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Abstract: Myoelectric prostheses help amputees to regain independence and a higher quality of life.
These prostheses are controlled by state-of-the-art electromyography sensors, which use a conductive
connection to the skin and are therefore sensitive to sweat. They are applied with some pressure
to ensure a conductive connection, which may result in pressure marks and can be problematic for
patients with circulatory disorders, who constitute a major group of amputees. Here, we present
ultra-low-power digital signal processing algorithms for an insulated EMG sensor which couples
the EMG signal capacitively. These sensors require neither conductive connection to the skin nor
electrolytic paste or skin preparation. Capacitive sensors allow straightforward application. However,
they make a sophisticated signal amplification and noise suppression necessary. A low-cost sensor has
been developed for real-time myoelectric prostheses control. The major hurdles in measuring the EMG
are movement artifacts and external noise. We designed various digital filters to attenuate this noise.
Optimal system setup and filter parameters for the trade-off between attenuation of this noise and
sufficient EMG signal power for high signal quality were investigated. Additionally, an algorithm for
movement artifact suppression, enabling robust application in real-world environments, is presented.
The algorithms, which require minimal calculation resources and memory, are implemented on an
ultra-low-power microcontroller.

Keywords: EMG signal processing; biosignal processing; insulated/capacitive EMG; low power
filtering; myoelectric upper-limb prosthesis

1. Introduction

Electromyography (EMG) is the measurement of electrical potential arising from electrochemical
effects due to muscle contractions. These signals are transmitted via human tissue to the surface of the
skin, where they can be measured by surface EMG electrodes. Areas of application for these sensors
include exoskeletons, diagnostics and myoelectric hand prostheses. The state-of-the-art electrodes in
prostheses use a conductive connection to the skin [1–3]. Numerous EMG systems for myoelectric
hand prostheses with various levels of dexterity have been previously presented [4–6]. However,
in practice, many amputees reject such high-dexterity myoelectric prostheses because they require high
cognitive effort [7]. Many patients prefer a basic hand prosthesis which is robust and easy to handle [8].
The algorithms which we present in this article are designed for a conventional myoelectric hand
prosthesis with two EMG sensors and two degrees of freedom as provided by Otto Bock Healthcare
Products GmbH [2].

In contrast to a conductive electrode, the insulated EMG sensor couples the muscle contraction
signal from the skin to the sensor electronics capacitively. The signal quality in conductive sensing

Sensors 2019, 19, 959; doi:10.3390/s19040959 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19040959
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/19/4/959?type=check_update&version=2


Sensors 2019, 19, 959 2 of 24

depends on the presence of an electrolyte in between the skin and the sensor electrode, which consists
of sweat (dry) or an electrolytic paste (wet). The impedance of the stratum corneum decreases with
time [9,10] at dry electrodes and therefore requires gain level adjustments when exploiting the full
operating range. The conductive sensors often have protruding metal parts, which can cause pressure
marks. These are problematic, especially for patients with circulatory disorders. For these reasons,
we suggest insulated EMG sensors. They have high signal quality immediately after applying the
sensor. No gain level adjustments are necessary due to the sweat independence. Pressure marks
are avoided as flexible sensors were designed; textile sensors are especially comfortable to the skin.
Compared to the conductive measurement principle the capacitive measurement principle has different
requirements and higher effort for the sensor electronics and the signal processing. The electronics for
this highly stable, low-power EMG sensor for real-world applications have already been published by
Roland et al. [11]. Here, we present the associated digital signal processing by an ultra-low-power
microcontroller (µC) embedded in the sensor electronics. The digital signal processing was developed
for a low-level dexterity system with only two electrode sites, which is common in most of the current
commercial upper-limb prostheses [2,12]. However, these algorithms can be adjusted to suit other
applications too.

Numerous publications have suggested optimal cutoff frequencies for EMG bandpass filtering for
conductive EMG sensors. The significant power spectrum of EMG signals ranges from approximately
20–500 Hz [13,14]. Low-frequency noise, such as movement artifacts, occurs predominantly in the
range of 0–20 Hz [15,16]. The recommended cutoff frequency fC for the highpass filter for attenuating
these low-frequency artifacts is within the range of 5–30 Hz for conductive EMG sensors [16–18].
A 400–500 Hz lowpass filter fC is recommended for filtering high-frequency noise while maintaining
EMG signal power [16–18].

Digital filtering realized by programmable µC has various advantages over analog filtering [19].
Active analog filters of second or higher order require many components [20], which must be matched
exactly. Component accuracy and the resulting filter behavior is limited by manufacturing, temperature
and aging tolerances. Providing various analog filters requires several active and passive low-noise
high-precision electronic components, which increase power consumption and cost. One might argue
that analog filters are faster; however, in the case of EMG at a sampling frequency in the kHz-range,
the delay caused by the presented digital signal processing is negligible. The signal delay that is
dominated by the time constant T of the lowpass filters does not depend on the realization of the filter.
Anyway, an analog anti-aliasing filter upstream the analog-to-digital conversion (ADC) to conform
with the Nyquist–Shannon sampling theorem [21] is indispensable. The digital filter algorithms can
simply be adjusted. For example, the notch frequency for the power-line interference can be changed by
one parameter from 50 Hz in Europe to 60 Hz in North America. Furthermore, it allows the real-time
implementation of additional algorithms like artifact suppression or dexterous prostheses control. Such
adjustments require re-engineering and a new design of the sensor electronics at analog signal processing.

In this article, we propose parameters for highpass, comb and lowpass filters for a low-cost,
compact-size and insulated EMG sensor. Moreover, we present high-speed algorithms for rectification
and smoothing of the EMG signal for myoelectric prosthesis control. Movement artifacts and other
noise are considered in the evaluation of the optimal filter parameters to obtain a robust system
for real-world environments. The filters were implemented on an ultra-low-power µC for real-time
signal processing at minimal computational cost. Since the µC does not contain a floating-point unit,
the filter coefficients and signal processing were implemented in fixed-point representation. Hence,
fast calculation by the single-cycle 32 bit hardware multiplier integrated in the µC can be exploited.
Quantization and overflows due to range limits were considered in the filter design.

The digital signal processing should meet the following requirements:

High Signal Quality: A high signal-to-noise ratio (SNR) should be achieved.
Stability: The prosthesis drive should not be activated by movement artifacts or other noise.



Sensors 2019, 19, 959 3 of 24

Efficient Calculation: Digital signal processing must be implemented for real-time operation
such that it minimizes CPU calculation resources.

Short Response Time: Farrell et al. [22] stated that controller delays of more than 100 ms lead to
a decrease in the performance of prosthesis control. The delay introduced by the sensor should be as
short as possible, but certainly less than 100 ms.

Optimized Memory Requirements: Low memory consumption allows the implementation of
additional algorithms that classify hand movements [4,6] or discriminate between contraction EMG
and artifacts [23].

Proportionality: In a conventional myoelectric prosthesis, the gripping speed, respectively the
gripping force, is controlled by the differential signal of two EMG sensors, which is considered to be
proportional to the muscle force. Therefore, the EMG signal must be processed such that the sensor
output signal is proportional to the strength of the muscle contraction.

Co-contraction: When two EMG sensors control the prosthesis, a simultaneous short and strong
contraction of both muscle groups is called co-contraction. The slopes of the rectified and smoothed
signal must be sufficiently steep and the peak amplitude sufficiently high to enable co-contraction.
Co-contraction toggles between different prosthesis functions. In our specific case, it toggles the
prosthesis movement control between open-close and supinate-pronate.

In this article, we first explain the problems at insulated EMG measurement. Second, we describe
the measurement set-up for EMG signal acquisition, followed by the digital signal processing including
comb, lowpass and highpass filtering. Furthermore, we present the filter architectures and their
implementation in C. The digital signal processing in our sensor also includes rectification, smoothing
and a decision algorithm for distinguishing between contraction EMG signal and artifacts. The results
section presents the optimal parameters for the filters as well as their stability and runtime.

2. Problem Definition

The choice of filters for noise that overlap with the EMG frequency range is crucial. The following
noise occurs in biosignal measurements [15]:

2.1. Noise Caused by Electronic Components

Noise caused by electronic components affects the whole frequency range. In the EMG
frequency range, it can only be reduced by selecting low-noise components and circuits in the
measurement set-up.

2.2. High-Frequency Noise

Noise from high-frequency electromagnetic radiation due to mobile phones, WLAN, TV and
electronic components are filtered by an analog lowpass with a cutoff frequency of 1064 Hz [11].
When the analog signal is sampled digitally, this lowpass is indispensable in preventing aliasing.

2.3. Power-Line Interference (PLI)

The power-line frequency with 50 or 60 Hz and its harmonics overlap with the EMG frequency
range (Figure 1). Their amplitudes can exceed the EMG signal significantly. In this contribution,
we filter the power-line frequency at 50 Hz and its harmonics digitally. In addition, 60 Hz comb filters
can be designed in the same way.

According to the EN 50160 standard [24], the power-line frequency is supposed to deviate within
the range of 49.5–50.5 Hz for 99.5% of the time in Europe. For a robust system, these deviations must
be considered when selecting an appropriate comb filter. In this work, we evaluated various filter
designs for PLI suppression while maintaining maximum EMG signal power.
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Figure 1. Qualitative sketch of the power-line frequency and its harmonics.

