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Abstract: In this research, we present a differential evolution approach to optimize the weights of
dynamic time warping for multi-sensory based gesture recognition. Mainly, we aimed to develop
a robust gesture recognition method that can be used in various environments. Both a wearable
inertial sensor and a depth camera (Kinect Sensor) were used as heterogeneous sensors to verify and
collect the data. The proposed approach was used for the calculation of optimal weight values and
different characteristic features of heterogeneous sensor data, while having different effects during
gesture recognition. In this research, we studied 27 different actions to analyze the data. As finding
the optimal value of the data from numerous sensors became more complex, a differential evolution
approach was used during the fusion and optimization of the data. To verify the performance
accuracy of the presented method in this study, a University of Texas at Dallas Multimodal Human
Action Datasets (UTD-MHAD) from previous research was used. However, the average recognition
rates presented by previous research using respective methods were still low, due to the complexity
in the calculation of the optimal values of the acquired data from sensors, as well as the installation
environment. Our contribution was based on a method that enabled us to adjust the number of
depth cameras and combine this data with inertial sensors (multi-sensors in this study). We applied a
differential evolution approach to calculate the optimal values of the added weights. The proposed
method achieved an accuracy 10% higher than the previous research results using the same database,
indicating a much improved accuracy rate of motion recognition.

Keywords: differential evolution; inertial sensors; kinect sensors; dynamic time warping; gesture
recognition; heterogeneous sensor data

1. Introduction

Human activity recognition using sensor technologies in the computing environments has become
an important emerging field of research in recent years of computer application. Countless studies have
been conducted on how human activities can be recognized using sensor technologies in computing
environments. Recently, the research interest has set focus on a natural user interface, mainly
in most human action recognition where vision sensors—such as point grey bumblebee XB3 and
Camcube—were used for the recognition process. In our research, we used the combination of a depth
camera (Kinect Sensor) and a wearable sensor (inertial sensor), which are capable of capturing human
motion in 3D. Analyzing the motion obtained from the sensor to determine user intent is an important
process of this type of interface. A typical motion recognition system consists of four major stages:
motion (gesture) capture, motion expression, classification, and application, as shown in Figure 1.
The sequence data obtained from the user is classified by the pattern recognition technology and then
used as inputs of the user’s operation, hence replacing the role of the keyboard and mouse.
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Figure 1. A flow of motion recognition system. 

To bring the user’s movements into the virtual computer world, many studies using color 
sensors have been done [1,2]. The main challenges during these studies were to determine object 
shape, object texture, background, lightning conditions, the distance between the object and the 
sensor, and changes in viewpoints [3,4]; depth data was proposed as a way to overcome the 
limitations of color sensors. Also, a time-of-flight (TOF) sensor was introduced, which calculates the 
distance by measuring the reflected time due to the speed of light [5,6]. Depth sensor data-based 
research has improved performance in many areas compared to color sensor-based studies but has 
not been actively used in many areas due to its high price. The Kinect depth sensor was then 
introduced and widely used during motion recognition methods, enabling a much higher recognition 
rate than the color sensor-based methods [7]. However, as the demand for the target operation 
increases gradually, the limitation of these sensors occurs during the recognition of complex 
movements due to blind spot and occlusions. This is due to the fact that the recognition method of 
these sensors is fixed in a certain position. To solve this problem, methods using a plurality of sensors 
or wearable sensors have been studied [8,9]. When increasing the number of sensors or fusing various 
kinds of sensors, both the number and size of the feature date increases. Many methods have been 
published to develop algorithms that can be applied to various situations [1,10], and studies on the 
combinations of sensors suitable for recognizing motion in various situations are still in progress. 

