
sensors

Article

Optimal Shadowing Filter for a Positioning and
Tracking Methodology with Limited Information

Ayham Zaitouny 1,2,* , Thomas Stemler 1 and Shannon Dee Algar 1

1 Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway,
Crawley, WA 6009, Australia; thomas.stemler@uwa.edu.au (T.S.);
shannon.algar@research.uwa.edu.au (S.D.A.)

2 Commonwealth Scientific and Industrial Research Organisation, 26 Dick Perry Ave,
Kensington, WA 6151, Australia

* Correspondence: ayham.zaitouny@uwa.edu.au or ayham.zaitouny@csiro.au

Received: 19 January 2019; Accepted: 18 February 2019; Published: 22 February 2019
����������
�������

Abstract: Positioning and tracking a moving target from limited positional information is a
frequently-encountered problem. For given noisy observations of the target’s position, one wants to
estimate the true trajectory and reconstruct the full phase space including velocity and acceleration.
The shadowing filter offers a robust methodology to achieve such an estimation and reconstruction.
Here, we highlight and validate important merits of this methodology for real-life applications.
In particular, we explore the filter’s performance when dealing with correlated or uncorrelated noise,
irregular sampling in time and how it can be optimised even when the true dynamics of the system
are not known.
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1. Introduction

A wide range of filters has been developed for the purposes of tracking moving objects
and approximating their trajectories. Currently, tracking is typically achieved using sequential
statistical filters, such as Kalman or particle filters, which take only the current and future states into
account [1–7]. The classic Kalman filter has been extended to consider converted measurements and
nonlinear problems [8]. A review of how to use the particle filter and its capability to handle general
models and applications has been introduced in [9,10]. In [11–13], we developed and introduced a
new tracking methodology based on shadowing filters. We proved the concept and demonstrated the
method’s superiority over other tracking methods, as well as its applicability to real-life problems.
In this paper, we conduct further investigations to demonstrate and verify the additional advantages of
the shadowing filter tracking method, which are important for real applications. Namely, we introduce
the two-dimensional solution when the observational error’s correlation is taken into account and
compare the method’s performance when this correlation is considered or ignored. We additionally
test the filter’s performance when dealing with non-uniform sampling in time and demonstrate the
filter’s capability to overcome singularities.

As a motivation, consider the frequently-occurring tracking problem that arises when observations
are recorded in a non-Cartesian coordinate system. Assume that the bearing and range of an object are
observed. These observations are independently determined from some reference point. However,
when these measurements are transformed into Cartesian data, they will have correlated errors
resulting from this transformation. To make matters worse, we often need to combine multiple
measurements. In practice, such problems arise in: (a) active radar locations; (b) satellite interferometry;
(c) GPS; and (d) passive sonar locations. The challenges in these applications vary. Applications (a),
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(b) and (d) all use bearing and range data, but in (b), the range is very accurately measured, while the
bearing has large errors. In (d), the situation is the opposite, with observations of the bearing being
high quality. Application (c), on the other hand, uses only range information, but from several
different satellites. All of these cases can be dealt with using the shadowing filter by taking into
account the correlation of the observational error. Section 3 of this paper introduces the methodology
for approximating the trajectory of an object being tracked with noisy position data and potential
correlations in the observational error. The solution in two-dimensions is derived for both uncorrelated
and correlated error scenarios. Section 4 utilizes a simple, non-trivial system example to perform a
numerical analysis in order to assess whether or not error correlation has to be considered to ensure a
good approximation of the object’s path and if the extra computational effort required is worth it.

Other common challenges one could face in practice are singularities and non-uniform sampling
of data caused by the failure of the recording devices. Section 5 demonstrates the robustness of the
shadowing filter tracking methodology to avoid singularity impacts, as well as deal successfully with
irregular time resolution. We also apply the tracking technique to a noisy chaotic trajectory, specifically
that of the Lorenz model, and analyse the results from the perspective of noise reduction. In the final
section, we draw conclusions and make some suggestions for future directions of this work.

2. Shadowing Filters

The shadowing filter method is unlike sequential filter methods in that it estimates the full
trajectory based on all observations simultaneously. In this aspect, our approach is somewhat similar
to variational filters [14,15]; however, it does not fall into the trap of local minima [16,17]. This is due
to the very simple principle these filters are based on: if the model is good enough, state estimations
must be close to the observations and consistent with the model’s equations. In practice, this principle
imposes a quadratic norm on the filter, which only has one minimum. Specifically regarding the
tracking approach, previous investigations showed and verified some merits and advantages of the
shadowing filter tracking methodology. In [12,13], we showed the capability of shadowing filter to
track single-particle and multi-particle moving objects using GPS data from flying birds; in Figure 1,
we show an example of how we successfully used this method to track eight pigeons’ trajectories and
extracted the corresponding acceleration profiles only from positional GPS data. To track rigid bodies,
the method was extended [11] to include rotational motion and moments of inertia. Our method is
able to reconstruct the full dynamical phase space from positional information [11–13].

In general, varieties of the shadowing filter have proven to have better performance than Kalman
filters [18], particle filters [19], sliding average filters [12] and variational filters [17]. They have
been successfully implemented from simple low-dimensional maps and flows [17] up to operational
weather models [20]. In [11], we addressed a benchmark with the state-of-art of tracking methods.
We conducted direct detailed comparisons with the Kalman filter [21], extended Kalman filter [22]
and particle filter [23,24] approaches. Our computational comparisons confirm the superiority
of the shadowing filter tracking methodology over these sequential filter tracking methods with
respect to accuracy and complexity (computational time). In this manuscript, we will not redo these
comprehensive numerical comparisons. However, as the motivation, we confirm the performance
compared to existing methods in Figure 2 with systems later investigated in this manuscript.
Specifically, correlated observational errors are taken into account in Figure 2a,b and when singularities
arise due to recording failure in Figure 2c,d. More detailed explanations and investigations about these
scenarios and others are addressed in the following sections.
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Figure 1. Shadowing filter applied to GPS data from a flock of pigeons. The shadowing filter
successfully tracks the eight pigeons. In this demonstration, we refer to our previous works [12,13].
In (a), we track the trajectories of the eight pigeons (the coloured solid lines) from the GPS signals
(red dots). In (b), we use the tracking algorithm to estimate the corresponding acceleration profiles for
each pigeon (colours refer to different pigeons).
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Figure 2. The superiority of the shadowing filter tracking methodology over a sequential filter
methodology (Kalman filter). Error correlation has been taken into account in (a) and (b), while the
singularity scenario is presented in (c) and (d). The shadowing filter shows obvious superiority,
especially where error correlation increases the nonlinearity of the system far from the reference point
at the origin in the first scenario and around the singular records in the second scenario. Note that the
large error of the shadowing filter estimates at the beginning of the trajectory is expected, as explained
in previous investigations [11,12].