2.4. Movement Artifacts

In biosignal measurement, low-frequency artifacts (i.e., movement artifacts) are predominantly
in the range of 0–20 Hz [15,16]. Relative movements of the muscle to the EMG sensor generate these
artifacts, for example, at the beginning and at the end of a contraction. In capacitive EMG sensors,
changes in contact pressure change the capacitance between the signal source and the sensing electrode
(i.e., the coupling capacitance) [11]. This leads to asymmetries in differential EMG sensor measurement
and thus to movement artifacts, which can also result from movements of the cable connecting the
electrode to the amplifier. Figure 2a shows a typical artifact in the time domain, measured with
the EMG sensor described in Roland et al. [11] and Figure 2b shows a qualitative sketch in the
frequency domain.
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Figure 2. (a) A typical measured movement artifact in the time domain; (b) qualitative sketch of
a typical movement artifact located in a lower frequency range than the contraction EMG.

The flexible design of the sensor assemblies reduces movement artifacts because they adapt
to the human forearm anatomy. The capacitive measurement principle already leads to a highpass
characteristic [11]. Additionally, we implemented a first-order highpass with a cutoff frequency of
11 Hz in the analog circuit. In this article, we evaluate the choice of the cutoff frequency for the digital
highpass filter for capacitively coupled EMG. A good balance between maintaining the EMG signal
power and damping the movement artifacts must be found.

3. Measurement Set-Up

The digital signal processing was designed for the insulated EMG measurement set-up described
in Roland et al. [11] (Figure 3), which was applied for EMG signal acquisition in this work. Figure 4
shows the application of the measurement set-up to the human forearm, the EMG sensor and the
printed circuit board.

Figure 1. Qualitative sketch of the power-line frequency and its harmonics.

2.4. Movement Artifacts

In biosignal measurement, low-frequency artifacts (i.e., movement artifacts) are predominantly
in the range of 0–20 Hz [15,16]. Relative movements of the muscle to the EMG sensor generate these
artifacts, for example, at the beginning and at the end of a contraction. In capacitive EMG sensors,
changes in contact pressure change the capacitance between the signal source and the sensing electrode
(i.e., the coupling capacitance) [11]. This leads to asymmetries in differential EMG sensor measurement
and thus to movement artifacts, which can also result from movements of the cable connecting the
electrode to the amplifier. Figure 2a shows a typical artifact in the time domain, measured with
the EMG sensor described in Roland et al. [11] and Figure 2b shows a qualitative sketch in the
frequency domain.
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In biosignal measurement, low-frequency artifacts (i.e., movement artifacts) are predominantly
in the range of 0–20 Hz [15,16]. Relative movements of the muscle to the EMG sensor generate these
artifacts, for example, at the beginning and at the end of a contraction. In capacitive EMG sensors,
changes in contact pressure change the capacitance between the signal source and the sensing electrode
(i.e., the coupling capacitance) [11]. This leads to asymmetries in differential EMG sensor measurement
and thus to movement artifacts, which can also result from movements of the cable connecting the
electrode to the amplifier. Figure 2a shows a typical artifact in the time domain, measured with
the EMG sensor described in Roland et al. [11] and Figure 2b shows a qualitative sketch in the
frequency domain.
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Figure 2. (a) A typical measured movement artifact in the time domain; (b) qualitative sketch of
a typical movement artifact located in a lower frequency range than the contraction EMG.

The flexible design of the sensor assemblies reduces movement artifacts because they adapt
to the human forearm anatomy. The capacitive measurement principle already leads to a highpass
characteristic [11]. Additionally, we implemented a first-order highpass with a cutoff frequency of
11 Hz in the analog circuit. In this article, we evaluate the choice of the cutoff frequency for the digital
highpass filter for capacitively coupled EMG. A good balance between maintaining the EMG signal
power and damping the movement artifacts must be found.

3. Measurement Set-Up

The digital signal processing was designed for the insulated EMG measurement set-up described
in Roland et al. [11] (Figure 3), which was applied for EMG signal acquisition in this work. Figure 4
shows the application of the measurement set-up to the human forearm, the EMG sensor and the
printed circuit board.

Figure 2. (a) A typical measured movement artifact in the time domain; (b) qualitative sketch of
a typical movement artifact located in a lower frequency range than the contraction EMG.

The flexible design of the sensor assemblies reduces movement artifacts because they adapt
to the human forearm anatomy. The capacitive measurement principle already leads to a highpass
characteristic [11]. Additionally, we implemented a first-order highpass with a cutoff frequency of
11 Hz in the analog circuit. In this article, we evaluate the choice of the cutoff frequency for the digital
highpass filter for capacitively coupled EMG. A good balance between maintaining the EMG signal
power and damping the movement artifacts must be found.

3. Measurement Set-Up

The digital signal processing was designed for the insulated EMG measurement set-up described
in Roland et al. [11] (Figure 3), which was applied for EMG signal acquisition in this work. Figure 4
shows the application of the measurement set-up to the human forearm, the EMG sensor and the
printed circuit board.
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Figure 3. Block diagram outlining the insulated EMG measurement set-up. First, the EMG signal
coupled from the human body is amplified and filtered by the analog circuit. In the µC, the signal is
then digitally filtered and provided at the sensor system output.
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Figure 4. (a) Set-up of the capacitive EMG measurement system to control a myoelectric upper-limb
prosthesis. The EMG sensor is fixed to the human forearm by a cuff; (b) the flexible sensor is attached
to the circuit board; (c) front side of the circuit board.

3.1. Interface to Human Body

Due to the insulating layer, the flexible sensing electrode has no conductive connection to the skin.
This sensor is a multilayer construct made of textiles, foils or a flex circuit board. In this work, the
measurements were performed with the foil sensor. The sensor area is shielded with a common-mode
shield to increase the common-mode rejection ratio and to protect against noise from the environment.
A small conductive reference made of textile connects the sensor electronics to the electrical potential
of the body. This reference keeps the common-mode potential of the sensor input amplifier within
operating range.

For the measurements presented in this article, the EMG sensor was placed at the musculus
extensor digitorum, at one third of the distance between the epicondylus lateralis and the ulna. This
muscle was selected for the experiments as a large proportion of upper-limb amputations are at
trans-radial level or are farther distal [25–28].

3.2. Analog Circuit

The analog signal, which is coupled via the EMG sensing electrode, is amplified by the
instrumentation amplifier by a gain of 26. The bandpass is formed by a first-order analog highpass and
lowpass filter. The highpass has a cutoff frequency of 11 Hz to attenuate the low-frequency noise, and
the lowpass has a cutoff frequency of 1064 Hz to filter the high-frequency noise. The signal is further
amplified by the µC’s internal operational amplifiers (OpAmps) by software-programmable gain. This
gain factor is varied to exploit the full operating range at the ADC input. For this work, the gain of
the internal OpAmps was varied in the range of 4 to 128, depending on the experiment (noise for
comb measurements 128, EMG signal and noise for signal to noise ratio measurements 128, EMG for
highpass measurements 32, EMG for comb measurements 16, artifacts for highpass measurements
4) [11].

Figure 3. Block diagram outlining the insulated EMG measurement set-up. First, the EMG signal
coupled from the human body is amplified and filtered by the analog circuit. In the µC, the signal is
then digitally filtered and provided at the sensor system output.
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3.1. Interface to Human Body

Due to the insulating layer, the flexible sensing electrode has no conductive connection to the skin.
This sensor is a multilayer construct made of textiles, foils or a flex circuit board. In this work, the
measurements were performed with the foil sensor. The sensor area is shielded with a common-mode
shield to increase the common-mode rejection ratio and to protect against noise from the environment.
A small conductive reference made of textile connects the sensor electronics to the electrical potential
of the body. This reference keeps the common-mode potential of the sensor input amplifier within
operating range.

For the measurements presented in this article, the EMG sensor was placed at the musculus
extensor digitorum, at one third of the distance between the epicondylus lateralis and the ulna. This
muscle was selected for the experiments as a large proportion of upper-limb amputations are at
trans-radial level or are farther distal [25–28].

3.2. Analog Circuit

The analog signal, which is coupled via the EMG sensing electrode, is amplified by the
instrumentation amplifier by a gain of 26. The bandpass is formed by a first-order analog highpass and
lowpass filter. The highpass has a cutoff frequency of 11 Hz to attenuate the low-frequency noise, and
the lowpass has a cutoff frequency of 1064 Hz to filter the high-frequency noise. The signal is further
amplified by the µC’s internal operational amplifiers (OpAmps) by software-programmable gain. This
gain factor is varied to exploit the full operating range at the ADC input. For this work, the gain of
the internal OpAmps was varied in the range of 4 to 128, depending on the experiment (noise for
comb measurements 128, EMG signal and noise for signal to noise ratio measurements 128, EMG for
highpass measurements 32, EMG for comb measurements 16, artifacts for highpass measurements
4) [11].

Figure 4. (a) Set-up of the capacitive EMG measurement system to control a myoelectric upper-limb
prosthesis. The EMG sensor is fixed to the human forearm by a cuff; (b) the flexible sensor is attached
to the circuit board; (c) front side of the circuit board.

3.1. Interface to Human Body

Due to the insulating layer, the flexible sensing electrode has no conductive connection to the skin.
This sensor is a multilayer construct made of textiles, foils or a flex circuit board. In this work, the
measurements were performed with the foil sensor. The sensor area is shielded with a common-mode
shield to increase the common-mode rejection ratio and to protect against noise from the environment.
A small conductive reference made of textile connects the sensor electronics to the electrical potential
of the body. This reference keeps the common-mode potential of the sensor input amplifier within
operating range.