Many types of research have been conducted in various fields to read a user’s movement and 
use the data in the interface. Pattern recognition algorithms are used to extract meaningful 
information from data and are used in various fields, such as computer vision, speech processing, 
and motion recognition. Methods used include matching-based dynamic time warping (DTW) [11], 
the hidden Markov model based on probability modeling [12], conditional random fields (CRFs) [13], 
and the convolutional neural network (CNN) [14]. The latter is able to effectively learn  
two-dimensional images and exploit the discriminative features of any gesture. CNN helps us to 
learn suitable “dynamic” features from skeleton sequences without training millions of parameters 
afresh, which is especially valuable when there is insufficient annotated training data including the 
mapping of joint distribution, spectrum coding of joint trajectories, spectrum coding of body parts, 
and joint velocity weighted saturation and brightness for motion recognition. However, the major 
problem was how to calculate the optimal values of the weights while the joints were capturing for 
recognition [15–17]. 

To accurately recognize possible complex movements, a weighted DTW (Dynamic Time 
Warping) based on multiple sensors was suggested [18]. The proposed method is based on the 
weighted data and focuses on improving classification accuracy by adjusting weights. Data from 
multiple sensors and the heterogeneous sensor were used in the configuration. Although many 
Kinect sensors have high accuracy, there are some limitations during their installations for various 
sensing environments. Therefore, to overcome these challenges, we used a wearable sensor in 
addition to Kinect sensors. The major challenge was to discover the appropriate mathematical 
methods that could be applied in setting the optimal weights. We applied the differential evolution 

Figure 1. A flow of motion recognition system.

To bring the user’s movements into the virtual computer world, many studies using color sensors
have been done [1,2]. The main challenges during these studies were to determine object shape, object
texture, background, lightning conditions, the distance between the object and the sensor, and changes
in viewpoints [3,4]; depth data was proposed as a way to overcome the limitations of color sensors. Also,
a time-of-flight (TOF) sensor was introduced, which calculates the distance by measuring the reflected
time due to the speed of light [5,6]. Depth sensor data-based research has improved performance in
many areas compared to color sensor-based studies but has not been actively used in many areas due to
its high price. The Kinect depth sensor was then introduced and widely used during motion recognition
methods, enabling a much higher recognition rate than the color sensor-based methods [7]. However,
as the demand for the target operation increases gradually, the limitation of these sensors occurs during
the recognition of complex movements due to blind spot and occlusions. This is due to the fact that the
recognition method of these sensors is fixed in a certain position. To solve this problem, methods using a
plurality of sensors or wearable sensors have been studied [8,9]. When increasing the number of sensors
or fusing various kinds of sensors, both the number and size of the feature date increases. Many methods
have been published to develop algorithms that can be applied to various situations [1,10], and studies
on the combinations of sensors suitable for recognizing motion in various situations are still in progress.

Many types of research have been conducted in various fields to read a user’s movement and use
the data in the interface. Pattern recognition algorithms are used to extract meaningful information
from data and are used in various fields, such as computer vision, speech processing, and motion
recognition. Methods used include matching-based dynamic time warping (DTW) [11], the hidden
Markov model based on probability modeling [12], conditional random fields (CRFs) [13], and the
convolutional neural network (CNN) [14]. The latter is able to effectively learn two-dimensional images
and exploit the discriminative features of any gesture. CNN helps us to learn suitable “dynamic”
features from skeleton sequences without training millions of parameters afresh, which is especially
valuable when there is insufficient annotated training data including the mapping of joint distribution,
spectrum coding of joint trajectories, spectrum coding of body parts, and joint velocity weighted
saturation and brightness for motion recognition. However, the major problem was how to calculate
the optimal values of the weights while the joints were capturing for recognition [15–17].

To accurately recognize possible complex movements, a weighted DTW (Dynamic Time Warping)
based on multiple sensors was suggested [18]. The proposed method is based on the weighted data
and focuses on improving classification accuracy by adjusting weights. Data from multiple sensors
and the heterogeneous sensor were used in the configuration. Although many Kinect sensors have
high accuracy, there are some limitations during their installations for various sensing environments.
Therefore, to overcome these challenges, we used a wearable sensor in addition to Kinect sensors.
The major challenge was to discover the appropriate mathematical methods that could be applied in
setting the optimal weights. We applied the differential evolution method to calculate the optimal
weight value of the feature data extracted for the motion recognition to obtain efficient and accurate
results, which could then be applied to various environments.