3. Summary of the Tracking Methodology

Typically, tracking data will contain only noisy position observations, and so, we are faced with
the challenge of having no explicit information about the object’s acceleration or velocity. Using the
acceleration as a free parameter, we are able to implement the shadowing filter to find a good
approximation of the full phase space including acceleration and velocity information based on
the position observations. This free parameter can then be tuned in order to optimize the quality of the
solution of the approximated states.

We aim to track a point object that is moving in a d-dimensional Euclidean space with Cartesian
coordinates, given a sequence of noisy observations. Let Ri ∈ Rd be the true states and Pi ∈ Rd be the
noisy observations of the position at time ti for i = 0, 1, . . . , n, where the observational errors have a
d× d covariance matrix Ci and corresponding information matrix Ii = C−1

i , which is used to account
for the correlations of the observational error.

The object’s dynamics are modelled based on its observed position Pi ∈ Rd, velocity vi ∈ Rd and
acceleration ai ∈ Rd for ti ≤ t ≤ ti+1. Our aim is to approximate pi ∈ Rd close to the true state Ri.
To do this, we minimize the total squared error ∑n

i=0(Pi − pi)
TIi(Pi − pi).

We assume that the acceleration is constant over one time interval (Ti = ti+1 − ti) and that
its magnitude is bounded over the entire trajectory by the relation (∑n−1

i=0 TiaT
i ai ≤ (tn − t0)ξ

2).
Using Newton’s laws and a Galilean transformation, we can solve this optimization problem with the
Lagrange multipliers method [25]. The appropriate Lagrange function is:

L = 1
2

n

∑
i=0

(Pi − pi)
TIi(Pi − pi) (1a)

+
n−1

∑
i=0

λT
i+1(pi+1 − pi − viTi −

1
2

aiT2
i ) (1b)

+
n−1

∑
i=0

µT
i+1(vi+1 − vi − aiTi) (1c)

+ η(
n−1

∑
i=0

TiaT
i ai − (tn − t0)ξ

2), (1d)

where the Lagrange multipliers λi ∈ Rd, µi ∈ Rd are d-dimensional column vectors, η ∈ R and ξ ∈ R.
Equation (1b) represents Newton’s first law, Equation (1c) Newton’s second law, while Equation (1d)
bounds the magnitude of the acceleration. While using the Lagrange multiplier method seems only
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natural in the context of a Newtonian model, the optimization could be also implemented using for
example gradient descent [16,17] or penalty methods [26].

The solution to the scalar case and rigid-body problems can be found in [11,27]. In this paper,
using similar linear algebra methods and appropriately-constructed vector and matrix equations,
we extend the solution to higher dimensions, specifically two-dimensional problems, taking into
account the correlation of the observational errors. Note that this solution can be generalised for the
d-dimensional problem where all vectors and matrices increase in dimension by a factor of d.

3.1. Solution of the Two-Dimensional Problem

3.1.1. Correlated Observational Errors

For higher dimensions, even in two dimensions, the complexity increases as we have to determine
whether observational errors are not independent, but correlated. Note that the Weighted Least Squares
(WLS) method and its extension, the constrained-WLS, are related to our shadowing filter [28–31].
For the tracking problem, they are able to deal with correlated/uncorrelated noise and irregular
sampling in time. However, unlike the shadowing filter, they do not consider explicitly the velocity
and acceleration [32,33].

Consider the situation of an object moving in the xy-plane. Given a time resolution of
measurements Ti = ti+1 − ti for i = 0, 1, . . . , n − 1, the true position is Ri = (Rxi , Ryi )

T ∈ R2 and
the noisy observed position is Pi = (Xi, Yi)

T ∈ R2. The error in the x-direction has variance σ2
xi

,
and similarly, in the y-direction the error has a variance σ2

yi
. Therefore, the observational error has the

following 2× 2 covariance matrix:

Ci =

(
σ2

xi
covxiyi

covyixi σ2
yi

)
,

with the corresponding information matrix:

Ii = C−1
i =

(
Sxi Sxiyi

Sxiyi Syi

)
,

where:

Sxi =
σ2

yi

σ2
xi

σ2
yi
− cov2

xiyi

,

Syi =
σ2

xi

σ2
xi

σ2
yi
− cov2

xiyi

,

Sxiyi =
−covxiyi

σ2
xi

σ2
yi
− cov2

xiyi

.

Note that generally, σxi and σyi can vary with time.
In addition, defining the unknown variables, pi = (xi, yi)

T ∈ R2, vi = (vxi , vyi )
T ∈ R2,

ai = (axi , ayi )
T ∈ R2, λi = (λxi , λyi )

T ∈ R2, µi = (µxi , µyi )
T ∈ R2, η ∈ R and ξ ∈ R, then the

Lagrangian expressed by Equation (1) can be stated as:
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L = 1
2

n

∑
i=0

Sxi (Xi − xi)
2 + 2Sxiyi (Xi − xi)(Yi − yi) + Syi (Yi − yi)

2 (2a)

+
n−1

∑
i=0

[λxi+1(xi+1 − xi − vxi Ti −
1
2

axi T
2
i )

+λyi+1(yi+1 − yi − vyi Ti −
1
2

ayi T
2
i )] (2b)

+
n−1

∑
i=0

µxi+1(vxi+1 − vxi − axi Ti) + µyi+1(vyi+1 − vyi − ayi Ti) (2c)

+ η(
n−1

∑
i=0

Ti(a2
xi
− a2

yi
)− (tn − t0)ξ

2). (2d)

Obviously, the optimal solution occurs when all the partial derivatives of L are zero:

∂L
∂xi

=
∂L
∂yi

=
∂L

∂vxi

=
∂L

∂vyi

=
∂L

∂axi

=
∂L

∂ayi

=
∂L

∂λxi

=
∂L

∂λyi

=
∂L

∂µxi

=
∂L

∂µyi

=
∂L
∂η

= 0.

The partial derivative equations and the complete solution of this situation are detailed in
Appendix A. For the purpose of approximating the trajectory, we require only the final equation of the
solution given by Equation (A24):

(ηB̄ + ĀI)p = ĀIP

where Ā and B̄ are numerical matrices used to construct the solution, I is the information matrix, P is
the observational states vector, p is the approximated states vector and η is the smoothing parameter
of the filter.