For the measurements presented in this article, the EMG sensor was placed at the musculus
extensor digitorum, at one third of the distance between the epicondylus lateralis and the ulna. This
muscle was selected for the experiments as a large proportion of upper-limb amputations are at
trans-radial level or are farther distal [25–28].

3.2. Analog Circuit

The analog signal, which is coupled via the EMG sensing electrode, is amplified by the
instrumentation amplifier by a gain of 26. The bandpass is formed by a first-order analog highpass
and lowpass filter. The highpass has a cutoff frequency of 11 Hz to attenuate the low-frequency noise,
and the lowpass has a cutoff frequency of 1064 Hz to filter the high-frequency noise. The signal is
further amplified by the µC’s internal operational amplifiers (OpAmps) by software-programmable
gain. This gain factor is varied to exploit the full operating range at the ADC input. For this work,
the gain of the internal OpAmps was varied in the range of 4 to 128, depending on the experiment
(noise for comb measurements 128, EMG signal and noise for signal to noise ratio measurements
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128, EMG for highpass measurements 32, EMG for comb measurements 16, artifacts for highpass
measurements 4) [11].

3.3. Analog-to-Digital Conversion (ADC)

The ADC samples and converts analog signals to digital values. The embedded ADC is configured
to extend the default 12-bit resolution by accumulation and averaging to 16 bits. When accumulating
64 samples, the result is right-shifted automatically by two bits to fit the 16-bit register size. To this
end, the resolution was increased from 12- to 16-bit precision and noise performance was improved
by averaging four samples. In order to be deterministic and synchronous with the digital signal
processing (DSP), the ADC result is read and a new ADC conversion is started by the Timer/Counter
TC0 callback routine as described in Section 3.4.1.

3.4. Digital Signal Processing (DSP)

For DSP, we employed the ATSAML21E18B [29] from Microchip Technology Inc. (Chandler, AZ,
USA) This is an ultra-low-power µC with a 32 bit ARM R© Cortex R©-M0+ processor with a maximum
clock frequency of 48 MHz, 256 kB flash and 32 kB SRAM main memory. For our insulated EMG
sensor, the 32 pin version was selected for easy prototyping of the circuit board. In the test set-up, the
clock frequency was set in the range of 2 MHz–48 MHz. The controller has a 32 bit hardware multiplier,
but no hardware divider and no floating-point unit on board. Figure 5 shows a block diagram of the
DSP path. A previous version of the digital EMG signal processing with an ATSAML21 was published
by Roland et al. [30].
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via the digital-to-analog converter (DAC) or transmitted via the Bluetooth Low Energy (BLE) module.

3.4.1. Cyclic Program Processing

Deterministic and cyclic program processing for the DSP functionality is realized by a timer
interrupt. The onboard Timer/Counter TC0 is configured to invoke a callback routine, which executes
the DSP algorithm. This cycle defines the DSP sampling rate fS.

Larivière et al. [31] and Li et al. [32] state that a sampling frequency of 400–500 Hz is sufficient for
EMG measurement. In contrast, Enderle [33] suggests to sample the measurement signal at frequencies
at at least ten times the highest signal frequency. High signal quality was desired to evaluate the
optimal filter parameters, therefore, the EMG sampling rate fS was chosen at 10 kHz in this work.
A high sampling frequency avoids the reflection of high frequency noise, which is not sufficiently
attenuated by the anti-aliasing filter, to the EMG frequency range. The proposed filter architectures and
cutoff frequencies can correspondingly be applied at lower sampling rates, which allows a reduction
of the clock frequency. In Section 4.8, we show the effects of reducing the sampling frequency.

3.4.2. Fixed-Point Representation

q15_t, q31_t and q63_t are standard data types for fixed-point representation in C. Fixed-points,
as described by ARM Ltd. (Cambridge, UK) [34], are implemented for the DSP. They resemble an
integer data type, and their bit pattern must be used correctly. The coefficients are multiplied by
quantization factors for correct scaling of the fixed-point values. Calculations with standard Q1.15

Figure 5. Block diagram of the DSP path, 50 Hz comb filter followed by a highpass, a lowpass and
a decision algorithm that handles the movement artifacts. Rectification and smoothing are required for
controlling the prosthesis drive. For experiments, the signal can also be connected to an oscilloscope
via the digital-to-analog converter (DAC) or transmitted via the Bluetooth Low Energy (BLE) module.

3.4.1. Cyclic Program Processing

Deterministic and cyclic program processing for the DSP functionality is realized by a timer
interrupt. The onboard Timer/Counter TC0 is configured to invoke a callback routine, which executes
the DSP algorithm. This cycle defines the DSP sampling rate fS.

Larivière et al. [31] and Li et al. [32] state that a sampling frequency of 400–500 Hz is sufficient for
EMG measurement. In contrast, Enderle [33] suggests to sample the measurement signal at frequencies
at at least ten times the highest signal frequency. High signal quality was desired to evaluate the
optimal filter parameters, therefore, the EMG sampling rate fS was chosen at 10 kHz in this work.
A high sampling frequency avoids the reflection of high frequency noise, which is not sufficiently
attenuated by the anti-aliasing filter, to the EMG frequency range. The proposed filter architectures and
cutoff frequencies can correspondingly be applied at lower sampling rates, which allows a reduction
of the clock frequency. In Section 4.8, we show the effects of reducing the sampling frequency.
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3.4.2. Fixed-Point Representation

q15_t, q31_t and q63_t are standard data types for fixed-point representation in C. Fixed-points,
as described by ARM Ltd. (Cambridge, UK) [34], are implemented for the DSP. They resemble an
integer data type, and their bit pattern must be used correctly. The coefficients are multiplied by
quantization factors for correct scaling of the fixed-point values. Calculations with standard Q1.15
variables result in fixed-points with deviating bit pattern; for instance, a Q2.15 is generated when two
Q1.15 variables are added. Therefore, the programmer must implement the data type with the correct
bit pattern while considering truncation and overflow or saturation.

The numerical values must be scaled such that the full operating range is exploited while
overflows are prevented. When calculating with fixed-point data type, the µC processor uses integer
numbers, and thus the high performance of the integrated single-cycle hardware multiplier of the
32 bit ARM processor can be exploited. Quantization and overflows are taken into account in the filter
design. To ensure stability after quantization, the poles of the quantized coefficients were investigated.

3.4.3. Comb Filter

The comb filter was designed as a highpass filter with a sampling frequency of 50 Hz, which
is the frequency to be filtered ffilt. The amplitude spectrum is mirrored at ffilt/2 according to the
Nyquist–Shannon sampling theorem [21] and it is identical at its harmonics, which leads to a comb
filter behavior. The name of the comb filter (1–7 Hz) is derived from the highpass cutoff frequency fC
used to design the filter. Accordingly, the comb filter cutoff frequencies around 50 Hz are in the range
of 43–49 Hz and 51–57 Hz. This frequency characteristic is replicated at the harmonics of 50 Hz.

In this work, we considered applying Bessel [35], Butterworth [36], Chebyshev [37] and Elliptic [38]
filters. Butterworth and Chebyshev filters were implemented, as they provide a good balance between
low ringing and overshoot and a steep roll-off. The Bessel and the Elliptic filters were not implemented
because the former has low roll-off and the latter tends to ring and overshoot.

The filter was designed with the Matlab R© FDA filter tool [39] by first determining the filter zeros,
poles and gain for an analog lowpass. These were then transformed into state-space form, where the
lowpass can be converted to the desired filter behavior, such as highpass, bandpass or bandstop. By
bilinear transformation [40], the analog filter was transformed into a digital filter and then converted
back to zero-pole gain form. The filter coefficients determined were floating-point numbers (Table 1).
Additionally, a third-order finite impulse response (FIR) filter which enables fast calculation was
implemented for comparison. To this end, the frequency-independent scaling due to the filters was
compensated for equal passband amplification. However, in the final implementation, this scaling
does not need to be compensated at this point as long as the signal remains within value range of the
fixed-point variable.

Table 1. Floating-point comb filter coefficients.

Filter a[0] a[200] a[400] a[600] b[0] b[200] b[400] b[600]

1 Hz Che 1 −1.8278 0.8501 - 1 −2 1 -
3 Hz Che 1 −1.4449 0.6186 - 1 −2 1 -
5 Hz Che 1 −1.0531 0.4665 - 1 −2 1 -
7 Hz Che 1 −0.6680 0.3730 - 1 −2 1 -
1 Hz But 1 −1.8227 0.8372 - 1 −2 1 -
3 Hz But 1 −1.4755 0.5869 - 1 −2 1 -
5 Hz But 1 −1.1430 0.4128 - 1 −2 1 -
7 Hz But 1 −0.8252 0.2946 - 1 −2 1 -
3rd order 1 0 0 0 1 −0.5 −0.25 −0.25

The filter frequency f f ilt = 50 Hz corresponds to a 20 ms time period, which equals 200 samples at
the EMG signal sampling rate fS = 10 kHz. Figure 6 shows the transfer function
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GCOMB[z] =
COMBout[z]
ADCsignal [z]

=
b[0] + b[200]z−200 + b[400]z−400

a[0] + a[200]z−200 + a[400]z−400 , (1)

which considers the quantization effects.
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Figure 6. (a) comb filter transfer function showing the passband behavior (linear y-axis); (b) magnification
of comb filter transfer function with quantization effects showing the stop-band behavior (y-axis in dB).