The differential evolution approach is known to be one of the most powerful reliable optimization
algorithms that can be employed to calculate the weight optimal value; this was used for setting the
weights of the distance metrics used in a combination to cluster the time series [15].
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In [19], a differential evolution approach using an outstanding algorithm was applied to calculate
the marginal likelihood of the Gaussian process.

2. Dynamic Time Warping

DTW is a template-matching algorithm used to find the best match for a test pattern out of the
reference patterns, where the patterns are represented as a time sequence of features.

2.1. Dynamic Time Warping for Gesture Recognition

Let R = {r1, r2... rN}, N ∈ N, and T = {t1, t2, ..., tM}, M ∈ N be a reference and test sequences
(sequence of the set of joint positions in our case), respectively. The objective is to align the two
sequences in time via a nonlinear mapping. Such a warping path can be illustrated as an ordered set of
points, as given below:

p = (p1, p2, . . . . . . . . . pl), pl = (nl , ml)

where Dp is the total cost of the path p and d
(
ri, tj

)
measures the distance between elements ri and tj.

For gesture recognition, the distance can be chosen as the distance between the corresponding joint
positions (3D points) of the reference gesture, R, and the test gesture T.

Hence, the optimal path denoted by p∗ is the path with the minimum total cost. The DTW distance
between two sequences is defined by the distance associated with a total cost D given in Equation (1)
using the optimal path

Dp =
L

∑
l=1

d
(
ri, tj

)
, (1)

where Dp is the total cost of the path p and d
(
ri, tj

)
measures the distance between elements ri and tj.

For gesture recognition, the distance can be chosen as the distance between the corresponding joint
positions (3D points) of the reference gesture, R, and the test gesture T.

Hence, the optimal path denoted by p∗ is the path with the minimum total cost. The DTW distance
between two sequences is defined by the distance associated with a total cost D given in Equation (1)
using the optimal path

DTW(R, T) = Dp∗(R, T) (2)

The calculation of the optimum path D, in consideration of the local path limitation, is as follows:

D(i, j) = d(i.j) + min[D(i− 1, j− 1), D(i− 1, j), D(i, j− 1)] (3)

The main calculation cost takes place during the calculation process of the optimum adjustment
of Equation (3), and although some limitations and dynamic programming could alleviate such issues,
the limitation cannot accurately find the results if an optimal result exists outside of the selected data.

2.2. Weighted DTW for Multiple Sensors

A weighted distance in the cost computation based on how relevant a body joint is to a specific
gesture class was proposed [20]. To incorporate these weights into the cost, the distance function
d(ri, tj) becomes a weighted average of joints distances between two consecutive frames obtained from
the Kinect sensors and the inertial sensors (T) and reference frames (R)

dw
(
ri, tj

)
= ∑ dj(ri, tj

)
wg

j (4)

which gives the distance between the ith skeleton frame of reference gesture R and the jth skeleton
frame of test gesture T, where R is a sequence known to be in gesture class g and T is an unknown
test sequence.
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The relevancy is defined as the contribution of a joint to the motion pattern of that gesture
class. To understand a joint’s contribution to a gesture class, we compute its total displacement (i.e.,
contribution) during the performance of that gesture by a trained user as follows,

Cg
j =

N

∑
n

dj
(

f g
n−1, f g

n

)
(5)

where g is the gesture index, j is the joint index, n is the skeleton frame number, and dj() computes
the displacement of the jth joint’s coordinates in feature vectors f g

n−1 and f g
n . By summing up these

consecutive displacements, one can find the total displacement of a joint in a selected reference action.
Using the total displacement to assess the contribution of a joint in performing a gesture,

the weights of action class g are calculated using

wg
j =

1− eCg
j

∑k

(
1− eCg

j

) (6)

where wg
j is joint j’s weight value for each gesture class g. We used the exponential function in order to

minimize the loss of gesture displacement, and it iteratively fits a weak gesture to improve the current
estimate at each iteration of the gesture.