3.1.2. Uncorrelated Observational Errors

If the observational errors of the x-component are independent of those in the y-component,
then they are uncorrelated and at each time ti where i = 0, 1, . . . , n the covariance between xi and
yi equals zero, i.e., covxiyi = 0, ∀i = 0, 1, . . . , n. Therefore, Sxi = σ−2

xi
, Syi = σ−2

yi
, Sxiyi = 0.

Consequently, Equations (A1) and (A2) can be stated as:

∂L
∂xi

= 0 =


−σ−2

x0
(X0 − x0)− λx1 , i = 0

−σ−2
xi

(Xi − xi) + λxi − λxi+1 , 0 < i < n

−σ−2
xn (Xn − xn) + λxn , i = n

(3)

∂L
∂yi

= 0 =


−σ−2

y0
(Y0 − y0)− λy1 , i = 0

−σ−2
yi

(Yi − yi) + λyi − λyi+1 , 0 < i < n

−σ−2
yn (Yn − yn) + λyn , i = n

(4)

This gives us two independent systems of equations: the x-component system
Equations (A3), (A5), (A7), (A9) and (3) and the y-component system Equations (A4), (A6), (A8), (A10) and (4).
For each component, the systems are identical to the scalar case, which has been solved previously [11,27],
and the optimization problem can be solved independently for x and y.

4. Numerical Investigations: Correlated vs. Uncorrelated Observational Errors

Given a dataset with correlated observational errors, we can either take the correlation into
account or ignore it. There are practical reasons why one might choose to ignore the correlation.
For instance, the algorithms are more complex with correlation and much more computationally
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intensive, as a d× 5-dimensional system of equations must be solved (see Equations (A1)–(A10)), but if
we ignore correlation, the problem is reduced to d independent scalar problems.

We refer herein to these two situations, of taking the Correlation into Account and Ignoring it,
as CA and CI, respectively.

In the following investigations, a target’s position is tracked in the xy-plane by the position
s = (x, y)T given by the simple, non-trivial observation model:

s =

(
x
y

)
=

(
10(t/150− 1/2)

10(t/150− 1/2)− (5/2) sin(2π(t/150− 1/2))

)
, (5)

where 0 ≤ t ≤ 150, i.e., the length of the time series is n = 151.
Note that the choice of this particular path is motivated by the range and bearing problem set up

below with the non-linearity in y simplifying the description of the dynamics in polar coordinates.
We introduce correlated observational errors by transforming the position into range and bearing

coordinates q = (r, θ)T with the inverse of the standard transformation s = f (q):(
x
y

)
=

(
a + r cos θ

b + r sin θ

)
, (6)

where r is the range from a reference point (a, b)T and θ is the bearing in radians measured
anti-clockwise from the x-axis. Thus, the transformed observations are (ri, θi)

T , where i = 0, 1, . . . , 150
and the origin (0, 0)T is the reference point.

We then add white noise to each measurement:(
Ri
Θi

)
=

(
ri + σrχi
θi + σθψi

)
,

where χi ∼ N(0, 1) is the observational noise of the range component with variance σ2
r and ψi ∼ N(0, 1)

is the observational noise of the bearing component with variance σ2
θ .

Finally, we obtain the noisy observations, Pi = (Xi, Yi)
T , in Cartesian coordinates, by applying

the transformation defined in Equation (6) to (Ri, Θi)
T .

Under the assumption that r is not close to zero and the variances of r and θ are small, the
information matrix of s = (x, y)T can be approximated as [27]:

Is =

(
σ−2

r cos2 θ + (1/r2)σ−2
θ sin2 θ (1/2)σ−2

r sin 2θ − (1/2r2)σ−2
θ sin 2θ

(1/2)σ−2
r sin 2θ − (1/2r2)σ−2

θ sin 2θ σ−2
r sin2 θ + (1/r2)σ−2

θ cos2 θ

)
.

Given that this information matrix is estimated in advance, we are now able to apply the
shadowing technique via Equation (A24) to approximate the trajectory, which we illustrate in Figure 3.

In Figure 3a, the range measurement is four-times more accurate than that of the bearing, as,
for this experiment, the standard deviations were chosen to be σθ = 0.60 and σr = 0.15. Conversely,
in Figure 3b, the bearing measurement is four-times more accurate than the range, as σr = 0.60 and
σθ = 0.15. Whilst the filter does work well in either case, note that σθ has a significant effect on the
observations. This is not the case for σr.
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Figure 3. Taking error correlation into account when using range and bearing observations of different
accuracies. The smoothing parameter is η = 100 for both situations.

4.1. Quality Measures

In order to assess the quality of the filter, we must specify the aim of the tracking. Our aim is
to find an approximate trajectory from noisy observations of a moving object’s positions, which lies
optimally close to the true trajectory of the object. In this context, there are two questions that one
might hope to answer: (1) Where is the object in a given time interval? (2) What is the current position?

The different nature of these questions is subtle, but profound, with each lending itself to a
different class of possible applications. For Question (1), we need to find an approximate trajectory
that is close to the true trajectory over the entire interval and therefore shadows the true dynamics.
Such a scenario would be required, for example, in order to identify the ship responsible for leaking
oil into the ocean based on its trajectory. Question (2) does not need an approximated trajectory that is
close to all states, but only close to the last state, for example finding a missing flight. A filter capable
of solving both questions will likely need to be optimized differently for the particular case. This could
be either “tracking the path that the object travelled” or “knowing the recent position of the object”.
Consequently, we require two measures.

The first measure we define details how close the approximated states pi = (xi, yi)
T are to the

true states Ri = (Rxi , Ryi )
T along the whole trajectory for i = 0, 1, . . . , n where n + 1 is the length of

the time series. For this, we use the root mean squared error defined by:

E =

√
1

1 + n

n

∑
i=0

(‖ Rxi − xi ‖2 + ‖ Ryi − yi ‖2). (7)

The second measure details how close the approximated final state, pn = (xn, yn)T , is to the true
final state, Rn = (Rxn , Ryn)

T and can be quantified by the end-point error:

e =
√
‖ Rxn − xn ‖2 + ‖ Ryn − yn ‖2. (8)

For more accurate results, we use the ensemble averages of these quantities as measures of the
filter’s performance. We consider N time series, giving N true trajectories, N sequences of observations
and therefore N sequences of approximates:
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〈E〉 =
1
N

N

∑
j=1

Ej, (9)

〈e〉 =
1
N

N

∑
j=1

ej. (10)

In the experiments that follow, we assess the quality of the filter for both tracking objectives and
optimize parameters such that the respective average errors are minimized.