3.4.4. Comb Filter Evaluation

For the comb evaluation, various comb filters were implemented on the µC and assessed in
a standardized scenario. Two test subjects were measured three times each with contracted and relaxed
muscle. The measurements were repeated for all comb implementations. The amplitude at the DAC,
to which the highpass output was applied, was measured with an oscilloscope at a 10 kHz sampling
rate. These measurements were examined for the ability to attenuate PLI while maintaining EMG
signal power.

3.4.5. Comb Filter Implementation

The comb filter was implemented in C as an infinite impulse response (IIR) filter in direct
form II (Figure 7), for which only one center array was required. The center array, with length
= 200 f ilterorder + 1, is a ring buffer [41], so the entries do not need to be shifted at each iteration. For
addressing the ring buffer, a pointer array with a length of f ilterorder + 1 is implemented.

This IIR filter has coefficients in a Q2.10 format, and they are implemented as a 16-bit fixed-point
in Q6.10 format. The input has Q1.15 format. The coefficients and the input signal are multiplied. This
intermediate result is stored in a 64-bit internal accumulator in Q39.25 format. Additions can therefore
be executed without the risk of overflows while preserving full precision. The resulting center in Q5.25
format is then right-shifted by 10 bits, thus removing the least significant bits, and stored in a 32 bit
fixed-point in Q17.15 format. The center for the second-order filters is calculated by

center[k] = (a[0]ADCsignal − a[200]center[k− 200]− a[400]center[k− 400])� 10. (2)

Figure 6. (a) Comb filter transfer function showing the passband behavior (linear y-axis); (b) magnification
of comb filter transfer function with quantization effects showing the stop-band behavior (y-axis in dB).

3.4.4. Comb Filter Evaluation

For the comb evaluation, various comb filters were implemented on the µC and assessed in
a standardized scenario. Two test subjects were measured three times each with contracted and relaxed
muscle. The measurements were repeated for all comb implementations. The amplitude at the DAC,
to which the highpass output was applied, was measured with an oscilloscope at a 10 kHz sampling
rate. These measurements were examined for the ability to attenuate PLI while maintaining EMG
signal power.

3.4.5. Comb Filter Implementation

The comb filter was implemented in C as an infinite impulse response (IIR) filter in direct
form II (Figure 7), for which only one center array was required. The center array, with length
= 200 f ilterorder + 1, is a ring buffer [41], so the entries do not need to be shifted at each iteration. For
addressing the ring buffer, a pointer array with a length of f ilterorder + 1 is implemented.

This IIR filter has coefficients in a Q2.10 format, and they are implemented as a 16-bit fixed-point
in Q6.10 format. The input has Q1.15 format. The coefficients and the input signal are multiplied. This
intermediate result is stored in a 64-bit internal accumulator in Q39.25 format. Additions can therefore
be executed without the risk of overflows while preserving full precision. The resulting center in Q5.25
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format is then right-shifted by 10 bits, thus removing the least significant bits, and stored in a 32 bit
fixed-point in Q17.15 format. The center for the second-order filters is calculated by

center[k] = (a[0]ADCsignal − a[200]center[k− 200]− a[400]center[k− 400])� 10. (2)

In the next step, the output is calculated from the 32-bit (Q17.15 format) center array by
multiplications with the Q2.10 format coefficients. Again, a 64 bit internal accumulator eliminates
the risk of overflows and preserves full precision. When these Q7.25 fixed-points are added up three
times, a Q9.25 format is generated. This intermediate result is truncated again by removing the 10 least
significant bits and generating a Q9.15 format. This is saturated to a Q1.15, which does not affect the
contraction EMG, as it does not exceed the value range of the fixed-point variable; however, artifacts
might exceed the value range. The Q1.15 output, which is stored as a 16 bit fixed-point variable, is
calculated by

COMBout = (b[0]center[k] + b[200]center[k− 200] + b[400]center[k− 400])� 10 . (3)
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Figure 7. Signal flow graph of a second-order IIR direct form II filter realization, with the numerators b
and the denominators a. Only one storage array, center, is required.

Comb Filter Runtime

The runtime of the comb filter was measured with an oscilloscope [42]. For this purpose, only the
comb filter function was implemented; its start and end are indicated by a digital output signal change.

3.4.6. Highpass Filter

The highpass filter attenuates low-frequency artifacts, which are described in Section 2.4.
We evaluated which filter characteristics are appropriate for insulated EMG sensors. To this end,

we designed second-order Chebyshev and Butterworth IIR filters. The sampling frequency fS was
set to 10 kHz and the cutoff frequency fC varied from 20 Hz to 100 Hz with a 10 Hz iteration, which
resulted in the coefficients listed in Table 2.

The numerators for all highpass filters are:

b =
[
1 −2 1

]
. (4)

As these coefficients are implemented in fixed-point format, the denominators and numerators are
scaled and truncated. Figure 8 shows the transfer function for the highpass with the quantized coefficients:

GHP[z] =
HPout[z]
HPin[z]

=
b[0] + b[1]z−1 + b[2]z−2

a[0] + a[1]z−1 + a[2]z−2 . (5)

Figure 7. Signal flow graph of a second-order IIR direct form II filter realization, with the numerators b
and the denominators a. Only one storage array, center, is required.

Comb Filter Runtime

The runtime of the comb filter was measured with an oscilloscope [42]. For this purpose, only the
comb filter function was implemented; its start and end are indicated by a digital output signal change.

3.4.6. Highpass Filter

The highpass filter attenuates low-frequency artifacts, which are described in Section 2.4.
We evaluated which filter characteristics are appropriate for insulated EMG sensors. To this end,

we designed second-order Chebyshev and Butterworth IIR filters. The sampling frequency fS was
set to 10 kHz and the cutoff frequency fC varied from 20 Hz to 100 Hz with a 10 Hz iteration, which
resulted in the coefficients listed in Table 2.

The numerators for all highpass filters are:

b =
[
1 −2 1

]
. (4)



Sensors 2019, 19, 959 10 of 24

As these coefficients are implemented in fixed-point format, the denominators and numerators are
scaled and truncated. Figure 8 shows the transfer function for the highpass with the quantized coefficients:

GHP[z] =
HPout[z]
HPin[z]

=
b[0] + b[1]z−1 + b[2]z−2

a[0] + a[1]z−1 + a[2]z−2 . (5)

Table 2. Floating-point highpass filter coefficients.

Filter a[0] a[1] a[2] b[0] b[1] b[2]

20 Hz Che 1 −1.9836 0.9839 1 −2 1
30 Hz Che 1 −1.9754 0.9759 1 −2 1
40 Hz Che 1 −1.9664 0.9674 1 −2 1
50 Hz Che 1 −1.9580 0.9596 1 −2 1
60 Hz Che 1 −1.9496 0.9518 1 −2 1
70 Hz Che 1 −1.9418 0.9447 1 −2 1
80 Hz Che 1 −1.9333 0.9370 1 −2 1
90 Hz Che 1 −1.9247 0.9294 1 −2 1

100 Hz Che 1 −1.9168 0.9225 1 −2 1
20 Hz But 1 −1.9824 0.9825 1 −2 1
30 Hz But 1 −1.9733 0.9737 1 −2 1
40 Hz But 1 −1.9645 0.9651 1 −2 1
50 Hz But 1 −1.9556 0.9565 1 −2 1
60 Hz But 1 −1.9467 0.9481 1 −2 1
70 Hz But 1 −1.9378 0.9397 1 −2 1
80 Hz But 1 −1.9289 0.9314 1 −2 1
90 Hz But 1 −1.9201 0.9231 1 −2 1
100 Hz But 1 −1.9112 0.9150 1 −2 1
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Figure 8. Transfer functions with quantization effects included. (a) Chebyshev highpass filter;
(b) Butterworth highpass filter.

Highpass Filter Evaluation

To determine the optimal choice of filter characteristic and fC, we recorded EMG signals from
three subjects both at the left and at the right arm. A 50 Hz comb filter was implemented at the µC
for the measurements, but no highpass filter was implemented for the evaluation. Three contraction
and three artifact signals were recorded at each arm of each subject. Each measurement lasted 10 s,
but only 8 s were evaluated because the on-set of the contraction was not considered. The artifacts
were created by mechanical interferences, which might occur in real-world environments, such as
tapping, shifting or lifting of the sensor. By using these artifacts for the filter parameter evaluation,
the resulting system will be robust against this noise. The entire 10 s of the artifacts were evaluated.
The oscilloscope [42] was set to a sampling rate of 10 kHz.

The evaluation was performed in Matlab R© [39]. To this end, the filtering was carried out such that
the µC implementation was represented. The coefficients, the measurement values, the intermediate
results and the final results were quantized and truncated as in the controller. Furthermore, the limits
of the variable sizes were considered in the filtering to prevent overflows.

Based on the root mean square value, we calculated the signal loss in % for all the contraction
EMG and the artifact measurements for the different filters. The differences between artifact- and EMG
signal losses were calculated, as the maximum value indicates an optimal trade-off.

Figure 8. Transfer functions with quantization effects included. (a) Chebyshev highpass filter;
(b) Butterworth highpass filter.