As a first step of implementing a motion recognition method capable of recognizing various motions,
weights were applied to multiple features extracted from the sensors’ data. For the motion of each
joint, DTW was used to calculate the similarities of every operation, and once the results had similar
behaviors [17], after capturing the user’s information sequences from the sensors, normalization and
weighting methods were applied to mitigate the difference between the sequences as shown in Figure 2.
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and the height of the movement was measured by dividing the size of all data by the largest value 
and the average position. 

In the proposed method, we aim to improve gesture recognition accuracy. This is done by 
assigning higher weighted values to the data with only a lower margin of error, by considering the 
movements of the joints (directions) and the location of the camera. The size of the dimension of the 
weight determines the advantage of each element, and it is determined by the dimension of the data 
used. Naturally, since standard DTW computes the distance of all points with equal penalization of 
each point regardless of the phase difference, the performance of the gesture recognition system can 
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distance expression. Therefore, a high weight value was assigned to the data with a small error and 
less noise among the data joint sequences. The weighted values were assigned by calculating the sine 
value of the two vectors [18]. 

The sensors used during the research are the Kinect sensors and the inertial sensors (wearable 
sensors). Kinect is a low-cost real-time depth camera (sensor), capable of projecting a pattern of 
infrared ray points; it captures the image using the infrared camera and is correlated with a pattern 
for a known distance. Inertial sensors enable position, orientation, acceleration, and speed of a 
moving body, determined very precisely in just a single component [21]. 

Although the method proposed effectively recognizes complex 3D motion, installing a large 
number of Kinect sensors is a challenge. In addition, when the number of Kinect sensors is reduced, 
the blind spot occurs during the shooting of gestures due to an insufficient number of Kinect sensors. 
To overcome this problem without reducing the number of Kinect sensors in use, we opted for using 
a few sensors that capture data such as angular velocity, acceleration, and magnetic force; these data 
are then compared with the point of the joints obtained from the Kinect sensors. After acquiring data 
using the two types of sensors, these data required a normalization process: we applied the 
differential evolution method for proper weight distribution on the acquired data as follows. 

The number of normalized weights = {the number of sample joints (14) + acquired data from 
wearable devices (3) + the number of sample joints after 1st differential evolution (14)} × the number 
of frames (N). The number of frames varies wildly, sometimes even reaching 100 frames. For example, 
the number generated frames (N) = 40 and the number of normalized weights = (14 + 3 + 14) × 40 = 

Figure 2. Gesture Recognition with Weighted DTW.

Prior to setting the weights, matching-based DTWs were affected by size variations, which
required a normalization based on the overall size and the position of the data. Therefore, the width
and the height of the movement was measured by dividing the size of all data by the largest value and
the average position.

In the proposed method, we aim to improve gesture recognition accuracy. This is done by
assigning higher weighted values to the data with only a lower margin of error, by considering the
movements of the joints (directions) and the location of the camera. The size of the dimension of the
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weight determines the advantage of each element, and it is determined by the dimension of the data
used. Naturally, since standard DTW computes the distance of all points with equal penalization of
each point regardless of the phase difference, the performance of the gesture recognition system can
be improved by providing a weight considering the characteristics of the elements compared to the
distance expression. Therefore, a high weight value was assigned to the data with a small error and
less noise among the data joint sequences. The weighted values were assigned by calculating the sine
value of the two vectors [18].

The sensors used during the research are the Kinect sensors and the inertial sensors (wearable
sensors). Kinect is a low-cost real-time depth camera (sensor), capable of projecting a pattern of
infrared ray points; it captures the image using the infrared camera and is correlated with a pattern for
a known distance. Inertial sensors enable position, orientation, acceleration, and speed of a moving
body, determined very precisely in just a single component [21].

