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Abstract: Smart buildings with connected lighting and sensors are likely to become one of the first
large-scale applications of the Internet of Things (IoT). However, as the number of interconnected
IoT devices is expected to rise exponentially, the amount of collected data will be enormous but
highly redundant. Devices will be required to pre-process data locally or at least in their vicinity.
Thus, local data fusion, subject to constraint communications will become necessary. In that sense,
distributed architectures will become increasingly unavoidable. Anticipating this trend, this paper
addresses the problem of presence detection in a building as a distributed sensing of a hidden
Markov model (DS-HMM) with limitations on the communication. The key idea in our work is
the use of a posteriori probabilities or likelihood ratios (LR) as an appropriate “interface” between
heterogeneous sensors with different error profiles. We propose an efficient transmission policy,
jointly with a fusion algorithm, to merge data from various HMMs running separately on all sensor
nodes but with all the models observing the same Markovian process. To test the feasibility of our
DS-HMM concept, a simple proof-of-concept prototype was used in a typical office environment.
The experimental results show full functionality and validate the benefits. Our proposed scheme
achieved high accuracy while reducing the communication requirements. The concept of DS-HMM
and a posteriori probabilities as an interface is suitable for many other applications for distributed
information fusion in wireless sensor networks.

Keywords: Internet of Things (IoT); sensor fusion; smart building; efficient transmission; wireless
sensor networks

1. Introduction

Smart buildings are becoming a reality thanks to the availability of low-cost, easy to install Internet
of Things (IoT) devices, such as sensors and actuators. An extensive amount of research has been
dedicated to developing occupancy-based control systems that exploit information on user presence
to dynamically adjust energy-related appliances and building systems (HVAC, lighting, or other
appliances). Those systems are based on a network of IoT-enabled sensor devices that continuously
monitor the space with the aim to provide real-time information on user occupation. For example,
SCOPES, a distributed smart cameras object position estimation system [1], uses real-time occupancy
data to create predictive occupancy models [2]. Those models can be integrated into a building
conditioning system for usage-based demand control conditioning strategies, most notably HVAC
and lighting. Other approaches, as in [3,4], achieve relatively accurate localization from sensor badges
or smart phones to enable building energy control. Advanced sensor modalities, such as cameras,
or wearable devices, such as smartphones, increase the accuracy of the system yet, at the same time,
increase cost and intrusiveness. Simple, wireless, binary sensors are preferred, which are easy to
retrofit in existing buildings and comply with the existing privacy regulations.
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To accommodate growing expectations, sensing systems need to interact and combine information
to reduce sensor uncertainty while reducing cost and keeping the sensor infrastructure non-intrusive.
This forms an intrinsically multi-sensory data fusion problem, in which the readings from multiple
sensors must be combined into a coherent structure. For example, information collected by a network
consisting of traditional PIR sensors is fused in a probabilistic framework based on the Bayesian
probability theory in [5]. Nguyen and Aiello [6] combined observations from a wireless network of
simple sensors (infrared, pressure, and acoustic) in a recognition system that performs indoor activity
recognition. Sensor data were periodically pushed to a central base station, where, an algorithm
determined activity by associating the data with a specific configuration. Similarly, Huang and
Mao [7] proposed a hybrid detection method using the combination of CO2 and light sensors by which
the measurement results of CO2 and light levels are transmitted to a central control computer via
wireless communication.

Yet, most of the smart building applications found in the literature, including [8], make use of
centralized architectures with sensing nodes exchanging or delivering their readings into a data sink
(e.g., a base station). However, this sensor interaction is constrained by the limited resources of sensor
nodes, such as limited memory, battery power, and computation and communication capabilities.
Especially given that the number of interconnected devices is exhibiting an exponential rise towards
a forecasted 50 billion connected devices by 2020 [9], distributed architectures are becoming more
relevant than ever. The interconnected devices will generate a vast amount of data; thus, devices may
be required to make some decisions locally. Edge analytics will become necessary to determine which
data is worth sending and when or whether efficient data compression or aggregation into meaningful
information can be performed.

Motivated by this, we propose a distributed architecture for smart buildings. We approach
the problem of presence detection as a Markov process that moves between a number of states,
e.g., presence or absence. Our challenge is to determine the current state of that process from the
sequence of noisy observations made by (imperfect) sensors. This concept is known as a hidden
Markov model (HMM) and has been extensively explored for other applications, but we extend this
to allow distributed sensing and distributed processing. We thus introduce a distributed approach
in which, spatially separated sensor nodes try to effectively combine their observations to estimate
the state of the underlying process. In fact, in a centralized architecture, a theoretically optimal
solution for a HMM with multiple sensors, can be implemented [8], but it requires perfect and frequent
communication between nodes. Yet, specifically for IoT applications based on wireless sensor networks,
this is prohibitive. The large amount of bandwidth required to send raw sensor observations through
the network at low latency is a significant disadvantage that drains the limited battery resources (the
power consumed by inter-sensor communication is the main source of battery consumption [10,11]) and
increases traffic load. We now investigate whether we can reduce communication, while maintaining
performance. For this distributed-HMM (DS-HMM) architecture, observations are initially processed
locally and independently of other nodes, and we switch from exchanging the latest observations
towards conditionally exchanging local likelihood ratio values. We propose a set of fusion algorithms to
merge data from various HMMs running separately on all sensor nodes. We model a non-homogeneous
HMM with time-of-day dependent transition rates, because activity patterns change during the day.
We build a simple experimental prototype system that acts as an initial proof-of-concept of the feasibility
of the suggested solution and test functionality. The aim is to verify to what extent our solution is
robust in the real conditions of a wireless sensor network and with human behavior that may not be
captured exactly in a Markov process.
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2. System Overview