Highpass Filter Evaluation

To determine the optimal choice of filter characteristic and fC, we recorded EMG signals from
three subjects both at the left and at the right arm. A 50 Hz comb filter was implemented at the µC
for the measurements, but no highpass filter was implemented for the evaluation. Three contraction
and three artifact signals were recorded at each arm of each subject. Each measurement lasted 10 s,
but only 8 s were evaluated because the on-set of the contraction was not considered. The artifacts
were created by mechanical interferences, which might occur in real-world environments, such as
tapping, shifting or lifting of the sensor. By using these artifacts for the filter parameter evaluation,
the resulting system will be robust against this noise. The entire 10 s of the artifacts were evaluated.
The oscilloscope [42] was set to a sampling rate of 10 kHz.

The evaluation was performed in Matlab R© [39]. To this end, the filtering was carried out such that
the µC implementation was represented. The coefficients, the measurement values, the intermediate
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results and the final results were quantized and truncated as in the controller. Furthermore, the limits
of the variable sizes were considered in the filtering to prevent overflows.

Based on the root mean square value, we calculated the signal loss in % for all the contraction
EMG and the artifact measurements for the different filters. The differences between artifact- and EMG
signal losses were calculated, as the maximum value indicates an optimal trade-off.

The EMG signal was evaluated in the frequency range from 40 to 600 Hz to consider contraction
EMG power, but no low-frequency noise. The choice of the 600 Hz had a negligible impact on the
results as long as it exceeded the main EMG power frequency range.

Highpass Filter Implementation

The highpass with the maximum difference between artifact signal loss and EMG signal loss was
implemented in direct form II (Figure 7) at the µC. The bit pattern of the fixed-point data type of the
input, coefficients, intermediate results and output is equivalent to the comb filter implementation in
Section 3.4.5. The implementation was done according to

center[k] = (a[0]HPIN [k]− a[1]center[k− 1]− a[2]center[k− 2])� 10 , (6)

HPout[k] = (b[0]center[k] + b[1]center[k− 1] + b[2]center[k− 2])� 10 . (7)

Highpass Filter Runtime

The highpass filter runtime was calculated in the same way as the comb filter runtime (see
Section “Comb Filter Runtime”).

3.4.7. Lowpass Filter

Two lowpass filters are applied in the DSP. One eliminates the high frequency noise after the
highpass, and the other one is applied for smoothing to get a DC output signal, which is proportional
to the muscle contraction intensity to control the prosthesis drive.

We designed a first-order IIR filter (first-order lag element) with the transfer function:

GLP[z] =
Y[z]
U[z]

=
b[0]

a[0] + a[1]z-1 (8)

with the input U[z] and the output Y[z].
This lowpass filter was designed such that it requires only one storage variable. Therefore,

the filter coefficients are described with the parameter c as follows:

a = [1,−c] , (9)

b = [c] . (10)

The coefficients a[1] and b[0] are selected with equivalent absolute values to facilitate the
calculation, as only one multiplication is required:

y[k] = (u[k] + y[k− 1])c (11)

with the preliminary output y[k], the input u[k] and c as the coefficient.
The behavior of first-order lag elements is adapted by the time constant T or the cutoff frequency

fC, which relate to the parameter c at this lowpass as follows:

T =
c∆t

1− c
=

1
2π fC

, (12)

fC =
1− c

c2π∆t
. (13)
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Hence, the coefficient c is calculated according to:

c =
1

1 +
∆t
T

=
1

1 + 2π fC∆t
(14)

with the sampling time

∆t =
1
f S

. (15)

The filter introduces a scaling

S = c(1 +
T
∆t

) , (16)

which is compensated for by a shift of the preliminary output before being passed to the next signal
processing stage:

LPOUT [k] = y[k]� round(log2(S)). (17)

Figure 9 shows the resulting transfer function in the frequency domain gLP[f ] and the transfer
function including a shift for scaling. Note that compensation for the scaling does not necessarily
have to be implemented directly after the lowpass filter. A required shift can be combined with other
multiplications or shift operations.
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Lowpass Filter Implementation

For the µC implementation, the preliminary output y[k] was calculated according to Equation (11).
Only one addition, multiplication and shift are required at each sample.

The preliminary output y[k] was implemented as a 64-bit fixed-point variable in C. The input u[k]
(Q1.15) and the coefficient c (Q1.10) were implemented as 16-bit fixed-point variables. The result is
right-shifted by 10 bits at each sample step, thus removing the 10 least significant bits. The lowpass
output LPOUT [k] is implemented as a Q1.15 variable.

In the lowpass filter after the highpass, no saturation was implemented for y[k] and LPOUT [k],
since the EMG signal is distributed across the operating range (no clipping) and therefore does not
cause overflows. For artifacts, which may cause clipping at the limits of the value range, overflows
may occur. As the prosthesis drive is turned off for artifacts in any case, these overflows are tolerated.

For filtering the signal after the highpass filter, fC was set to 531 Hz, which results in a c of 0.75.
y[k] was right-shifted by one bit to calculate the output LPOUT [k]. In the lowpass for smoothing, the fC
was set to 3.1 Hz (c = 0.9981) and the signal was right-shifted by eight bits.

Lowpass Filter Runtime

The measurement of the runtime is described in Section “Comb Filter Runtime”. The runtime
of (i) the described lowpass filter with fixed-point data type was compared to (ii) an implementation
with fixed-point data type in direct form II (Figure 7) and (iii) an implementation with floating-point
data type in direct form II.
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scaling of the preliminary output to prevent overflows in the implementation.

Lowpass Filter Implementation

For the µC implementation, the preliminary output y[k] was calculated according to Equation (11).
Only one addition, multiplication and shift are required at each sample.

The preliminary output y[k] was implemented as a 64-bit fixed-point variable in C. The input u[k]
(Q1.15) and the coefficient c (Q1.10) were implemented as 16-bit fixed-point variables. The result is
right-shifted by 10 bits at each sample step, thus removing the 10 least significant bits. The lowpass
output LPOUT [k] is implemented as a Q1.15 variable.

In the lowpass filter after the highpass, no saturation was implemented for y[k] and LPOUT [k],
since the EMG signal is distributed across the operating range (no clipping) and therefore does not
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cause overflows. For artifacts, which may cause clipping at the limits of the value range, overflows
may occur. As the prosthesis drive is turned off for artifacts in any case, these overflows are tolerated.

For filtering the signal after the highpass filter, fC was set to 531 Hz, which results in a c of 0.75.
y[k] was right-shifted by one bit to calculate the output LPOUT [k]. In the lowpass for smoothing, the fC
was set to 3.1 Hz (c = 0.9981) and the signal was right-shifted by eight bits.

Lowpass Filter Runtime

The measurement of the runtime is described in Section “Comb Filter Runtime”. The runtime
of (i) the described lowpass filter with fixed-point data type was compared to (ii) an implementation
with fixed-point data type in direct form II (Figure 7) and (iii) an implementation with floating-point
data type in direct form II.

(i) A first-order IIR filter with fixed-point data type as designed in Section 3.4.7.
(ii) A first-order IIR filter was implemented with fixed-point coefficients in direct form II (Figure 7)

for a cutoff frequency fC of 3.1 Hz. In contrast to the presented architecture, this implementation
requires more arithmetic steps. The center is a 32-bit array and the coefficients, input and output are
16-bit fixed-point variables.

(iii) For the floating-point implementation, a first-order IIR filter was designed and implemented
in C. The fC was set to 3.1 Hz, which is equivalent to the smoothing fC. The input, the coefficients, the
center array of the direct form II implementation and the output are 32-bit floating-point numbers
(float32_t). The value range of the variables was chosen such that overflows are prevented.

(iv) Additionally, a FIR filter with floating-point coefficients (float32_t) was designed and
implemented in C. The input, center array and output are also in 32-bit floating-point format. The filter
wase designed with order 5, and the fC was set to 3.1 Hz.

(v) Same filter as (iv) with filter order 8.
The floating-point filters are not described in more detail, as they were implemented only for the

runtime comparison.

3.4.8. Rectification and Smoothing

The EMG signal is rectified and smoothed to control the prosthesis drive.
Linear rectification

rectout,linear[k] = abs(rectin[k]) (18)

and squared rectification

rectout,squared[k] = rectin[k]2 (19)

were considered in this work. A combination of these two would be possible to combine their behavior,
but, due to its higher calculation effort, it was not implemented.

After rectification, the signal is limited to prevent overflows and keep the signal within a defined
operating range. Due to this limit, the signal returns faster to amplitudes below the activation threshold
after a contraction.

Smoothing is achieved with the lowpass filter ( fC = 3.1 Hz) as described in Section 3.4.7.
After smoothing, the signal is right-shifted by eight bits. An offset of 113 is added, which

corresponds to 91 mV. The output signal to the prosthesis drive will be proportional to the muscle
contraction as described in the Introduction.

Rectification and Smoothing Runtime

For the runtime calculation, see Section “Comb Filter Runtime”.
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3.4.9. Decision Algorithm

The decision algorithm is not considered in detail in this article, as it has already been described
by Roland et al. [23].