Although the method proposed effectively recognizes complex 3D motion, installing a large
number of Kinect sensors is a challenge. In addition, when the number of Kinect sensors is reduced,
the blind spot occurs during the shooting of gestures due to an insufficient number of Kinect sensors.
To overcome this problem without reducing the number of Kinect sensors in use, we opted for using a
few sensors that capture data such as angular velocity, acceleration, and magnetic force; these data
are then compared with the point of the joints obtained from the Kinect sensors. After acquiring data
using the two types of sensors, these data required a normalization process: we applied the differential
evolution method for proper weight distribution on the acquired data as follows.

The number of normalized weights = {the number of sample joints (14) + acquired data from
wearable devices (3) + the number of sample joints after 1st differential evolution (14)} × the number
of frames (N). The number of frames varies wildly, sometimes even reaching 100 frames. For example,
the number generated frames (N) = 40 and the number of normalized weights = (14 + 3 + 14) × 40 = 1240
have to be regularized to get the optimum values. Therefore, as the number of frames increases, it makes
it very difficult to find the optimal set of weights.

3. Differential Evolution to Optimize the Weights of DTW

In this Section, we propose a differential evolution approach used in the weighted DTW framework,
which helped us during the recognition of complex motion. Our research aimed to build robust features
using the extracted data obtained from the Kinect and inertial sensors which were used in acquiring
the data from the moving joints, and then comparing them to motions within the public database for
recognition, as shown in Figure 3.
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Figure 3. Gesture Recognition of Weighted DTW with Differential Evolution.

Differential evolution (DE) is known to be one of the most powerful reliable stochastic
real-parameter evolutionary algorithms; it has been used in several applications to solve several
arising optimization problems [19,20,22–24]. We used the DE technique to calculate the optimal values
of weights on weighted DTW for multi-sensors. During the calculation of the optimal weight for
each sensor, the fusion of heterogeneous sensor data became too difficult to be analyzed, which is
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why we applied the differential evolution method. Our method used multiple evaluation criteria
to repeatedly select multiple candidates (targeted joints). Our method made it possible to search
for the target vector within a large space with multiple candidates, and may be discontinuous once
the proper candidate is retrieved. This made it possible to solve the problems presented in [25,26].
In the differential evolution method, we randomly generated pre-existent feature vectors, which were
mutated, crossed, and selected, as shown in Figure 4.

 

Sensors 2019,  6 of 17 

 

1240 have to be regularized to get the optimum values. Therefore, as the number of frames increases, 
it makes it very difficult to find the optimal set of weights. 

3. Differential Evolution to Optimize the Weights of DTW 

In this Section, we propose a differential evolution approach used in the weighted DTW 
framework, which helped us during the recognition of complex motion. Our research aimed to build 
robust features using the extracted data obtained from the Kinect and inertial sensors which were 
used in acquiring the data from the moving joints, and then comparing them to motions within the 
public database for recognition, as shown in Figure 3. 

 
Figure 1. Gesture Recognition of Weighted DTW with Differential Evolution. 

Differential evolution (DE) is known to be one of the most powerful reliable stochastic real-
parameter evolutionary algorithms; it has been used in several applications to solve several arising 
optimization problems [19,20,22–24]. We used the DE technique to calculate the optimal values of 
weights on weighted DTW for multi-sensors. During the calculation of the optimal weight for each 
sensor, the fusion of heterogeneous sensor data became too difficult to be analyzed, which is why we 
applied the differential evolution method. Our method used multiple evaluation criteria to 
repeatedly select multiple candidates (targeted joints). Our method made it possible to search for the 
target vector within a large space with multiple candidates, and may be discontinuous once the 
proper candidate is retrieved. This made it possible to solve the problems presented in [25,26]. In the 
differential evolution method, we randomly generated pre-existent feature vectors, which were 
mutated, crossed, and selected, as shown in Figure 4.  

 
Figure 4. The flow of the differential evolution method. 