2.1. Overview

In this section, we approach the problem of monitoring room occupancy as a distributed
hidden Markov model, in which K spatially separated sensor nodes try to effectively combine their
observations to estimate the state of the underlying process. In order to lower the communication
load and thereby maximize the lifetime of the wireless sensor network, sensor interaction needs to
be limited. Minimizing data transmissions is also important to avoid collisions among concurrent
transmissions. This section describes in detail the occupancy model of the local nodes, the proposed
transmission policy, and the fusion algorithms developed to effectively combine local information.

2.2. Prerequisite: Occupancy Inference based on HMMs

Hidden Markov models (HMMs) and their extensions are a particular representation of dynamic
graphical models (DGMs), popular for modeling time series data. They offer a natural approach to
encode causality (conditional independency) and provide a principled framework for combining prior
knowledge and data. Therefore, the HMM framework can provide a computationally efficient and
sufficiently expressive solution to the problem of office occupancy. We model human presence as a
Markovian on–off process with two possible user states: qt = 0 represents the state in which the user
is absent, while qt = 1 represents the state in which user is present. However, our HMM approach
is not principally limited to two states [12], and the architecture described here can also be extended
to a larger state space. The possible user states are unknown (hidden) to the system but can only
be observed through an imperfect sensor network, which we interpret as another set of stochastic
processes that produce the sequence of observations. The resulting system forms a hidden Markov
model that requires the specification of the following set of parameters [13]:

(1) State transition probability matrix: A =
{

aij
}

, aij = P(qt = j|qt−1 = i). The transition
probabilities describe how space occupancy changes over time. Because we assume only two
possible states, two transition probabilities need to be specified, namely P(qt = 1|qt−1 = 0) and
P(qt = 0|qt−1 = 1).

(2) Emission probability matrix: B =
{

bij
}

, bi(j) = P(rt = j|qt = i). The observed symbols are sensor
readings monitoring the hidden states, such as, for example, ultrasound or PIR sensors providing
measurements. Our mathematical approach is very suitable to combine data from sensors
with different reliabilities. Yet, in the examples that we give in this work, we use one type of
sensor, namely ultrasound (USR) sensors. Typically, sensor measurements are continuous-valued
variables, such as a time-of-flight distance. However, for simplification in the calculations, we map
each continuous observation to a binary value rt ∈ {0, 1}. The emission probabilities are a metric
of the quality of the sensor modality used and thus are directly linked to the successful detection
rate (SDR) and the false alarm rate (FAR). The SDR is the probability of obtaining a sensor reading
given that a person is present, while the FAR is the probability of obtaining a sensor reading
given that a person is absent. Accordingly, the emission probability matrix is defined as follows:

B =

(
b0(0) = 1− b0(1) b0(1) = FAR
b1(0) = 1− b1(1) b1(1) = SDR

)
. (1)

(3) π = {πi}: Initial state probability vector. The initial state distribution specifies the occupancy
probability at the initial time step t = 0, prior to any observation. Yet, in our application, the
influence of the initial state rapidly vanishes.

The hidden Markov model parameters λ = {A, B, π} can be estimated theoretically or
experimentally, using labeled sequences of observations and states in a training step.
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2.3. Dynamic Transition Probabilities

In the typical HMM model formulation, the transition probabilities A =
{

aij
}

are considered
to be constant over time, i.e., A(t) = A. Yet, as we addressed in [14], the time of the day has a
significant influence on the probability of occupancy. For instance, because it is much more probable
that someone is present only during the day, a sensor trigger at night is more likely to be a false
alarm than a daytime trigger. This leads to the non-stationary behavior of the transition probabilities.
The non-homogeneous model exploits this prior knowledge by mathematically biasing the HMM
probabilities. Thus, we extended the HMM model framework to allow for non-homogeneous transition
probabilities that depend on the time of day. Specifically, we let the transition probabilities a01, t

and a10, t vary over time, while the two remaining probabilities are set to a00(t) = 1 − a01, t and
a11(t) = 1− a10, t. We specified the transition probabilities as

a01, t = Λ1,t
a10, t = Λ2,t

(2)