4.2. Optimization of the Filter Performance

The quality of the solution, i.e., the approximated states, can be optimized by tuning the free
parameter of our filter. Generally, the dataset will contain noisy position observations, and so,
acceleration can be used as the free parameter. Thus, the smoothing parameter η of the acceleration
Lagrangian term in Equation (2d) approximates a suitable value of the object’s inertia.

The optimal value is dependent on the time resolution of the time series, the system’s dynamics,
the noise intensity, etc. Therefore, the following investigation should be understood as a proof of
concept only, whereby an optimal value is determined for some specific application. Furthermore,
as we only want to show that η does in fact have some optimum value, we can use a rather simple
numerical scheme.

The algorithm implemented starts with a broad parameter sweep, η = 0.1, 1, 10, 100, 1000,
and calculates the average errors for each tracking objective (〈E〉 and 〈e〉) from N = 100 time series.
It then identifies the sub-interval in which the minimum error occurs and divides this η-interval into
five new subintervals. Repeating this procedure six times, with a new time series for each narrowing
of the parameter range, we get an approximation of the optimal η. This approximation is sufficient to
show that an optimal value exists.

Tables A1 and A2 show the results when optimizing η subject to minimizing 〈E〉 for the CA and
CI cases, respectively. The minimum in each interval is indicated in bold. We note that the optimal
values for the two types of correlation consideration lie close together, and there does not seem to be a
large difference between the resulting errors.

Tables A3 and A4 show the optimization data when our aim is to minimize 〈e〉 for the CA and CI
cases, respectively. Again, minimum values in each interval are indicated in bold. Here, we note a
huge difference between the approximated optimal values for the two types of correlation considered.
When correlation was ignored, we were required to expand the starting interval as the best η value in
Experiment 1 (the zeroth iteration) was the interval’s endpoint η = 1000. Consequently, the almost
optimal value of this method η = 1600 was much higher than the value of η = 91, found when
correlation was considered. On the other hand, the average end-point error was 1.4-times larger when
correlation was accounted for.

The results of this investigation are summarized in Figure 4. Blue lines show the results when
correlation is accounted for, and red lines show the results when correlation is ignored. The general
shape of the graphs—large values of the error for small and large η values—support our initial
assumption that an optimal value of η exists. Since our primitive iterative algorithm can only be used
to find an approximation of the optimal η, we cannot say anything about whether the found best value
is a local or a global property. However, as was pointed out in the beginning, the purpose of this
investigation was only to show that the η value can be optimized for a specific application.
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Figure 4. Optimisation of the smoothing parameter η: average root mean squared error 〈E〉 and
average end-point error 〈e〉 as functions of the smoothing parameter η. We show both scenarios when
the error’s correlation is taken into account (blue) or completely ignored (red). The minimum illustrates
the existence of the optimal value of η that minimises the error and shows that incorporating the error’s
correlation does not significantly improve the filter’s performance.

4.3. Comparison of the CA and CI Cases

Recall that CA refers to the situation where correlation is taken into account, and CI ignores it.
Surprisingly, the CI algorithm seems to lead to similar or even better estimates. To get a clearer picture,
we need to understand the error distributions, as well.

Figures 5 and 6 show histograms of the two error measures, 〈E〉 and 〈e〉, resulting from each
correlation algorithm. We used data from 100 time series and chose the approximated optimal η values
found previously.
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Figure 5. Histograms of the root mean squared error E from 100 observation sequences at the optimal
value of η in both scenarios when the error’s correlation is taken into account or ignored.
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Figure 6. Histograms of the end-point error e from 100 observation sequences at the optimal value of η

in both scenarios when error’s correlation is taken into account or ignored.

We are not surprised that there was not much difference between the CA and CI algorithms
when we were interested in minimizing 〈E〉, as seen in Figure 5. Both average errors 〈E〉 were about
0.21, and the distributions were peaked around this value. If there was any difference, it was that the
percentage of errors contained in the interval [0.18, 24] was about 10% higher for the CA algorithm.
It is not immediately clear whether this is statistically significant, but given that both methods showed
similar result, we do not think that investigating this statistical significance is important.

Recall that for the case of minimizing 〈e〉, unlike for 〈E〉, our η optimization gave us quite
different optimal values depending on which algorithm was used. This situation is depicted in
Figure 6. Surprisingly, the resulting distributions have much in common:

• For the CA algorithm: the 〈e〉-distribution decayed monotonously, and all errors were contained
within the interval [0.1, 1.3]; and about 60% of the errors were between [0.1, 0.5].

• For the CI algorithm: the errors were contained within the smaller interval [0.1, 0.8], and the
distribution was less broad; and in the subinterval from [0.1, 0.5], we found 70% of the errors.

• In addition, there was a peak around the average value in both cases with 〈e〉 ≈ 0.2.

We conclude that the shadowing filter’s tracking methodology was robust enough to consider or
ignore the correlations of the observational errors. That is, there was not a marked improvement in
the shadowing filter’s performance if we took correlations into account. This is further illustrated in
Figure 7, which shows estimates for both tasks ((a) minimizing average error and (b) minimizing last
point error).
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(b) Tracking the current position.

Figure 7. The filter performance in estimating (a) the path and (b) the current position, when error
correlation is taken into account. Note that the true dynamics is given by Equation (5).

5. Applications

In this section, we demonstrate some applications with common challenges one frequently faces
in practice. Specifically, we emphasise three challenges relevant to tracking: irregular/non-uniform
time resolution, records with large singularities, tracking chaotic trajectories and real-world multiple
object application.

5.1. Non-Uniform Sampling

Here, we highlight the fact that our shadowing filter is flexible enough to be used even for
non-uniformly sampled data. Often, data points are not recorded with the same sampling rate, and so,
th+2− th+1 = th+1− th = ∆t does not hold for all h in the dataset. Such a situation is quite common for
example in GPS tracking, as the GPS device often fails to log one or more data points [34,35]. Our filter
can be used with arbitrary values of ∆ti between any two data points; however, we focus here on the
sub-problem that some data points are not recorded with each ∆ti a multiple of some sampling time
such that ∆ti = m× ∆t.