In the differential evolution method, the parameters (weights) to be optimized were initialized 
and filled with random values to form feature vectors called agents, and as the number of weights 
increased, they were combined together through a mutation process and formed multiple agents 
which became the candidates. Candidates groups within the zone of the motion were created and 
when combined with the new weights of the initial vectors in the zone, they formed a new agent 
(feature vector) through a crossover; this was done repeatedly while selecting the optimal weights 

Figure 4. The flow of the differential evolution method.

In the differential evolution method, the parameters (weights) to be optimized were initialized
and filled with random values to form feature vectors called agents, and as the number of weights
increased, they were combined together through a mutation process and formed multiple agents
which became the candidates. Candidates groups within the zone of the motion were created and
when combined with the new weights of the initial vectors in the zone, they formed a new agent
(feature vector) through a crossover; this was done repeatedly while selecting the optimal weights
until an appropriate result was achieved. The weight vector required for motion recognition using
heterogeneous sensors was determined by a target motion (joints). Each element had a weighted value
between 0 and 1, and the set weights determined the importance of the joints in the frame.

The optimal weight value was obtained by applying the differential evolution represented as
parameter G in Equation (6):

wg
j,G =

1− e−Cg
j,G

∑k

(
1− e−Cg

j,G

) (7)

G is generated for the currently generated element, the nth target feature vector of the target
gesture becomes

Tn,G= [(x1,n, G), (x2,n, G), (x3,n, G), . . . . . . . . . . . . . . . (xS,n, G)], (8)

where S is the features, and x is the number of frames. For each parameter, the range values of the
parameters must be limited for a finite amount of time. Initial weights of each agent are generated
randomly, and similarly, the initial agent is generated and undergoes the mutation process. The parent
vector is called the target vector while the vector through the mutation process is the donor vector.
By combining the target and the donor vectors, they form a trial vector [22]. To generate the donor
vector of the nth target feature vector, variable vectors XTn

1
, XTn

2
, XTn

3
which are mutually individuals

(vectors) are selected randomly; at this time, the selected vectors should not be duplicated. The donor
vector Vn,G is calculated as follows;

Vn,G = XTn
1,G

+ α
(

XTn
2,G
− XTn

3,G

)
; (9)
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where α is a mutation factor or the differentiation constant and it is one of the control parameters of DE.
In addition, α is randomly chosen from [0,1]. The selection process is performed through Equation (10).

Xn,G+1 =

{
Vn,G i f

(
randi,j[0, 1] < cr

)
Xn,G otherwise

(10)

where n = 1,2,3 . . . G, and cr is the crossover constant, which is another control parameter. The control
parameters of DE are determined by the algorithm designer [19].

In our experiment, the number of parents used was 50 per action, and the best 5 parents were
selected. The remaining parents are all initialized as random elements (parent) for the target vector. If a
large number was repeated or the result of α function did not change, the reloading was considered
complete and the repetition was stopped.

4. Experimental Results

For any gesture recognition approach, there is a need for either a private or a public database
for reference gesture actions. Among all available public databases, The University of Texas at
Dallas Multimodal Human Action Dataset (UTD-MHAD) database of joint actions was used. Gesture
recognition experiments, such as accumulating the user’s joint trajectory using convolution neural
networks, the distance between the joints of user’s expression using convolution neural networks,
the cumulative recording of user’s movements by the use of an image using convolution neural
networks, and human action recognition using a depth camera and a wearable inertial sensor using
data fusion process of multi-sensors, were studied using this database [15–17,27]. UTD-MHAD [27]
was considered to be suitable for verification. The inertial sensor was attached to the arm or leg along
the main moving body. Table 1 presents the 27 actions which were used for a variation of the motion.

Table 1. 27 actions of University of Texas at Dallas Multimodal Human Action Datasets (UTD-MHAD).