where Λ1,t and Λ2,t are design matrices corresponding to a function linking the transition probabilities
to the time of day. Given that there is no theoretical basis for choosing a suitable function, one could
rely on experimental data to obtain estimations of the transition probabilities of interest. We used the
experimental data collected in our experimental set-up described in [14] to get an hourly estimate
of the conditional probability of transiting from the absent state to the present state and vice versa.
One could argue that a finer granularity makes sense, for instance to capture that meetings often start
around the top of the hour. However, this time resolution would require vast amounts of data, while
for our dataset and our specific university student setting, it would not give a justifiable, statistically
significant result. The matrices Λ1,t and Λ2,t can be designed by applying a fitting curve over the
experimental data. We chose to apply cubic Hermite polynomials. Various fitting models were tested;
however, shape-preserving interpolants showed the best fit to our experimental data. Figure 1 shows
the average transition probability from the absent state to the present state (a01, t) as a function of the
time of day over all workdays. We observed that our participants arrived at work between 8:30 and
10:00. A “valley” was, as expected, observed around 12:30 (corresponding to lunch time). A global
maximum was seen around 14:00, after which it dropped and approached zero at 20:00. Although the
prior probability of presence at night is very close to zero, we noticed that in our system, we needed to
set an artificial minimum to prevent undesirable behavior during which the system failed to switch
on lights during unlikely nightly events and incidents. This minimum value was set according to
our model parameters to ensure a system reaction to a new presence within 1 s; that is, it required a
different regime than the daytime compromise between comfort versus energy conservation. A similar
analysis was made for the transition probability for an employee to transit from the present state to the
absent state (a10, t).

As a verification of whether our obtained transition probabilities were plausible, we computed the
resulting time-varying state probabilities and checked whether these fit with typical office occupancy
data, e.g., the ASHRAE 90.1 2004 recommended standard curves for private offices [15]. The occupancy
pattern that follows is derived from the estimated transition probabilities according to

P(qt = 1) = a11, tP(qt−1 = 1) + a01, tP(qt−1 = 0). (3)

The comparison in Figure 2 confirms that both profiles share important characteristics, that is,
occupancy starts increasing in the morning, dips at lunchtime, rises again to the same level, and drops
near the end of the workday. However, in our special case, we observed a time delay in the arrival
time of employees, a delay that can be justified by the more flexible working policy that is typical in a
university setting. This diversity suggests that there might be statistical differences between different
types of offices. Variations might also occur according to the geographical zone, type of office (private,
open floor plan, etc.), suggesting that more research is necessary to develop a larger building database



Sensors 2019, 19, 1006 5 of 17

spanning over different geographical regions and office types. Alternatively, a self-learning algorithm
can be used.Sensors 2019, 19, x FOR PEER REVIEW 5 of 17 
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2.4. State Estimation in HMMs

The goal of the presence detection system is to allow each individual sensor k to estimate the
probability of a subject being present (or absent), considering that we have a set of sensor readings
r(k)1:t = r(k)1 , r(k)2 , .., r(k)t and that we can rely on the system’s memory to know the previous state

estimation. In particular, we aimed to express P
(

qt = i|r(k)1:t

)
, which can be written using Bayes

theorem as

P
(

qt = i|r(k)1:t

)
=

P
(

qt = i, r(k)1:t

)
P
(

r(k)1:t

) (4)

where i ∈ {0, 1} was the possible user states representing absence and presence, respectively, and
r(k)1:t = r(k)1 , r(k)2 , .., r(k)t represents the series of observations of the k-th sensor up to time t.

Given the constructed HMM model λ = {A, B, π}, the HMM framework defines the
forward–backward procedure that allows us to inductively calculate the forward variable
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αt(j) = P(r1r2 . . . rt, qt = j|λ), i.e., the joint probability of the observation sequence. The forward
variable gives an estimate of the most likely user state at time t according to

αt(j) = bj(rt)∑
i

aij αt−1(i). (5)

Because we considered only two possible user states, with the user either present or absent,
in order to simplify the calculations, we introduced the likelihood ratio Q(k)

t defined as the
probability ratio

Q(k)
t =

P
(

qt = 1, r(k)1:t

)
P
(

qt = 0, r(k)1:t

) =
αt(1)
αt(0)

. (6)

After some mathematical reformulation and by substituting Equation (5) in Equation (6), we
derived a simple expression to inductively calculate Q(k)

t as

Q(k)
t =

b1

(
r(k)t

)
b0

(
r(k)t

)
a11Q(k)

t−1 + a01

a10Q(k)
t−1 + a00

. (7)

Each individual sensor k runs the above HMM algorithm (Equation (7)) to calculate the local
likelihood ratio Q(k)

t . Based on the local HMM algorithm, each node in the network individually
estimates the user state based on its local view, i.e., from the k-th sensor’s observations. This estimate is
accompanied by a confidence level, i.e., the magnitude of the likelihood |Qt|, or alternatively log |Qt|
can be interpreted as the degree of belief on the user state. In simple words, the sign of log Qt is the
hard decision on the state, and the magnitude log |Qt| is the reliability of this decision.

2.5. Decision Rule

The decision rule determining presence/absence is given by a simple thresholding operation on
the log-likelihood ratio as

qt = L(Qt) =

{
1, if log Qt > δ

0, if log Qt ≤ δ
(8)

where δ is a preselected presence/absence threshold. Typically, Qt values span over several orders of
magnitude. Thus, using a logarithmic form allows us to better adjust the threshold to make a tradeoff
between false positives and false negatives.