It has been shown that our tracking methodology is sufficiently robust to ignore the error
correlation without effecting performance. Consequently, any d-dimensional problem can be treated
as d independent scalar problems. Hence, for our numerical investigation, we will use data generated
from the following scalar function that gives true states Y and noisy observations P:

Yt = 25 + 10 sin
t

15
+
√

αχt,

Pt = Yt +
√

βεt, (11)

where 0 ≤ t ≤ n, the observation’s noise εt ∼ N(0, 1) with εt a white noise process, χt is an

independent cumulative white noise process, χt =
t

∑
i=1

ξ̂i where ξ̂i ∼ N(0, 1), α is the variance of

the cumulative white noise and β is the variance of the observational noise.
We generated data with n initial length of n = 500 using β = 9 and α = 1. From the dataset,

we randomly deleted data points using a uniform distribution (cf. Figure 8a) so that the final dataset
had n′ ≈ 125 data points. Again, we used our usual measures < E > and < e > estimated
from N = 100 datasets for η = 1.3 or 19 (depending on the tracking objective). To incorporate
the non-constant sampling time, we included the sampling times into the matrix Equation (A12).
Our numerical investigation shows that for increasing levels of deletion, the error increased relative
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to the uniform sampling. Specifically, we found that < E >≈ 3.3 (η = 1.3) and < e >≈ 1.5 (η = 19).
Overall, our filter was still able to find a good enough approximation, as can be seen in Figure 8b.
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Figure 8. Performance of the filter when using non-uniform sampled data. (a) shows the histogram of
sample times in the sequence, and (b) directly compares the observed and estimated trajectory, as well
as the observed and non-uniformly down-sampled time series.

5.2. Multiple Bearing Observations: Singularities

In this section, we will study another situation where non-Cartesian observations are used.
Consider the case when the target is tracked in the xy-plane, by the position s = (x, y), using bearing
observations q = (θ, θ′) from two distinct reference points (a, b) and (a′, b′). The transformation f
between the different coordinates is defined by:

(x, y) = (a, b) + m(cos θ, sin θ), (12)

= (a′, b′) + m′(cos θ′, sin θ′), (13)

where under most circumstances, there exist unique m, m′ ∈ R. Hence, if we have bearing observations,
then we need to find the raw position estimates, and that requires calculating m and m′. These can be
estimated by solving the linear equations:

a + m cos θ = a′ + m′ cos θ′,

b + m sin θ = b′ + m′ sin θ′,

which are equivalent to:

m cos θ −m′ cos θ′ = a′ − a,

m sin θ −m′ sin θ′ = b′ − b,

and these can be expressed in matrix form as follows:(
cos θ − cos θ′

sin θ − sin θ′

)(
m
m′

)
=

(
a′ − a
b′ − b

)
. (14)

Solving these linear equations enables us to find the raw position estimates from bearing
observations using the transformation f [27].

In this situation, it is difficult to compute the Jacobian matrix directly from the transformation f .
However, note that the inverse of the transformation f is given by:
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θ = arctan
y− b
x− a

, (15)

θ′ = arctan
y− b′

x− a′
. (16)

Consequently, the matrix K, the Jacobian matrix of f−1, is easily computed as follows:

K =

( −(y−b)
r2

(x−a)
r2

−(y−b′)
r′2

(x−a′)
r′2

)
,

where r2 = (x− a)2 + (y− b)2 and r′2 = (x− a′)2 + (y− b′)2, which requires simple computations
once an estimate of (x, y) is obtained. Therefore, under the assumption that both r and r′ are not close
to zero, the information matrix can be approximated using the matrix K as follows:

Is = KTIqK

=

(−(y−b)
r2

−(y−b′)
r′2

(x−a)
r2

(x−a′)
r′2

)(
σ−2

θ 0
0 σ−2

θ′

)( −(y−b)
r2

(x−a)
r2

−(y−b′)
r′2

(x−a′)
r′2

)
,

where σ−2
θ is the variance of the observational error in the first bearing component and σ−2

θ′ is the
variance in the second bearing component. It follows that the information matrix is given by:

Is =

 σ−2
θ (y−b)2

r4 +
σ−2

θ′ (y−b′)2

r′4
−σ−2

θ (x−a)(y−b)
r4 +

−σ−2
θ′ (x−a′)(y−b′)

r′4
−σ−2

θ (x−a)(y−b)
r4 +

−σ−2
θ′ (x−a′)(y−b′)

r′4
σ−2

θ (x−a)2

r4 +
σ−2

θ′ (x−a′)2

r′4

 .

Given this information matrix, we can apply the shadowing filter to find an approximated
trajectory.

A problem arises in situations when the sensors and the target are collinear; i.e., θ ≈ ±θ′. In such
situations, the linear Equations (14) are singular or badly conditioned. This can lead to raw position
estimates far from their true positions. To solve this problem, we have three options: we can drop
the bad observation, replace it with a forecasted position or take into account that the information in
this observation is less reliable than in other observations. Since the shadowing filter is estimating
a trajectory from a sequence of observations, generally there is no harm in either of these solutions.
Although, dropping bad observations leads to a non–uniform time-gap between observations where
the shadowing filter still works successfully, as verified in the above investigations. We have chosen
here to give our observations different weights, according to their reliability. To do this, we scaled the
information matrix by using the rcond command in MATLAB. This command calculates the one-norm
estimate of the reciprocal condition number as returned by LAPACK. rcond was used on the matrix
giving information on the angles: (

cos θ − cos θ′

sin θ − sin θ′

)
.

The output of rcond varies between zero and one. For angles that lead to an ill-conditioned
Equation (14), we get small weights, but good observations will get maximum weighting.

In the example shown in Figure 9 and [27], we tracked an object using bearing observations
provided by two moving sensors. The target moved on a circular path (sin (t/25), cos (t/25) for
0 ≤ t ≤ 100). It moved in a clockwise direction, starting from the 12 o’clock position. The first sensor
moved between (−3, 3) and (3, 1), and the other between (−3,−2) and (3, 1). Both sensors had a
constant speed. To generate the bearing observations, we transformed the true states of the object to
the bearing coordinates using Equations (15) and (16). We added white noise to both components
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with variances αθ = αθ′ = 0.05 to obtain the desired multiple bearing noisy observations. After that,
we transformed these noisy observations to the Cartesian coordinates using the transformation f
after computing m and m′ from Equation (14). We applied the shadowing filter at η = 1 on these
observations using the scaled information matrices to deal with the bad observations. In Figure 9,
we can also see the effect of the different weighting. Note that when the target was between the
four and five o’clock position, it was directly between the sensors θ = ±θ′. This led to a very bad
observation, as seen by the large error. Similarly, at the end of the trajectory, the object was almost
directly behind both sensors, which also led to a poorly-conditioned observations. However, using the
one-norm estimates as described above enabled us to determine good approximations.
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Figure 9. Performance of the shadowing filter in tracking an object using multiple bearing observations
with η = 1, αθ = αθ′ = 0.05. Note how the filter is able to overcome the singularities in the observations
and estimates the true dynamics quite well.