S/N Action

1 Right arm swipe to the left

2 Right arm swipe to the right

3 Right hand wave

4 Two hand front clap

5 Right arm throw

6 Cross arms in the chest

7 Basketball shoot

8 Right hand draw x

9 Right hand draw circle (clockwise)

10 Right hand draw circle (counter clockwise)

11 Draw triangle

12 Bowling (right hand)

13 Front boxing

14 Baseball swing from right

15 Tennis right hand forehand swing

16 Arm curl (two arms)

17 Tennis serve

18 Two hand push
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Table 1. Cont.

S/N Action

19 Right hand knock on the door

20 Right hand catch an object

21 Right hand pick up and throw

22 Jogging in place

23 Walking in place

24 Sit to stand

25 Stand to sit

26 Forward lunge (left foot forward)

27 Squat (two arms stretched out)

Where from action 1 to 21, the inertial sensor was attached to the right wrist of the subject, and
from motion 22 to 27, and it was attached to the right thigh of the subject, as shown in (Figure 5).
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Figure 5 indicates the multimodality data corresponding to the action of basketball shoot of
the color image, the depth image, the skeleton joint frames and the inertial sensor data. For motion
recognition performance can be improved effectively by applying the data fusion of different sensor
data which is possible through weighting method though it is difficult to set appropriate weights.
We performed weight optimization using a differential evolution method. As a result of the motion
recognition experiment using the heterogeneous sensor, two Kinect sensors (Microsoft for Xbox 360,
Microsoft corporation model, U.S patent Nos. 6,483,918 and 6,775,708, China) and two wearable
inertial sensors (MYOD5, Thalmic labs, Ottawa, Canada) were placed on the wrist and on the thigh,
and the UTD-MHAD composed of 27 movements was used. During our experiment, we used 14
samples of the actions within the database, and we applied the differential evolution of approach to
the target feature joints, in order to optimize the applied weights during the joint movement actions
where more than 1240 weights were to be normalized. We used the joint position sequence extracted
from the Kinect of UTD-MHAD and the inertial sensor, which included angular velocity, acceleration,
and magnetometer sequences. All motion data (Kinect and inertial sensor) were manually extracted
from the beginning to the end of each action.

4.1. Experimental Simulation for Bowling Action

Figure 6 below shows the gesture recognition experiments tested on a bowling game. Through
this experiment, the UTD-MHAD was applied to accumulate the user’s joint trajectory while he/she
was wearing a wearable sensor (inertia) on the wrist and thigh.
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Figure 6. Example of bowling action of UTD-MHAD.

The proposed method is implemented using Matlab (Chung-Ang University, Seoul, South Korea).
Firstly, the features were used in a differential evolution method of joint data obtained from the Kinect
SDK and the inertial sensor which capture 3 axes (3-axis acceleration, 3-axis angular velocity, and 3-axis
magnetic strength); these were measured without considering the change over time. The method of
difference evolution determines the usage proportion of each sensor data; thus, the weight value range
corresponding to each feature was set between 0 and 1, and the value of the parameter in Equation (10)
was set to 0.1 and 1. A total of 27 actions in the UTD-MHAD were used for each operation, and 50
initial parent vectors were used. The experimental results are shown in Figure 7.
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Figure 7. Weights of bowling motion set through the differential evolution method. Experimental
Results for Bowling Action with Adjusted Weights by Differential Evolution Where (0.1 ≤ α ≤ 1).

Figure 6 shows the bowling behavior of the UTD-MHAD, while Figure 7 shows how the weight
of the bowling movement were set using the differential evolution method against the increase of
frames. The weights filled with random values changed over the generated frames and converged as
shown in Figure 7. Finally, as the number of iterations (frames) increased, an average recognition rate
also increased. Therefore, after a total number of 1489 iteration, an average accuracy recognition rate
of 99.40% was obtained.