2.6. Communication Strategy

Occupancy detection can significantly be improved by using data fusion techniques to simultaneously
utilize the information collected by multiple spatially separated IoT nodes. This synergistic use
of overlapping and complementary data provides a reliability that may otherwise be unavailable
from individual sources. Centralized fusion approaches, though easier to approach the optimal
solution [16], in practice, give rise to problems with computational and communication bottlenecks,
as they require the transmission of measurements from all nodes to a fusion center. On the other
hand, in a distributed architecture, communication can be adaptive and dependent on the information
content of the individual nodes. This reduces the necessary data communication, because data do not
have to be sent to a central processing node, and it allows for faster access to fusion results, because
there is less communication latency. Towards this direction, we propose an adaptive method to
exchange data. Our proposed strategy is based on a simple intuition. We exploited the fact that |log Qt|
can be seen as a metric of belief on the user state and let individual nodes exchange information only
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when their confidence on their local estimate is low. In mathematical terms, a test node k communicates
according to

|log Qt| ≤ γ→ send msgk (9)

where msgk is the message that node k sends to all nodes in the network and γ is the chosen
communication threshold. The communication threshold can be adjusted as a tradeoff between
communication load and performance.

2.7. Data Fusion

The data fusion problem at hand consists of two main questions, namely what type of information
nodes should exchange and how to optimally combine the available information in order to achieve
high performance results (who, when, what, and how). In a centralized architecture with multiple
nodes, each making their own noisy observations, optimal detection can be achieved if all the nodes
exchange all the observations at every time unit [8]. Yet, this leads to an excessive communication load.
In the case that sensor communication is constrained, it is an open question of what data nodes should
exchange to reach a good solution. For the fused estimate to be the same as the optimal (centralized)
estimate, the information communicated by each node has to contain all the information needed
to reconstruct the optimal estimate. According to our system architecture, this includes the history
of previous estimates. It requires the algorithm to trace back to the latest moment in which all the
data were available and to retroactively calculate the joint likelihood ratio, posing major memory
and computational requirements. The tracing-back depth (TD), i.e., how far back in time the HMM
algorithm needs to reprocess measurements, might theoretically include hours of past observations,
but transmitting the full history is not practical. We explored a more pragmatic approach, namely to
send only a few recent observations in every message (packet) instead of the full history. In practice,
the information carried by a measurement diminishes rapidly with its age, i.e., only if the measurement
is not too far back in time, is it relevant enough for an update. We experimentally investigated
the required length of the trace-back to maintain adequate performance as a function of the sensor
reliability, expressed as the sensor SDR and FAR that define the emission probability matrix. Figure 3

shows the mean square error erms =

√√√√E

((
ˆQ(TD)−Q

Q

)2
)

as a function of the length of the trace-back.

We found a very clear dependency on the sensor reliability. In fact, for a very reliable sensor, tracing
back to only TD = 4, the latest observations turned out to be very close to the optimum reconstruction;
however, unreliable sensors observing a quite stable state can benefit from looking back much further
into history. Yet, even with a rather unreliable sensor, tracing back up to TD = 10 past observations
appears adequate, at least in a network with K = 2 nodes.
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The algorithmic steps required for the calculation of the joint likelihood ratio with tracing-back in
history can be summarized as follows (Algorithm 1):

Algorithm 1: Distributed hidden Markov model (HMM) Algorithm with Sub-Optimal Retroactive Reconstruction

1: Initialization: Q(k)
1 =

b1

(
r(k)1

)
π1

b0

(
r(k)1

)
π0

2: while new data exist do
3: Calculate the likelihood ratio:

Q(k)
t =

b1

(
r(k)t

)
b0

(
r(k)t

)
a11Q(k)

t−1 + a01

a10Q(k)
t−1 + a00


4: if |log Qt| ≤ γ do

5: send msgk =
(

r(k)t−TD, . . . , r(k)t

)
6: end if
7: if msg1, . . . , msgK received do
8: Trace back to Q(k)

t−TD

9: Retroactively calculate Q(k∗)
t according to

Q(k∗)
t =

b1

(
r(1)t

)
b0

(
r(1)t

) . . .
b1

(
r(K)t

)
b0

(
r(K)t

)
a11Q(k)

t−1 + a01

a10Q(k)
t−1 + a00


starting from Q(k)

t−TD.

10: Update Q(k)
t ← Q(k∗)

t
11: end if
12: Estimate state according to decision rule

Qt = L(Qt) =

{
1, if log Qt > δ

0, if log Qt ≤ δ

13: end while

The reconstructed state estimate Q(k∗)
t is the joint likelihood ratio given information from all

sensors defined as

Q(k∗)
t =

P
(

qt = 1, r(1)1:t , r(2)1:t , . . . , r(K)1:t

)
P
(

qt = 0, r(1)1:t , r(2)1:t , . . . , r(K)1:t

) . (10)

The tracing-back algorithm is an attractive solution that achieves performance quite close to the
centralized HMM solution with limited transmission requirements. Still, if the required tracing-back
depth is large, tracing back and storing information involves lengthy calculations and storage
requirements that might pose challenges for real-time processing. For a wireless sensor network,
an attractive distributed data fusion method minimizes the payload of messages. In our opinion,
just the exchange of likelihood ratios (LRs), and thus Q values, is more efficient and more practical as
long as the number of nodes involved is not too large.

In fact, one can exploit that the nodes have already calculated a local state estimate in the form
of the Qt ratio, that is, the ratio of the state estimation given the series of sensor observations so far
(including the latest observation). This ratio captures all the necessary information that the system
needs to know, suggesting that it is a suitable and sufficient variable to be exchanged. Switching
from communicating raw data to communicating local likelihood estimates raises a second question,
namely what is the optimum and most efficient fusion technique to combine data. To the best of
our knowledge, no suitable fusion function f has been investigated previously for combining local
estimates without requiring more than the current (latest) state estimate.