Prostheses drive activation by movement artifacts that have not been filtered sufficiently by
the highpass is one of the major problems in myoelectric prosthesis control. This has to be avoided
to the greatest feasible extent. For this reason, a real-time decision algorithm was implemented.
The short-time Fourier transform (STFT) of signal windows is calculated in the µC; these windows
overlap in time for fast decisions by the algorithm. A compromise between good frequency and
good time resolution must be found. Narrow STFT windows lead to a good time resolution but
poor frequency resolution, and vice versa. The algorithm decides whether the signal is an artifact or
a contraction, which results in disabling or activation of the prosthesis drive. The amplitude spectrum
of a reference contraction is determined by an automatic calibration procedure and stored in the
non-volatile memory on the µC. Frequency bands of the current STFT signal are compared with the
reference amplitude spectrum. The difference between reference and current signal is calculated for
each frequency band, and then the sum of these differences over the frequency bands is computed
(gray area in Figure 10). When this sum exceeds a predefined threshold, the prosthesis drive is disabled
to avoid erroneous activation.
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3.5. Output

For evaluation of the measurement set-up, the digitally filtered signal can be measured at the
DAC with an oscilloscope [42], or the digital signal can be transmitted to a PC via Bluetooth Low
Energy (BLE). In real-world applications, the filtered, rectified and smoothed signal is passed on to the
prosthesis drive via the 12-bit digital-to-analog converter (DAC). The DAC is configured to use the
analog supply voltage as internal reference voltage resulting in a conversion range between ground
(0 V) and analog supply voltage (3.3 V). A new conversion starts as soon as a new value is loaded into
the DAC data register and takes 24 clock cycles.

3.6. Signal Quality Dependent on DSP Sampling Frequency

Above, the filter evaluation was carried out at a 10 kHz DSP sampling frequency. In order to
assess the influence on the signal quality and power consumption, the DSP sampling frequency was
varied in the range from 500 Hz up to 10 kHz. The ADC settings remained unchanged throughout
all measurements, and 64 ADC samples were measured per DSP sampling period (tS = 1/ fS). The
system clock frequency as well as the DSP sampling frequency were modified according to Section 4.8.
The filter parameters were adjusted to the respective DSP sampling frequency. The signal used for the
calculation of the SNR was measured with the subjects compressing an adjustable hand grip exerciser
allowing an adjustable tension at 20% of the MVC to avoid fatigue from influencing the measurements.
Additionally, the subjects took sufficient rest periods and the order of the measurements was inverted
for the second subject. The noise level was measured at the relaxed muscle. Two subjects were
measured with five sampling frequencies and each measurement was conducted three times. The
signal was measured for 5 s with the oscilloscope [42] at a sampling frequency of 20 kHz. The insulated
EMG sensor was placed above the flexor carpi radialis and the measurement was started after the
onset of the muscle contraction. In the measurements, the implemented notch, highpass and lowpass
filters were activated.

4. Results

The DSP runtime is significantly reduced by designing the filters particularly for real-time,
ultra-low-power applications. No floating-point units and no divisions were implemented, and
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3.5. Output

For evaluation of the measurement set-up, the digitally filtered signal can be measured at the
DAC with an oscilloscope [42], or the digital signal can be transmitted to a PC via Bluetooth Low
Energy (BLE). In real-world applications, the filtered, rectified and smoothed signal is passed on to the
prosthesis drive via the 12-bit digital-to-analog converter (DAC). The DAC is configured to use the
analog supply voltage as internal reference voltage resulting in a conversion range between ground
(0 V) and analog supply voltage (3.3 V). A new conversion starts as soon as a new value is loaded into
the DAC data register and takes 24 clock cycles.

3.6. Signal Quality Dependent on DSP Sampling Frequency

Above, the filter evaluation was carried out at a 10 kHz DSP sampling frequency. In order to
assess the influence on the signal quality and power consumption, the DSP sampling frequency was
varied in the range from 500 Hz up to 10 kHz. The ADC settings remained unchanged throughout
all measurements, and 64 ADC samples were measured per DSP sampling period (tS = 1/ fS). The
system clock frequency as well as the DSP sampling frequency were modified according to Section 4.8.
The filter parameters were adjusted to the respective DSP sampling frequency. The signal used for the
calculation of the SNR was measured with the subjects compressing an adjustable hand grip exerciser
allowing an adjustable tension at 20% of the MVC to avoid fatigue from influencing the measurements.
Additionally, the subjects took sufficient rest periods and the order of the measurements was inverted
for the second subject. The noise level was measured at the relaxed muscle. Two subjects were
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measured with five sampling frequencies and each measurement was conducted three times. The
signal was measured for 5 s with the oscilloscope [42] at a sampling frequency of 20 kHz. The insulated
EMG sensor was placed above the flexor carpi radialis and the measurement was started after the
onset of the muscle contraction. In the measurements, the implemented notch, highpass and lowpass
filters were activated.

4. Results

The DSP runtime is significantly reduced by designing the filters particularly for real-time,
ultra-low-power applications. No floating-point units and no divisions were implemented, and
the number of calculations was minimized for minimal calculation effort. These algorithms were
implemented on a low-cost µC.

The final measurement system features IIR filters, as they are more efficient regarding runtime
and memory consumption than FIR filters. They can be realized with low filter order, and their delay
is negligible. Their parametrization, stability, effect of quantization and runtime were investigated.

4.1. Comb Filter

Figure 11 shows the measurement results of the comb filter implementations. For the Butterworth
filter with 1 Hz cutoff frequency fC and for the third-order FIR filter, a peak remains at the PLI
frequency. This type of filter has a high filter quality and a steep slope (Figure 6) but does not filter the
PLI sufficiently. This is explained by the deviating power-line frequency, which makes a broader comb
filter stop-band necessary.

The 5 Hz Butterworth implementation was selected because it provides sufficient PLI filtering and
it is insensitive to deviations of the power-line frequency. The Butterworth implementation is preferred
over the Chebyshev implementation because it exhibits less overshoot and ringing. The Chebyshev
has high gain at the edges of the passband, which has an adverse effect at power-line frequency
fluctuations. With the 5 Hz fC filter, more EMG signal power is preserved than with the 7 Hz fC filter.
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Figure 11. Measurement results of various comb filter implementations (magnification in frequency
domain); (a) Chebyshev-filtered signal at relaxed muscle; (b) Butterworth-filtered signal at relaxed
muscle; (c) Chebyshev-filtered signal at contracted muscle; (d) Butterworth-filtered signal at
contracted muscle.

Comb Filter Stability

The poles are listed in Table 3 and plotted in Figure 12 to illustrate the filter stability. All filters
are stable, as the absolute value is <1 in all implementations. For FIR filters, stability is given in all

Figure 11. Measurement results of various comb filter implementations (magnification in frequency
domain); (a) Chebyshev-filtered signal at relaxed muscle; (b) Butterworth-filtered signal at relaxed
muscle; (c) Chebyshev-filtered signal at contracted muscle; (d) Butterworth-filtered signal at
contracted muscle.
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Comb Filter Stability

The poles are listed in Table 3 and plotted in Figure 12 to illustrate the filter stability. All filters
are stable, as the absolute value is <1 in all implementations. For FIR filters, stability is given in all
cases. For IIR filters, poles closer to the origin of the unit circle are preferred in the implementation
because oscillations abate more rapidly. The selected 5 Hz Butterworth comb filter fully meets the
stability requirements.
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Table 3. Poles of comb filters with quantized coefficients.

fC 1 Hz 3 Hz 5 Hz 7 Hz

Chebyshev 0.914 ± 0.119i 0.723 ± 0.310i 0.527 ± 0.435i 0.335 ± 0.511i
Butterworth 0.912 ± 0.077i 0.738 ± 0.206i 0.572 ± 0.292i 0.413 ± 0.352i

4.2. Lowpass Filter

In this section, the parametrization of the lowpass filter, which is applied after the highpass filter,
is evaluated. For the smoothing lowpass, the architecture, runtime and implementation are equivalent
to the filter described in this section, and its parametrization is described in Section 3.4.8.

The lowpass after the highpass filter has the time constant T = 300µs and the cutoff frequency
fC = 531 Hz. A higher fC does not sufficiently filter the high-frequency edges of the quantizations, and
a lower fC would markedly attenuate the EMG signal.

Lowpass Filter Stability

Since the pole at 0.75 is located within the unit circle, the filter is stable.

4.3. Highpass Filter

Figure 13 shows the highpass-filtered artifacts and contraction EMG. An optimal balance of high
artifact attenuation and low EMG signal attenuation is desired. The null hypothesis that the Root Mean
Square (RMS) values and the signal loss of the contraction EMG and artifacts are normally distributed
was not rejected at a 5% significance level. The one-sample Kolmogorov-Smirnov test [43] resulted in
a p = 0.9995 for the RMS of the contraction EMG and in a p = 0.0896 for the RMS of the artifacts. For the
signal loss, the p-values depend on the applied filter. The artifacts have lower p-values because the
probability density function of artifacts is skewed. The standard deviations in Figure 13c result from
the frequency characteristics of the highly variable artifacts measured. The signal loss is the difference
of the RMS values of the unfiltered and filtered signal, referred to the unfiltered signal. As we strive
for low EMG signal loss and high artifact signal loss, the difference of these signal losses is plotted in
Figure 13d. Since the maximum is at the cutoff frequency fC = 60 Hz for the Chebyshev filter, we chose
this filter for the final implementation in the insulated EMG measurement system.
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Table 3. Poles of comb filters with quantized coefficients.

fC 1 Hz 3 Hz 5 Hz 7 Hz

Chebyshev 0.914 ± 0.119i 0.723 ± 0.310i 0.527 ± 0.435i 0.335 ± 0.511i
Butterworth 0.912 ± 0.077i 0.738 ± 0.206i 0.572 ± 0.292i 0.413 ± 0.352i

4.2. Lowpass Filter

In this section, the parametrization of the lowpass filter, which is applied after the highpass filter,
is evaluated. For the smoothing lowpass, the architecture, runtime and implementation are equivalent
to the filter described in this section, and its parametrization is described in Section 3.4.8.

