distributions including the amount of shortwave radiation, air temperature, partial snowmelt
periods, meltwater dripping from the canopy, wind sheltering, and snow redistribution due to the
wind, elevation, slope orientation, and slope angle. Although the latter may not be relevant to a small
forest area studied here, since it is a flat area, it might be suitable for open sites. The existing forest
heterogeneity makes it difficult to postulate a clear direction of interpretation. It can be concluded



Sensors 2019, 19, 1027 24 of 28

that the use of LAI as a prediction parameter serves better for snow accumulation events than for
snowmelt because it better describes snow interception. Hence, for snowmelt, factors that are more
closely related to radiation and topography could give better results when describing the snow depth
variability at a plot scale. Nevertheless, the substantial differences in spatial resolutions between
manual and UAV-based snow depth measurements (meter vs. centimeters) are that small scale
differences in both snow depth and vegetation structure cannot be captured by manual measurements
either snow depth using probe or DHP. Therefore, to add more locations with manual measurements
and consequent interpolation cannot bring the same level of detail associated with UAV which
measures in cm resolution.

5. Conclusions

This study has presented the potential of small footprint UAV data for deriving metrics such as
snow depth (snow metric) and LAI (forest metric) using single flights. As was found in previous studies,
we could show that it is possible to estimate snow depth and indirect LAI from UAV data by using
RGB-based UAV imagery. Snow depth was computed by subtracting snow-free from snow-covered
DSMs during different snow conditions and compared to fewer and with more manual ground
measurements. Differences in measured values obtained by these snow samplings strategies draw
distinctions. Effective winter LAI estimates conducted as well from downward-looking UAV images
were compared to conventional optical methods (e.g., DHP and LAI-2200 canopy analyzer) producing
reasonable but underestimated LAIeff values. With increased flight height of the UAV, lower estimated
LAI values were determined for all forest structures.

The relation between LAI and snow depth was analyzed for different snow conditions.
As expected, LAIeff values negatively correlated to snow depth data during both snow conditions at
the forest site. For snowmelt, the LAI as one of the predictors for snow distribution in forested areas
represented weaker correlations. The reason is most likely that LAI is a much stronger predictor for
snow accumulation, because it better describes the snow depth distribution during the accumulation
period, while for snowmelt, more processes influence the snow variability. Elevation and topography
have a marginal effect here, as the study plot in the forest zone is situated in a flat area. Thus, for
snowmelt, factors that are more closely related to radiation and topography might give better results
when describing the snow depth variability at a smaller scale.

To this end, the results demonstrated that, with this combined method, snow depth and LAI
retrieval could be recorded simultaneously with one UAV survey. The conjoint survey can significantly
improve the efficiency of both aerial and field mapping of snow cover distribution in areas featuring
variable structure and health status of the forest canopy. In such areas, it proved reliability in the
determination of the snow depth variation along with the LAI, enabling the interpretation of the effects
of canopy coverage on snow accumulation and ablation.

However, the largest advantage of the UAV technology here is the high resolution and the high
level of detail regarding the snow-covered terrain and the quick monitoring of indirect LAI compared
to simple manual measurements of snow depth and point measurements of DHP or using LiCor-2200.
By improving this method both parameters snow depth and indirect LAI might be used as input
parameters for snow models captured in reduced time.

Further work is required to examine the performance of snow depth change mapping in terms
of the precision of snow depth change estimates under denser canopies where the non-vegetated
surface is mainly covered and the use of infrared photography improves identification of different
snow features such as windblown snow into openings in the forest, ice crusts, and wet snow surfaces.
Attributes that need improvement as they affected the thresholding of binary images for the indirect
LAI analysis were shadows and snow on tree crowns.
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