The mathematical expression representing the fusion of multiple sensor observations in an HMM
framework is given as
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Q(k∗)
t =

P
(

qt = 1|r(1)1:t , . . . , r(K)1:t

)
P
(

qt = 0|r(1)1:t , . . . , r(K)1:t

) . (11)

Applying the Bayes rule gives

Q(k∗)
t =

P
(

r(1)1:t , . . . , r(K)1:t |qt = 1
)

P(qt = 1)

P
(

r(1)1:t , . . . , r(K)1:t |qt = 0
)

P(qt = 0)
. (12)

If we could rely on the conditional independence, we would reach

Q(k∗)
t =

P
(

r(1)1:t |qt=1
)

P
(

r(1)1:t |qt=0
) . . .

P
(

r(K)1:t |qt=1
)

P
(

r(K)1:t |qt=0
) P(qt=1)

P(qt=0)

=
P
(

qt=1,r(1)1:t

)
P
(

qt=0,r(1)1:t

) . . .
P
(

qt=1,r(K)1:t

)
P
(

qt=0,r(K)1:t

) P(qt=0)
P(qt=1)

K−1

= Q(1)
t . . . Q(K)

t cK−1

(13)

which is a multiplication of the K individual likelihood ratios but with a K− 1 times correction for the
K-times use of the prior probability ratio c. This is an intuitively appealing fusion formula. However,
this formula requires conditional independence of measurements, which regrettably is not a correct
assumption, because in any useful sensor system, measurements at least statistically depend on the
state qt. In many situations, it is reasonable to assume, or to approximate, that observation errors are
conditionally independent; thus,

P
(

r(1)t , . . . , r(K)t |qt

)
=

K

∏
k=1

P
(

r(k)t |qt

)
. (14)

However, Equation (13) requires that past observations, say at t− 1 are also independent. Yet, r(1)t−1

gives information on the state qt−1 and thus influences the probability on r(2)t−1. Nonetheless, though
formally sub-optimum, we explored such fusion f formulas, as in our case, these appeared suitable.
Inspired by Equation (13), a possible fusion function f can be expressed as

Q(k∗)
t = f

(
Q(1)

t . . . Q(K)
t

)
= Q(1)

t . . . Q(K)
t cK−1. (15)

Because transitions between states are balanced, that is, the number of times a person gets into a
room is equal to the number of times the person leaves the room, the ratio of the prior probabilities
can be expressed as

P(qt = 0)a01 = P(qt = 1)a10 ⇒ c =
a10

a01
. (16)

This term can be interpreted as a correction term that prevents the function from double counting
the priors. The algorithmic steps required for the calculation of the joint likelihood ratio can be
summarized as follows (Algorithm 2).

We further explored alternative fusion formulas inspired by the field of pattern recognition,
where it is well known that in many situations, combining the output of several classifiers leads to an
improved classification result. Combining local estimates from K separate nodes can be interpreted as
a problem of combining the output of K classifiers, each providing an estimation of the given class
q (q ∈ {0, 1}) based on the calculation of posterior probabilities given the input measurement vector.
Thus, from a probabilistic point of view, we may straightforwardly conceive a weighted mixture of
individual classifiers, namely

Q(k∗)
t = f

(
Q(1)

t . . . Q(K)
t

)
=

1
∑k wk

K

∑
k=1

wkQ(k)
t (17)
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where the weights wk (k = 1, . . . , K) are interpreted as a probability that reflects the reliability of the
k-th classifier. This interpretation of weights seems to be especially appropriate when defining weights
in terms of the accuracy of individual classifiers [17]. In that way, the influence of each sensor signal is
weighed in the fusion scheme according to the reliability or the accuracy of its estimation.

Algorithm 2: Distributed HMM Algorithm with Correction Term Fusion

1: Initialization: Q(k)
1 =

b1

(
r(k)1

)
π1

b0

(
r(k)1

)
π0

2: while new data exist do
3: Calculate the likelihood ratio:

Q(k)
t =

b1

(
r(k)t

)
b0

(
r(k)t

)
a11Q(k)

t−1 + a01

a10Q(k)
t−1 + a00


4: if |log Qt| ≤ γ do

5: send msgk =
(

Q(k)
t

)
6: end if
7: if msg1, . . . , msgK received do
8: Calculate Q(k∗)

t according to

Q(k∗)
t = Q(1)

t . . . Q(K)
t cK−1

10: Update Q(k)
t ← Q(k∗)

t
11: end if
12: Estimate state according to decision rule

qt = L(Qt) =

{
1, if log Qt > δ

0, if log Qt ≤ δ

13: end while

The algorithmic steps required for the calculation of the joint likelihood ratio can be summarized
as follows (Algorithm 3).

Algorithm 3: Distributed HMM Algorithm with Weighted Averaging Fusion

1: Initialization: Q(k)
1 =

b1

(
r(k)1

)
π1

b0

(
r(k)1

)
π0

2: while new data exist do
3: Calculate the likelihood ratio:

Q(k)
t =

b1

(
r(k)t

)
b0

(
r(k)t

)
a11Q(k)

t−1 + a01

a10Q(k)
t−1 + a00


4: if |log Qt| ≤ γ do

5: send msgk =
(

Q(k)
t

)
6: end if
7: if msg1, . . . , msgK received do
8: Calculate Q(k∗)

t according to

Q(k∗)
t =

1
∑k wk

K

∑
i=1

wkQ(k)
t

10: Update Q(k)
t ← Q(k∗)

t
11: end if
12: Estimate state according to decision rule

qt = L(Qt) =

{
1, if log Qt > δ

0, if log Qt ≤ δ

13: end while
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3. Proof of Concept

This section addresses the prototype that we built to act as a proof-of-concept for the proposed
distributed occupancy detection approach described in Section 2.