5.3. Chaotic Trajectory: Lorenz Model

In the previous sections and examples, we investigated the performance of the tracking filter for
deterministic trajectories in one- and two-dimensional spaces. The natural step from here is to consider
the realistic case of a tracking such as the chaotic motions seen in nature in insects, fish or birds.

We now apply the tracking technique to the Lorenz model [36]:

dx
dt

= Σ(y− x) (17a)

dy
dt

= x(ρ− z)− y (17b)

dz
dt

= xy− Bz (17c)

Using the standard Lorenz model and typical parameters ρ = 28, Σ = 10 and B = 8/3,
we initialized the system with (x0, y0, z0) = (0, 1, 1.05) and generated a trajectory containing 2501 data
points for t = [0, 25]. The data evolved as per Equation (17) and were measured with some uncertainty
following the incorporation of noise with variance of β = 1 to each component as per Equation (11).
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The dynamics were tracked using the shadowing filter with η = 0.1, which was the optimal
value for the chosen noise variance as found in Section 4, and a sampling rate of 0.1. We considered
uncorrelated errors and treated the system as per the scalar case outlined in Section 3.

Figure 10a–c shows the successful tracking of a target in each of the variables, while Figure 11
shows these details in a projection of the three-dimensional state space. We note that as the shadowing
filter did not contain any information about the vector field, the noisy observations were projected
down on to the attracting manifold of the Lorenz model. Therefore, our filter acted similar to the other
shadowing filters, which had information regarding the vector field encoded in them [17]. Although
there were some estimation error, one can see at the outer loops in Figure 11, we note that our filter
estimated the true time series most of the time.
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Figure 10. Projections onto each direction for the chaotic Lorenz model.
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Figure 11. Chaotic Lorenz attractor (blue line), noisy observations (red line) and the tracking technique
results (green triangles).

Up until this point, we have been concerned with forecasting. However, this is closely related to
noise reduction, and the results of the previous section can be viewed in such a context [37,38].

We assumed that the clean time series of each variable, x̃, ỹ and z̃, is in the presence of measurement
noise and aimed to separate these from the observed noisy data in order to restore the structure of
the system and improve the quality of predictions [38], i.e., xn = x̃t +

√
βεt, where εt is defined as in

Equation (11).
For measurement noise applied to Equation (17), the approximated trajectory (green triangles)

of Figures 10 and 11 is the reduced noise trajectory. Figure 11 illustrates how the noise (red line) has
smeared the chaotic attractor and obscured its structure and how the chaotic dynamics of the clean
(blue line) trajectory were successfully captured.

5.4. Real-World Multiple Object Application

As a final application, we present how the shadowing filter can be used to track multiple objects.
We used two-dimensional data produced from images of a real flock of ducks moving on a water
surface. The dataset was provided by the authors of [39]. We focussed on one of the data files where
a turning event occurred. We consider 25 individuals observed at 30 time points. We tracked the
trajectories using the positional observations and extracted the corresponding acceleration for each
bird. The difference between this application and the tracking of pigeons illustrated in Figure 1 was
the size of the flock. Here, we have a larger number of individuals, but a relatively short trajectory.
The results are shown in Figure 12, where the circles are the observations and the estimated paths are
given as solid lines. The filter accurately tracked the position of each individual. The acceleration of
each bird is shown in the lower panels of the figure. Note that this additional information about each
individual’s state can be used to forecast its future dynamics and could be used to infer that the forces
dominate such a collective behaviour [13].
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Figure 12. Shadowing filter applied to positional data from a group of ducks moving on the water
surface. The shadowing filter successfully tracked the 25 individuals. In (a), we tracked the trajectories
of the 25 ducks (the coloured solid lines) from the positional observations (red circles). In (b), we used
the tracking algorithm to estimate the corresponding acceleration profiles for each duck (colours refer
to different individuals).

6. Conclusions

In this paper and our previous ones [11–13], a new class of shadowing filters, applicable to
observational data of objects moving in more than one dimension, was introduced and investigated.
Our investigations demonstrate that this approach is highly versatile. First of all, it may be easily
adapted to different settings. For instance, it can be implemented to track a single moving particle,
a system of multiple objects [13] or be extended to consider rigid bodies instead [11]. Secondly, it is
computationally inexpensive in comparison to alternative methods [11]. Finally, it outperformed
the established and widely-used Kalman and particle filters in situations where nonlinearities were
present [11]. Our tracking technique is applicable to real data and enables us to minimise measurement
errors and overcome device failures, as well as allows for a reconstruction of the full dynamical state
space from limited position-only data [12,13].

In this paper, specifically, optimization of the filter quality was achieved for two tracking objectives,
namely “tracking the path that the object travelled” and “knowing the recent position of the object”,
by tuning the smoothing parameter such that the (task-specific) error was minimized. Numerical
investigations indicated that our tracking method was sufficiently robust that the benefit of taking
error correlation into account was negligible, allowing for many systems to be treated as per the scalar
case. Furthermore, we demonstrated that this tracking method can be applied to irregularly-sampled
real-world data without additional effort, a situation often encountered when measurement devices
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fail to log some measurement points. We highlight the ability of the shadowing filter tracking method
to avoid singularities in data, another challenge encountered frequently in practice. The shadowing
filter was successfully applied to noisy data from the Lorenz model, and we briefly commented on the
relation of this approach to noise reduction algorithms. Finally, a real-world application of multiple
object tracking was provided, as we tracked a flock of 25 ducks moving on the water surface.