The lowpass after the highpass filter has the time constant T = 300µs and the cutoff frequency
fC = 531 Hz. A higher fC does not sufficiently filter the high-frequency edges of the quantizations, and
a lower fC would markedly attenuate the EMG signal.

Lowpass Filter Stability

Since the pole at 0.75 is located within the unit circle, the filter is stable.

4.3. Highpass Filter

Figure 13 shows the highpass-filtered artifacts and contraction EMG. An optimal balance of high
artifact attenuation and low EMG signal attenuation is desired. The null hypothesis that the Root Mean
Square (RMS) values and the signal loss of the contraction EMG and artifacts are normally distributed
was not rejected at a 5% significance level. The one-sample Kolmogorov-Smirnov test [43] resulted in
a p = 0.9995 for the RMS of the contraction EMG and in a p = 0.0896 for the RMS of the artifacts. For the
signal loss, the p-values depend on the applied filter. The artifacts have lower p-values because the
probability density function of artifacts is skewed. The standard deviations in Figure 13c result from
the frequency characteristics of the highly variable artifacts measured. The signal loss is the difference
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of the RMS values of the unfiltered and filtered signal, referred to the unfiltered signal. As we strive
for low EMG signal loss and high artifact signal loss, the difference of these signal losses is plotted in
Figure 13d. Since the maximum is at the cutoff frequency fC = 60 Hz for the Chebyshev filter, we chose
this filter for the final implementation in the insulated EMG measurement system.
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Figure 13. (a) unfiltered and filtered artifacts in the frequency domain (Chebyshev filters with different
fC); (b) unfiltered and filtered contraction EMG in the frequency domain; (c) signal loss in % when
filtering artifact and contraction EMG. The signal loss in % can be negative due to the positive gain at
some frequencies at the Chebyshev filter; (d) difference between artifact and EMG signal losses with an
optimum at the 60 Hz Chebyshev filter.

Highpass Filter Stability

The poles are listed in Table 4 and plotted in Figure 14 to illustrate the stability of the filters.
All highpass filters are stable because their poles are located within the unit circle. The poles of the
filters with low fC are close to the edges of the unit circle, but they are stable.
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Figure 13. (a) unfiltered and filtered artifacts in the frequency domain (Chebyshev filters with different
fC); (b) unfiltered and filtered contraction EMG in the frequency domain; (c) signal loss in % when
filtering artifact and contraction EMG. The signal loss in % can be negative due to the positive gain at
some frequencies at the Chebyshev filter; (d) difference between artifact and EMG signal losses with an
optimum at the 60 Hz Chebyshev filter.

Highpass Filter Stability

The poles are listed in Table 4 and plotted in Figure 14 to illustrate the stability of the filters.
All highpass filters are stable because their poles are located within the unit circle. The poles of the
filters with low fC are close to the edges of the unit circle, but they are stable.
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Figure 13. (a) unfiltered and filtered artifacts in the frequency domain (Chebyshev filters with different
fC); (b) unfiltered and filtered contraction EMG in the frequency domain; (c) signal loss in % when
filtering artifact and contraction EMG. The signal loss in % can be negative due to the positive gain at
some frequencies at the Chebyshev filter; (d) difference between artifact and EMG signal losses with an
optimum at the 60 Hz Chebyshev filter.

Highpass Filter Stability

The poles are listed in Table 4 and plotted in Figure 14 to illustrate the stability of the filters.
All highpass filters are stable because their poles are located within the unit circle. The poles of the
filters with low fC are close to the edges of the unit circle, but they are stable.
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Figure 14. Poles of highpass filter implementations are located within the unit circle. (a) Chebyshev
filters; (b) Butterworth filters
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Table 4. Poles of highpass filters with quantized coefficients.

fC 20 Hz 30 Hz 40 Hz 50 Hz 60 Hz

Che 0.992 ± 0.013i 0.988 ± 0.020i 0.984 ± 0.025i 0.980 ± 0.032i 0.976 ± 0.039i
But 0.991 ± 0.007i 0.987 ± 0.011i 0.982 ± 0.015i 0.978 ± 0.021i 0.974 ± 0.025i

fC 70 Hz 80 Hz 90 Hz 100 Hz

Che 0.972 ± 0.045i 0.968 ± 0.051i 0.964 ± 0.057i 0.961 ± 0.057i
But 0.969 ± 0.030i 0.965 ± 0.033i 0.960 ± 0.037i 0.956 ± 0.041i

4.4. Cascaded Filter Transfer Function

Figure 15 shows the transfer function of the selected comb (5 Hz But), highpass (60 Hz Che) and
lowpass ( fC = 531 Hz).
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4.5. Rectification and Smoothing

Linear rectification was chosen for the final implementation, as it enables better proportional
control than squared rectification. Since the values of squared high signals are much greater than those
of squared small signals, the small signal amplitudes from noise, but also weak contractions, vanish
due to the squaring. The slope steepness is better for squaring, but with linear rectification sufficient
steepness of the signal slopes still can be achieved for light co-contractions.

The cutoff frequency fC was set to 3.11 Hz. This lowpass, which is a discrete first-order lag
element, has a time constant T of 51.1 ms. A lower fC would lead to longer delays, and a higher fC
would not smooth the signal sufficiently for a stable prosthesis control. Figure 16 shows the rectified
and smoothed signals of various movements. As the prosthesis drive has an integrated lowpass
characteristic, a slight ripple in the smoothed signal does not affect the drive speed.

4.6. Runtime

The runtimes of the implemented signal processing chain for various filters are listed in Table 5.
Different lowpass implementations at a 48 MHz clock frequency are compared in Table 6. The runtime
is inversely proportional to the clock frequency, i.e., decreasing the clock frequency by half will double
the runtime. Avoiding FIR filters is recommended for real-time ultra-low-power systems, as runtime is
significantly longer, depending on the order of the filter. Furthermore, the fifth-order FIR filter has
a poorer damping characteristic than the presented IIR filter. In many EMG systems, FIR filters have
window sizes of 50–350 ms [44], implying a filter order of 500–3500. Such filters cannot be calculated
in real-time with this system. The selected implementation requires less calculation effort than the
floating-point moving-average filter. Even when the fixed-point implementations are compared, our
lowpass architecture decreases runtime.

Figure 15. Transfer function of the cascaded comb, highpass and lowpass filter (including compensation
of scaling S).

4.5. Rectification and Smoothing

Linear rectification was chosen for the final implementation, as it enables better proportional
control than squared rectification. Since the values of squared high signals are much greater than those
of squared small signals, the small signal amplitudes from noise, but also weak contractions, vanish
due to the squaring. The slope steepness is better for squaring, but with linear rectification sufficient
steepness of the signal slopes still can be achieved for light co-contractions.

The cutoff frequency fC was set to 3.11 Hz. This lowpass, which is a discrete first-order lag
element, has a time constant T of 51.1 ms. A lower fC would lead to longer delays, and a higher fC
would not smooth the signal sufficiently for a stable prosthesis control. Figure 16 shows the rectified
and smoothed signals of various movements. As the prosthesis drive has an integrated lowpass
characteristic, a slight ripple in the smoothed signal does not affect the drive speed.

4.6. Runtime

The runtimes of the implemented signal processing chain for various filters are listed in Table 5.
Different lowpass implementations at a 48 MHz clock frequency are compared in Table 6. The runtime
is inversely proportional to the clock frequency, i.e., decreasing the clock frequency by half will double
the runtime. Avoiding FIR filters is recommended for real-time ultra-low-power systems, as runtime is
significantly longer, depending on the order of the filter. Furthermore, the fifth-order FIR filter has
a poorer damping characteristic than the presented IIR filter. In many EMG systems, FIR filters have
window sizes of 50–350 ms [44], implying a filter order of 500–3500. Such filters cannot be calculated
in real-time with this system. The selected implementation requires less calculation effort than the
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floating-point moving-average filter. Even when the fixed-point implementations are compared, our
lowpass architecture decreases runtime.
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Figure 16. Rectified and smoothed EMG signal for various movements with the threshold for prosthesis
drive activation indicated.

Table 5. Runtime per sample of filters in C implementation at a 48 MHz clock.

(µs)

Comb Filter (2nd order IIR) 8.17
Highpass Filter (2nd order IIR) 5.88

Lowpass Filter (1st order IIR) 1.28
Rectification and Smoothing 2.62

Total Signal Processing Chain Runtime 17.95

Table 6. Comparison of runtime per sample of various lowpass-filter C implementations at
a 48 MHz clock.

(µs)

(i) Selected Lowpass Filter (1st order IIR) 1.28
(ii) Fixed-point Lowpass Filter (1st order IIR, direct form II) 1.67

(iii) Floating-Point Lowpass Filter (1st order IIR, direct form II) 20.12
(iv) Floating-Point Lowpass Filter (5th order FIR) 49.80
(v) Floating-Point Lowpass Filter (8th order FIR) 73.60

4.7. Power Consumption

The current consumption of the sensor system, as presented by Roland et al. [11] was measured
to be 8.5 mA at a supply voltage of 3.7 V (=31.5 mW). This includes the µC, which requires 5.2 mA.
For this measurement, the controller was set to 48 MHz clock frequency in PL2 mode and the ADC,
DAC, brown out detector and IO-pins were activated. The current consumption of the controller
includes also the integrated OpAmps for gain adjustment, the non-volatile memory and the DSP
software. The BLE module would increase the current consumption at 3.7 V by 0.9 mA in advertising
mode and by 8.9 mA in send/receive mode [45]. The send/receive mode is only activated in case of
sensor configuration or data transfer to the PC. In deep sleep mode, the power consumption of the
BLE module is negligible. However, the high clock frequency was selected to avoid limitations in
the experiments, which comprise also floating point implementations. The relation between µC clock
frequency and power consumption is given in Table 7. Due to the fact that the ADC clock is connected
to the µC clock, the ADC settings have to be checked and recalculated accordingly.