3.1. Implementation Details

As shown in Figure 4, the prototype node contains three different parts, interconnected with
each other: a USR sensor model SRF08 from Davatech (https://www.robot-electronics.co.uk/htm/
srf08tech.html), an Arduino Uno board, and a nRF24L01 (http://www.nordicsemi.com/eng/Products/
2.4GHz-RF/nRF24L01) communication module.

The Arduino Uno microcontroller board contains the ATmega328P (http://ww1.microchip.com/
downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.
pdf) 8-bit microcontroller based on AVR RISC architecture operating up to 20 MHz and embedding
2 kB internal SRAM and 32 kB flash program memory. The nRF24L01 is a single chip 2.4 GHz
transceiver with an embedded baseband protocol engine (Enhanced ShockBurst™), designed for
ultra-low power wireless applications. It is designed to operate in the worldwide 2.4 GHz ISM
frequency band with rates from 250 kbit/s up to 2 Mbit/s. The USR sensor interfaces directly with
the analog pins of the microcontroller board. The sampling frequency was set to 1 Hz. Using the
Arduino integrated development environment (IDE), the board can be programmed offline allowing
the uploading of the different fusion algorithms without the use of an external hardware programmer.
To illustrate the performance of a control system based on the DS-HMM architecture, the board was
used to control a simple LED.
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(DS-HMM) architecture.

3.2. Data Log

In order to obtain the real-time system estimation, the estimated likelihood ratio was
communicated to the CoolTerm (http://freeware.the-meiers.org/) serial port terminal application.
The strings were received as serial data and saved in an Access database. Those values where used to
evaluate the system performance in a post-processing step.

3.3. Study Design

We installed the system at a typical student office room at the campus of Eindhoven University of
Technology. The two USR sensors were mounted on the top right and left corners of the computer
screen, respectively. The sensors covered a field of view of approximately 45o in the horizontal plane.
Ranging was set to measure distances up to 150 cm. The actual installation set-up and sensor modalities
used are shown in Figure 5. The desk was occupied by a PhD student who volunteered to participate

https://www.robot-electronics.co.uk/htm/srf08tech.html
https://www.robot-electronics.co.uk/htm/srf08tech.html
http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01
http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
http://freeware.the-meiers.org/
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in the experiment. The participant was asked to maintain her usual working style. In order to obtain
the ground truth, we used the build-in webcam on a Toshiba Satellite Laptop to record user activity.
In a post-processing step, the acquired video recordings were processed to get the actual leave-in and
-out times and to label user activity.

The study was divided in four phases, each lasting for 10 days; so, in total, 40 days were recorded.
Algorithms 1, 2, and 3 were implemented in phases 1, 2, and 3, respectively. During those phases, the
fixed values were used for the transition probability matrix. In the fourth phase of the experiment,
Algorithm 3 was combined with the use of dynamic transition probabilities.Sensors 2019, 19, x FOR PEER REVIEW 12 of 17 

 

 

Figure 5. Photo of the set-up installation. Both sensors were mounted at the top edges of the computer 

screen. A commercial laptop was used to record user activity to obtain the ground truth. 

3.4. Experimental Results 

To experimentally evaluate the performance of the proposed DS-HMM architecture, we carried 

out the series of experiments described in Section 3.3. The achieved results are presented and 

discussed below.  

The most important aspect to investigate is system performance. We focused on lighting control 

as an example that demonstrates the potential reduction in lighting energy consumption. Besides 

optimizing energy consumption, user comfort continues to be the most essential success criterion for 

smart building applications. In order to optimize this tradeoff, we needed to consider appropriate 

performance evaluation metrics. Towards this end, we chose the false negative rate (FNR), i.e., the 

total time that the algorithm wrongly assumed non-presence normalized over the total presence time, 

as a metric that reflects user annoyance (when the appliance turns off during the user’s presence). We 

used the percentage of lighting power consumption compared with the baseline of the manual 

control as a metric that reflects the energy saving potential of the proposed architecture. As the 

manual control, we considered a system where users turn on the lights as soon as they enter the room 

and turn them off when leaving the building but do not do so during short breaks during the 

workday. Figure 6 demonstrates the performance of the tested DS-HMM solution during the 

implementation phases. The accuracy of each algorithm is also depicted. The different points 

correspond to a different choice of presence/absence threshold (𝛿 ∈ {−2, 2}). The communication 

threshold was set to 𝛾 = 1.5. According to our results, all the algorithms appear to be an adequate 

data fusion method, not too far off from an ideal system with unlimited communication. Significant 

energy savings were reported without sacrificing user comfort. The use of dynamic transition 

probabilities significantly improves performance, especially in terms of user annoyance without 

significantly increasing the computational cost. The algorithm was implemented on a simple Arduino 

microcontroller using only 27% of the available program storage space (in comparison with the 

implementation that uses constant transition probabilities, which requires 24% of the available 

storage space). Transmitting part of the history of past observations (Algorithm 1) also shows good 

performance. However, this requires a lot of reprocessing that consumes power and may deteriorate 

response time in a real-time application, especially with the increasing of the number of nodes. It also 

increases the payload of messages. During the second phase of the implementation, energy savings 

appeared to be higher; however, this corresponds to the higher absence of the user and should not be 

ascribed to better performance. This is further indicated by the corresponding accuracy that appears 

to be lower compared with the rest of the fusion algorithms.  