Lightweight and inexpensive tracking devices are now available and have opened up a new area
of tracking possibilities [34,35,40–44], resulting in new observational data, which enable the study of
movement, of animals for example, with so far unreached precision. Given these advantages and the
resulting big data, it is clear that the new generation of filters needs to be fast and efficient. The outlined
benefits of our filter together with its clear optimization possibility make it, in our opinion, a very
strong contender for such applications, and we are looking forward to seeing the progress in this area
based on our filter.
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Appendix A. Detailed Solution

∂L
∂xi

= 0 =


−Sx0(X0 − x0)− Sx0y0(Y0 − y0)− λx1 , i = 0

−Sxi (Xi − xi)− Sxiyi (Yi − yi) + λxi − λxi+1 , 0 < i < n

−Sxn(Xn − xn)− Sxnyn(Yn − yn) + λxn , i = n

(A1)

∂L
∂yi

= 0 =


−Sy0(Y0 − y0)− Sx0y0(X0 − x0)− λy1 , i = 0

−Syi (Yi − yi)− Sxiyi (Xi − xi) + λyi − λyi+1 , 0 < i < n

−Syn(Yn − yn)− Sxnyn(Xn − xn) + λyn , i = n

(A2)

∂L
∂vxi

= 0 =


−λx1 T0 − µx1 , i = 0

−λxi+1 Ti + µxi − µxi+1 , 0 < i < n

µxn , i = n

(A3)

∂L
∂vyi

= 0 =


−λy1 T0 − µy1 , i = 0

−λyi+1 Ti + µyi − µyi+1 , 0 < i < n

µyn , i = n

(A4)

∂L
∂axi

= 0 = −1
2

λxi+1 T2
i − µxi+1 Ti + 2ηTiaxi (A5)

∂L
∂ayi

= 0 = −1
2

λyi+1 T2
i − µyi+1 Ti + 2ηTiayi (A6)

∂L
∂λxi

= 0 = xi+1 − xi − vxi Ti −
1
2

axi T
2
i (A7)

∂L
∂λyi

= 0 = yi+1 − yi − vyi Ti −
1
2

ayi T
2
i (A8)

∂L
∂µxi

= 0 = vxi+1 − vxi − axi Ti (A9)

∂L
∂µyi

= 0 = vyi+1 − vyi − ayi Ti (A10)

∂L
∂η

= 0 =
n−1

∑
i=0

Ti(a2
xi
− a2

yi
)− (tn − t0)ξ

2 (A11)

We will show how to solve the problem in two-dimensions when the correlation is taken into
account. We will represent the equations using vector and matrix forms. We will define some vectors
and matrices; please note that in our definitions, 0 refers to a 2 × 2 matrix of zeros, as follows:

P(2n+2)×(2n+2) =



[
X0

Y0

]
...[

Xn

Yn

]


, p(2n+2)×(2n+2) =



[
x0

y0

]
...[

xn

yn

]


, λ(2n)×1 =



[
λx1

λy1

]
...[

λxn

λyn

]


, µ(2n)×1 =



[
µx1

µy1

]
...[

µxn

µyn

]


,

a(2n)×1 =



[
ax0

ay0

]
...[

axn−1

ayn−1

]


.
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Obviously, P denotes the observations, p the estimates, λ and µ our Lagrangian parameters,
while a the piecewise constant accelerations. Moreover, to take correlations into account, we define the
information matrix as:

I(2n+2)×(2n+2) =



[
Sx0 Sx0y0

Sx0y0 Sy0

]
0 · · · 0

0
. . . . . .

...
...

. . . . . .
...

0 0 · · ·
[

Sxn Sxnyn

Sxnyn Syn

]


.

Similar to the scalar case, we need a time matrix T. However, in the two-dimensional problem,
each time resolution is repeated twice along the main diagonal of T, since we have two components:

T(2n)×(2n) =



[
T0 0
0 T0

]
0 · · · 0

0
. . . . . .

...
...

. . . . . .
...

0 0 · · ·
[

Tn−1 0
0 Tn−1

]


. (A12)

To simplify the problem as before to one compact equation, we need two additional matrices,
a 2n× 2n matrix D and a (2n + 2)× 2n matrix E defined as:

Dij =


−1, i = j,

1, i = j + 2,

0, otherwise,

Eij =


−1, i = j,

1, i = j + 2,

0, otherwise.

Using our previous definitions, we can see that Equations (A1) and (A2) can be combined into
this compact form:

E(2n+2)×2nλ2n×1 = I(2n+2)×(2n+2)(P(2n+2)×1 − p(2n+2)×1). (A13)

Similarly, Equations (A3) and (A4) can be expressed by:

D2n×2nµ2n×1 = T2n×2nλ2n×1. (A14)

Following our previous analysis, Equations (A5) and (A6) can be combined by:

2ηa2n×1 =
1
2

T2n×2nλ2n×1 + µ2n×1. (A15)

These three new Equations (A13)–(A15) can be used together to eliminate the dual variables
λxi , λyi , µxi and µyi . To do that, we need to define two more matrices M2n×2n and L2n×(2n+2) where
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the matrix L is similar to the matrix M, but with an extra two columns of zeros at the end, as follows:

M2n×2n =



[
−1 0
0 −1

]
0 · · · 0[

−1 0
0 −1

] [
−1 0
0 −1

]
· · · 0

...
. . . . . .

...[
−1 0
0 −1

] [
−1 0
0 −1

]
· · ·

[
−1 0
0 −1

]


,

L2n×(2n+2) =



[
−1 0
0 −1

]
0 · · · 0 0[

−1 0
0 −1

] [
−1 0
0 −1

]
· · · 0 0

...
. . . . . .

...
...[

−1 0
0 −1

] [
−1 0
0 −1

]
· · ·

[
−1 0
0 −1

]
0


.

With these definitions, it can be easily verified that D2n×2n M2n×2n = I2n×2n, which means that M
is the inverse of D. Then, multiplying both sides of this identity by (Tλ) and using Equation (A14),
it follows that:

µ2n×1 = M2n×2nT2n×2nλ2n×1 (A16)

Similarly, it can be shown that E(2n+2)×2nL2n×(2n+2) = J(2n+2)×(2n+2), where J is defined as:

J(2n+2)×(2n+2) =



[
+1 0
0 +1

]
0 0 · · · 0

0

[
+1 0
0 +1

]
0 · · · 0

...
. . . . . . . . .

...

0 · · · · · ·
[
+1 0
0 +1

]
0[

−1 0
0 −1

] [
−1 0
0 −1

]
· · ·

[
−1 0
0 −1

]
0



.