4.8. Signal Quality Dependent on DSP Sampling Frequency

The reduction of the DSP sampling frequency allows a reduction of the clock frequency, which
further reduces the power consumption, see Table 7. Figure 17 shows that a reduction of the
DSP sampling frequency also reduces the SNR as high frequency noise is reflected to the EMG
frequency range.
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Table 5. Runtime per sample of filters in C implementation at a 48 MHz clock.
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Comb Filter (2nd order IIR) 8.17
Highpass Filter (2nd order IIR) 5.88

Lowpass Filter (1st order IIR) 1.28
Rectification and Smoothing 2.62

Total Signal Processing Chain Runtime 17.95

Table 6. Comparison of runtime per sample of various lowpass-filter C implementations at
a 48 MHz clock.

(µs)

(i) Selected Lowpass Filter (1st order IIR) 1.28
(ii) Fixed-point Lowpass Filter (1st order IIR, direct form II) 1.67

(iii) Floating-Point Lowpass Filter (1st order IIR, direct form II) 20.12
(iv) Floating-Point Lowpass Filter (5th order FIR) 49.80
(v) Floating-Point Lowpass Filter (8th order FIR) 73.60

4.7. Power Consumption

The current consumption of the sensor system, as presented by Roland et al. [11] was measured
to be 8.5 mA at a supply voltage of 3.7 V (=31.5 mW). This includes the µC, which requires 5.2 mA.
For this measurement, the controller was set to 48 MHz clock frequency in PL2 mode and the ADC,
DAC, brown out detector and IO-pins were activated. The current consumption of the controller
includes also the integrated OpAmps for gain adjustment, the non-volatile memory and the DSP
software. The BLE module would increase the current consumption at 3.7 V by 0.9 mA in advertising
mode and by 8.9 mA in send/receive mode [45]. The send/receive mode is only activated in case of
sensor configuration or data transfer to the PC. In deep sleep mode, the power consumption of the
BLE module is negligible. However, the high clock frequency was selected to avoid limitations in
the experiments, which comprise also floating point implementations. The relation between µC clock
frequency and power consumption is given in Table 7. Due to the fact that the ADC clock is connected
to the µC clock, the ADC settings have to be checked and recalculated accordingly.
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4.8. Signal Quality Dependent on DSP Sampling Frequency

The reduction of the DSP sampling frequency allows a reduction of the clock frequency, which
further reduces the power consumption, see Table 7. Figure 17 shows that a reduction of the
DSP sampling frequency also reduces the SNR as high frequency noise is reflected to the EMG
frequency range.

Table 7. Effect of reducing sampling and clock frequency on power consumption and signal quality.

Sampling Frequency fS (kHz) µC Clock Frequency (MHz) Power Consumption (mW) SNR

10.0 48 31.5 12.6
5.0 16 20.5 12.6
2.0 8 15.9 11.2
1.0 4 14.4 10.1
0.5 2 13.7 7.8
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The signal delay is dominated by the time constant T of the first-order lag element which forms
the lowpass filter for smoothing. This T of 51.1 ms is not perceptible to the user as described in
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Insulated EMG has various advantages, such as insensitivity to sweat and prevention of
pressure marks, over state-of-the-art conductive EMG. However, insulated EMG requires sophisticated
measurement electronics and signal processing. Implementing these filters as analog circuits, cost
for many components, matching these components and designing and developing a more extensive
circuit board arise. Digital filters implemented in a microcontroller based DSP increases flexibility and
decreases cost. We suggest digital filtering instead of analog filtering to best meet the requirements for
EMG sensing, like low-power consumption, high signal quality, stability, proportionality, etc., as listed
in the Introduction.

The comb filter, which suppresses the PLI in this sensor, is very effective, stable and requires
low computation power; however, the EMG signal is also reduced. A trade-off between high filter
Q and stability has to be dealt with. A high filter Q increases the sensitivity to power-line frequency
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Therefore, the evaluated higher cutoff frequency for highpass filtering might also result from the fact

Figure 17. SNR at different sampling frequencies. The EMG signal was measured at a muscle force at
20% of MVC and the noise was measured at a relaxed muscle. Note that the SNR is higher at 100%
MVC than at these measurements with lower muscle force.

4.9. Memory

The presented implementation including all configurations, filters, rectification and smoothing
and the decision algorithm requires 32.4% of the 256 kB program memory and 35.3% of the 32 kB
data memory.

4.10. Signal Delay

The signal delay is dominated by the time constant T of the first-order lag element which forms
the lowpass filter for smoothing. This T of 51.1 ms is not perceptible to the user as described in
the Introduction.

5. Discussion

Insulated EMG has various advantages, such as insensitivity to sweat and prevention of
pressure marks, over state-of-the-art conductive EMG. However, insulated EMG requires sophisticated
measurement electronics and signal processing. Implementing these filters as analog circuits, cost
for many components, matching these components and designing and developing a more extensive
circuit board arise. Digital filters implemented in a microcontroller based DSP increases flexibility and
decreases cost. We suggest digital filtering instead of analog filtering to best meet the requirements for
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EMG sensing, like low-power consumption, high signal quality, stability, proportionality, etc., as listed
in the Introduction.

The comb filter, which suppresses the PLI in this sensor, is very effective, stable and requires
low computation power; however, the EMG signal is also reduced. A trade-off between high filter
Q and stability has to be dealt with. A high filter Q increases the sensitivity to power-line frequency
deviations and, depending on the filter type, causes ringing and overshoot. For stable operation,
we suggest applying the 5 Hz Butterworth filter.

One major problem in EMG measurement is movement artifacts. Changes in contact pressure,
which occur due to movements, change the coupling capacity and further alter the signal amplitude.
Therefore, the evaluated higher cutoff frequency for highpass filtering might also result from the fact
that the system is designed for high stability in the context of movement artifacts. We suggest a higher
cutoff frequency at 60 Hz for insulated EMG in contrast to the 5–30 Hz cutoff frequency recommended
for highpass filtering in conductive EMG.

The EMG signal is smoothed to control the prosthesis drive. A short response time of the system,
which is dominated by the T (=51.1 ms) of the lowpass filter for smoothing, is desired. A low T leads to
a fast system while reducing signal quality and stability due to insufficient smoothing. To control the
prosthesis drive speed proportional to the muscle force, the prosthesis drive has to be activated already
at low signal levels. High slope steepness facilitates co-contractions; however, this impairs stability.

To achieve high signal quality in the evaluations, the DSP sampling frequency was set to 10 kHz.
This frequency could be reduced, having a slightly lower signal-to-noise ratio. If the signal is smoothed,
high signal quality is not required and we suggest a sampling frequency in the range from 0.5 kHz
to 1 kHz. However, if the signal is further processed, like in feature extraction for machine learning,
we suggest higher DSP sampling frequencies from 2 kHz up to 10 kHz.

The decision algorithm, which distinguishes between movement artifacts and muscle contraction,
has already been tested on amputees in real-world environments. As movement artifacts are a major
problem in prosthesis control, this algorithm significantly improves the performance of the prosthesis.

The whole capacitive EMG sensor system has not been applied to amputees in real-world
environments yet. Nevertheless, noise, which occurs in real-world environments such as movement
artifacts and power-line interferences, were measured and incorporated in the filter design. This work
demonstrates the principles of how to implement this filter design aiming at robust control.

6. Conclusions

Insulated EMG sensors are different in construction to conductive EMG sensors and can avoid
pressure marks and skin irritations. Due to the measurement principle, insulated EMG sensors have
special requirements in signal amplification and processing.

DSP implemented into a microcontroller reduces the sensor hardware to a minimum and
enables configuration, calibration and continuous improvement without hardware modifications. This
work demonstrates optimized system setup, filter selection and implementation into an embedded
low-power real-time sensor. By incorporating artifacts and other noise, which occur in real-world
environments, to the selection of the filter parameters, a robust system was obtained. High signal
quality and stable control of the myoelectric upper-limb prosthesis were achieved with these algorithms,
although they require minimal calculation effort.

With the knowledge of the DSP calculation effort, the clock frequency and the power consumption
can be optimized. This microcontroller based sensor system provides the opportunity to implement
and test future innovations and developments.

As part of future work, we plan to further investigate the discrimination between artifacts and
muscle contraction to ensure that the prosthesis drive is activated only by actual muscle contractions.
Time domain features allow fast decisions at minimal calculation effort. Our next step will be the testing
of the presented insulated EMG measurement system with amputees in real-world environments.
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To extend the system to a multi-sensor application, we will design low-power decision algorithms
to distinguish between various hand movements for high-dexterity prostheses.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC Analog-to-digital conversion
BLE Bluetooth Low Energy
DAC Digital-to-analog converter
DSP Digital signal processing
DC Direct current
EMG Electromyography
FDA Filter Designer app
FIR Finite impulse response
IIR Infinite impulse response
µC Microcontroller
OpAmp Operational amplifier
PLI Power-line interference
SNR Signal-to-noise ratio
STFT Short-time Fourier transform
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