In addition to the energy savings in the generation of light, it is also important to investigate the 

communication requirements. Our approach substantially reduces communication between nodes, 

compared with centralized solutions with unconstrained communication; the communication 

reduction ranges from 85% to 96%, by far more than an order of magnitude. Hence, we may claim 

Figure 5. Photo of the set-up installation. Both sensors were mounted at the top edges of the computer
screen. A commercial laptop was used to record user activity to obtain the ground truth.

3.4. Experimental Results

To experimentally evaluate the performance of the proposed DS-HMM architecture, we carried
out the series of experiments described in Section 3.3. The achieved results are presented and
discussed below.

The most important aspect to investigate is system performance. We focused on lighting control
as an example that demonstrates the potential reduction in lighting energy consumption. Besides
optimizing energy consumption, user comfort continues to be the most essential success criterion for
smart building applications. In order to optimize this tradeoff, we needed to consider appropriate
performance evaluation metrics. Towards this end, we chose the false negative rate (FNR), i.e., the
total time that the algorithm wrongly assumed non-presence normalized over the total presence time,
as a metric that reflects user annoyance (when the appliance turns off during the user’s presence).
We used the percentage of lighting power consumption compared with the baseline of the manual
control as a metric that reflects the energy saving potential of the proposed architecture. As the manual
control, we considered a system where users turn on the lights as soon as they enter the room and
turn them off when leaving the building but do not do so during short breaks during the workday.
Figure 6 demonstrates the performance of the tested DS-HMM solution during the implementation
phases. The accuracy of each algorithm is also depicted. The different points correspond to a different
choice of presence/absence threshold (δ ∈ {−2, 2}). The communication threshold was set to γ = 1.5.
According to our results, all the algorithms appear to be an adequate data fusion method, not too far
off from an ideal system with unlimited communication. Significant energy savings were reported
without sacrificing user comfort. The use of dynamic transition probabilities significantly improves
performance, especially in terms of user annoyance without significantly increasing the computational
cost. The algorithm was implemented on a simple Arduino microcontroller using only 27% of the
available program storage space (in comparison with the implementation that uses constant transition
probabilities, which requires 24% of the available storage space). Transmitting part of the history of past
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observations (Algorithm 1) also shows good performance. However, this requires a lot of reprocessing
that consumes power and may deteriorate response time in a real-time application, especially with the
increasing of the number of nodes. It also increases the payload of messages. During the second phase
of the implementation, energy savings appeared to be higher; however, this corresponds to the higher
absence of the user and should not be ascribed to better performance. This is further indicated by the
corresponding accuracy that appears to be lower compared with the rest of the fusion algorithms.

In addition to the energy savings in the generation of light, it is also important to investigate
the communication requirements. Our approach substantially reduces communication between
nodes, compared with centralized solutions with unconstrained communication; the communication
reduction ranges from 85% to 96%, by far more than an order of magnitude. Hence, we may claim
that the proposed solution is able to achieve satisfactory performance while considering the energy
and communication constraints of battery-powered sensor nodes. In addition, the proposed DS-HMM
architecture shows robustness to the communication limitations imposed by a busy environment with
heavy wireless traffic, such as at a university. Our experimental results indicate that even under a real
channel with realistic channel impairments and packet failures, the algorithm still maintains robust
performance, which makes it an attractive solution for wireless sensor networks (WSNs).
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3.5. Scalability

The ability to arbitrarily scale up the size of a WSN is important for many applications.
This motivated us to test how the accuracy of the distributed solution relates to increasing the number
of nodes. Because no experimental data was available to us for a large number of sensor nodes,
we generated synthetic test data that were statistically representative and at least intuitively plausible.
From our experiments, we obtained a large dataset of USR sensor data that we used as a training set.
Particularly, the temporal correlation of errors has a strong impact. Figure 7 shows the conditional
probability of a sensor error at time t+ i given an error in the previous time instant t. Our experimental
data confirmed our expectation that sensor errors are highly correlated in time, i.e., a sensor that makes
an error at time t has a high probability to also make an error at time t + i. This time correlation is
represented in the synthetic data by bursts of errors, while we kept the underlying process (room
occupancy) as obtained from a real-life process. We generated a series of binary sensor readings
(1 representing presence or 0 representing absence) by maintaining a specific (fixed) average error
probability for both states. We inserted time correlation into the sensor errors by fitting an exponential
distribution to the correlation curve derived from the experimental data. In total, 100 time-series
synthetic datasets were generated for 10 nodes.
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Figure 8 shows the accuracy of the distributed HMM (Algorithm 1) as a function of the number
of collaborating nodes. As expected, increasing the number of nodes increases accuracy. For a small
number of nodes, the performance sharply increases if more nodes contributed, but for larger sizes of
the node population, this effect levels off. Surprising is the limited effect that a second node has, while
the performance increases sharply with the addition of a third node. In fact, a fusion operation on
two nodes with similar accuracy profiles implies that if only one sensor observes presence, the system
may be hesitant to accept this as a shared conclusion. Increasing the number of nodes adds more
trust to what the majority believes. The results are presented for different communication threshold
values (γ) that define the trade-off between accuracy and data exchange. A lower threshold (γ = 1)
achieved higher accuracy, but at the cost of increased communication. When communication was less
frequent (communication threshold γ = 3), we observed larger deviations. The non-monotonicity is a
statistical fluctuation that is more pronounced for a system that too aggressively constrains the number
of transmissions.
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4. Discussion