4.2. Experimental Results of the Adjusted Weights by Differential Evolution (α = 0.1)

In our experiment, we used all 27 actions (gestures) within the UTD-MHAD. In the experimental
results shown in Figure 8a,b, the first 13 actions and the average were considered in (a), while the
remaining actions (14) and average were considered in (b). After applying the differential evolution
extracted features and setting the value of α to 0.1, the small value of α limited us and we used only
the two vectors’ gaps. This affected the number of generated frames with respect to time. As weights
changed slowly, the recognition rate also increased slowly. The number of frames increased while
repeating the iterations, and after 178 generations, the average recognition rate scored 83.88%.
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4.3. Experimental Results of the Adjusted Weights by Differential Evolution (α = 1)

In our experimental results, after the change of the value of α to 1, we were able to use the whole
gap of the vector randomly which enables the change of weights rapidly. Figure 9a,b, shows that, after
changing the value from α to 1, the same number of generations as that of α = 0.1 were generated in
almost the same small period of time (2−3) of the time as that which was used when α was 0.1, giving
an average accuracy rate of 57%.
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In our experiments, we also extended the dimension and further increased the number of frames
and used all 27 actions within the database; these were subdivided into two parts, as presented in the
two experimental figures, respectively Figure 10a,b. This experiment was conducted when the value
of α was set to 1, and the results indicated that, after using the same period of time as the results in
Figure 8a,b, the number of weights increased rapidly, and the generation increased 8 times compared
with those where α was set to 0.1 (from 179 to 1471 generations). Hence, we were able to obtain average
accuracy results of 99.4%. In addition, compared to the results obtained during our experiment in
Figures 9a,b and 10a,b, it indicated that as the weight value increased, the number of frames being
generated also increased, reflecting the same amount of time during the action.
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In the study using the UTD-MHAD, according to the previous researches, joint-trajectory
map-based using the CNN method obtained results of 89.81% [17]. A CNN based on joint distance
map of 88.10% was achieved [16]. The motion history image based on the CNN method was 84% [15].
A depth motion map based on multiple sensors 79.10% was archived [27]. However, the average
recognition rates presented by the previous researches were still low. After realizing that the major
cause of these low results was due to the complexity in calculating the optimal values of the acquired
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data from the sensors during the optimization process (as well as the environment of installation
of some sensors which provides redundant data due to the blind spot of too many Kinect sensors),
we proposed a method which enabled us to reduce the number of Kinect sensors installation and to
use inertial sensors instead. We were thus able to overcome the blind spots, and after acquiring data
from our sensors, we applied the differential evolution method, which enabled us to calculate the
optimal values of the added weights. Our proposed method achieved 99.40%, which indicates a much
improved accuracy rate of motion recognition compared to other results as shown in the Table 2.

Table 2. Experimental results on UTD-MHAD.

Technic Used Accuracy of
Recognition Characteristics

Joint Trajectory Map 89.81% Accumulating the user’s joints trajectory, Based on CNN [17].

Joint Distance Maps 88.1% The distance between the joints of the user’s expression, based
on CNN [16].

Motion History Map 84.00% Cumulative recording of the user’s movement by the use of an
image, CNN-based [15].

Depth Motion Map 79.10% Human action recognition using a depth camera and a
wearable inertial Sensor. Data fusion from multi-sensors [27].

Proposed Approach 99.40% Differential evolution to optimize weights. DTW Based.

5. Conclusions/Recommendations

In this paper, we propose a differential evolution method to optimize the weights of DTW and
compare it with other motion recognition methods. Since multiple Kinect sensors were constrained to
the application environment during their installation, we encountered blind spot challenges and the
problem of complex calculations of the optimal weight values of acquired data. During our experiment,
we used two Kinect sensors and two wearable inertial sensors (one of each on the wrist and the other
two on the thigh) for motion capturing. We used UTD-MHADs for our experiments, and the results of
our proposed method can be seen in Figures 7, 8, 9 and 10a,b. A differential evolution method was
used to calculate the optimal weights of the acquired data. In our experimental results, an increase
of 10% in recognition accuracy was achieved compared to the highest accuracy rate achieved by the
previous researcher using the same database. However, we observed a tradeoff in the processing time
in order to obtain better results. We would recommend for the future works to consider how optimal
time should be minimized without affecting the experimental results (recognition accuracy).
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