The simple prototype we built was used to act as an initial proof-of-concept of the feasibility
of the idea. Although the experiment is limited to only two USR sensors, the goal of our work is
to provide a common platform that allows the combination of multiple sensing modalities. In fact,



Sensors 2019, 19, 1006 15 of 17

we expect that system detection performance can be significantly improved by using heterogeneous
sensing modalities, each with different error and reliability profiles capabilities, for example a passive
infrared (PIR) motion sensor that offers high reliability in detecting motion but fails to detect actual
occupancy. It is attractive to complement this with a USR sensor that detects distance (and thus
occupancy) but is vulnerable to environmental lighting fluctuations or/and with an acoustic sensor
that offers non-intrusive recognition, but its performance largely depends on the environment where
this technique is applied. For the latter, detection is more accurate in quiet office buildings than in a
noisy supermarket or a restaurant environment. Moreover, when people keep silent so no acoustic
signal can be collected, these audio-processing algorithms are ineffective.

To further highlight the features of our proposed solution, we provide a comparison table with
existing building occupancy detection mechanisms in the literature (Table 1). These established
approaches include radio-frequency identification (RFID), acoustic recognition, image camera, and
CO2 sensors. RFID and image cameras are not user-friendly in terms of privacy and security and
involve high costs. The detection performance of standalone acoustic recognition or CO2 sensor varies
with environments and suffers from large uncertainty due to temporal noise or fluctuations. Hybrid
solutions that involve the combination of sensing modalities [6,7] offer increased detection performance
while maintaining low cost. Our approach, as described above, allows sensor reliability and accuracy
to be embedded specifically in the data exchanged. However, such centralized approaches require
constant communication between the involved sensors that drains the battery lifetime and congests the
network. In contrast, our proposed solution offers the advantages of high accuracy and low-cost design
while addressing the power consumption (battery lifetime) and data communication requirements of a
wireless sensor node.

Table 1. Occupancy detection mechanisms comparison table.

References Sensing
Modality

Processing
Algorithm Cost Intrusive

Occupancy
Detection
Performance

Communication
Requirements

Centralized (Cloud)
or Decentralized
EDGE

[3,4] RFID SVM Regression
models Low Yes High accuracy Constant

connection Centralized

[2] Image Camera Multivariate
Gaussian Model High Yes High accuracy Constant

connection Centralized

[18] CO2
Threshold on
sensor reading Low No Accuracy varies

by case
Constant
connection Centralized

[19,20] Acoustic
recognition

PCA/LDA
Gaussian
Mixture Model
and HMMs

Low No

Varying with
environment,
failure when
people keep silent

Constant
connection Centralized

[6,7] Hybrid Threshold on
sensor reading Low No

Improved
accuracy with
sensor
collaboration

Constant
connection Centralized

[8,12] USR Radar Centralized
HMM High accuracy Constant

connection Centralized

This work USR, but can
support any type HMM Low No High accuracy Sparse

transmissions Can be decentralized

5. Conclusions

With the proliferation of Internet of Things (IoT) devices and technologies, many applications of
smart building control are becoming realistically feasible. In this context, we introduce a distributed
sensing HMM (DS-HMM) algorithm for occupancy-based control in a smart building environment,
which appears to be a new relatively unexplored research problem. Our distributed architecture uses
sensors that each autonomously run an HMM algorithm to make local estimates on the likelihood
ratio of the user state (presence or absence). The individual sensors communicate (only) according
to a newly proposed efficient communication strategy that is based on the local confidence in the
user state and update their estimates according to a collaborative fusion function. For optimum
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detection, with constrained communication, it neither suffices to send the latest observation nor to share
only the log-likelihood ratio. Nonetheless, we found that the latter performs reasonably close to an
optimum global HMM but is much more attractive for a WSN, as it avoids its excessive communication
requirements. We modeled a non-homogeneous HMM with transition rates that depends on the
time of day, because activity patterns change during the day. In order to confirm the feasibility of
the suggested DS-HMM solution, the entire system was implemented in a simple prototype system
with USR sensors and tested experimentally in a typical office environment. Our results showed a
20–36% reduction in the appliance (mains-powered) energy consumption, compared with the baseline
measurements (manual control), while maintaining user comfort. Although we considered the energy
savings estimations as realistic, consumption may vary for other office settings that include other
installations. While we validated our algorithm with ultrasound sensing, our concept of exchanging
likelihood ratios, with or without trace-back, lends itself well to other sensing modalities to fuse data in
multimodal systems and to allow sensors to even exchange soft-decisions and reliability information.
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