Multiplying the identity by:

I(P− p) =



[
Sx0(X0 − x0) + Sx0y0(Y0 − y0)

Sy0(Y0 − y0) + Sx0y0(X0 − x0)

]
...[

Sxn+1(Xn+1 − xn+1) + Sxn+1yn+1(Yn+1 − yn+1)

Syn+1(Yn+1 − yn+1) + Sxn+1yn+1(Xn+1 − xn+1)

]


,
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we find that:

JI(P− p) =



[
Sx0(X0 − x0) + Sx0y0(Y0 − y0)

Sy0(Y0 − y0) + Sx0y0(X0 − x0)

]
...[

Sxn+1(Xn+1 − xn+1) + Sxn+1yn+1(Yn+1 − yn+1)

Syn+1(Yn+1 − yn+1) + Sxn+1yn+1(Xn+1 − xn+1)

]


n−1

∑
i=0
−(Sxi (Xi − xi) + Sxiyi (Yi − yi))

n−1

∑
i=0
−(Syi (Yi − yi) + Sxiyi (Xi − xi))





.

Therefore, using the identity of J and Equation (A13), it follows:

ELI(P− p)− Eλ =



0
...
0

−
n

∑
i=0

(Sxi (Xi − xi) + Sxiyi (Yi − yi))

−
n

∑
i=0

(Syi (Yi − yi) + Sxiyi (Xi − xi))




.

However, (∑n
i=0(Sxi (Xi − xi) + Sxiyi (Yi − yi)) = 0) holds; see Equation (A1). Similarly,

(∑n
i=0(Syi (Yi − yi) + Sxiyi (Xi − xi)) = 0) holds from Equation (A2). Therefore:

λ2n×1 = L(2n)×(2n+2)I(2n+2)×(2n+2)(P− p)(2n+2)×1 (A17)

Using the two identities for µ and λ (Equations (A16) and (A17)) in Equation (A15), we get:

2ηa = (
1
2

TL + MTL)I(P− p) (A18)

Now, Equations (A7) and (A9) can be combined to eliminate vxi , so that:

xi+1Ti−1 − xi(Ti + Ti−1) + xi−1Ti =
1
2
(axi T

2
i Ti−1 + axi−1 T2

i−1Ti) (A19)

Similarly, from Equations (A8) and (A10), it follows that:

yi+1Ti−1 − yi(Ti + Ti−1) + yi−1Ti =
1
2
(ayi T

2
i Ti−1 + ayi−1 T2

i−1Ti) (A20)
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To combine Equations (A19) and (A20), we need to define two additional matrices G(2n−2)×2n and
B(2n−2)×(2n+2) as follows:

G =

G1,1 G2,1 · · · 0
...

. . . . . .
...

0 · · · G1,n−1 G2,n−1


G1,i =

[
T2

i−1Ti 0
0 T2

i−1Ti

]

G2,i =

[
Ti−1T2

i 0
0 Ti−1T2

i

]
, where i = 1, . . ., n− 1.

B =

B1,1 B2,1 B1,1−1=0 · · · 0
...

. . . . . . . . .
...

0 · · · B1,n−1 B2,n−1 B1,n−2


B1,i =

[
Ti 0
0 Ti

]

B2,i =

[
−(Ti−1 + Ti) 0

0 −(Ti−1 + Ti)

]
where i = 1, . . ., n− 1.

Using these two matrices, it is easy to see that Equations (A19) and (A20) are combined as:

Bp =
1
2

Ga (A21)

Now, Equations (A18) and (A21) can be combined, and we obtain the equation:

(ηB + AI)p = AIP, (A22)

where:
A(2n−2)×(2n+2) =

1
4

G(
1
2

TL + MTL). (A23)

Finally, to include the additional two conditions ∑n
i=0(Sxi (Xi − xi) + Sxiyi (Yi − yi)) = 0 and

∑n
i=0(Syi (Yi − yi) + Sxiyi (Xi − xi)) = 0, we define a (2n× (2n + 2)) matrix B̄ to be matrix B augmented

with two final rows of zeros and a (2n× (2n + 2)) matrix Ā to be A augmented with two final rows of
2× 2 identity matrices, then we get the final equation:

(ηB̄ + ĀI)p = ĀIP (A24)

which can be solved by singular-value decomposition to give the approximation trajectory. Similar to
the scalar case, to avoid the large errors at the end of the trajectory, we reverse the columns and
rows of matrices A and B to obtain the desired solution. Therefore, we expect that the errors at the
beginning of our estimations will now be large [11,12].
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Appendix B. Numerical Investigation Tables

Table A1. Results of the experiments to identify the almost optimum value of η giving the smallest 〈E〉
when Correlation is Accounted for (CA).

Experiment 1 η 0.1 1 10 100 1000
〈E〉 0.34 0.28 0.24 0.26 0.46

Experiment 2 η 1 5 10 50 100
〈E〉 0.27 0.24 0.23 0.24 0.25

Experiment 3 η 5 7 10 30 50
〈E〉 0.235 0.230 0.227 0.228 0.237

Experiment 4 η 7 10 15 20 30
〈E〉 0.234 0.229 0.227 0.226 0.228

Experiment 5 η 15 17 20 25 30
〈E〉 0.2361 0.2358 0.2357 0.2364 0.2374

Experiment 6 η 17 18 20 22 25
〈E〉 0.22406 0.22400 0.22402 0.22420 0.22470

Table A2. Results of the experiments to identify the almost optimum value of η giving the smallest 〈E〉
when Correlation is Ignored (CI).

Experiment 1 η 0.1 1 10 100 1000
〈E〉 0.37 0.28 0.23 0.24 0.43

Experiment 2 η 1 5 10 50 100
〈E〉 0.291 0.246 0.233 0.231 0.249

Experiment 3 η 10 30 50 70 100
〈E〉 0.23 0.22 0.23 0.23 0.25

Experiment 4 η 10 20 30 40 50
〈E〉 0.2361 0.2299 0.2298 0.2317 0.2345

Experiment 5 η 20 25 30 35 40
〈E〉 0.227 0.226 0.227 0.228 0.229

Experiment 6 η 20 22 25 27 30
〈E〉 0.22772 0.22737 0.22716 0.22718 0.22741

Table A3. Results of the experiments to identify the almost optimum value of η giving the smallest 〈e〉
when Correlation is Accounted for (CA).

Experiment 1 η 0.1 1 10 100 1000
〈e〉 0.86 0.77 0.59 0.47 0.91

Experiment 2 η 10 100 200 500 1000
〈e〉 0.55 0.47 0.51 0.70 0.95

Experiment 3 η 10 75 100 150 200
〈e〉 0.55 0.49 0.50 0.52 0.54

Experiment 4 η 10 50 75 90 100
〈e〉 0.5777 0.4976 0.4863 0.4861 0.4851

Experiment 5 η 75 80 90 95 100
〈e〉 0.4690 0.4678 0.4664 0.4664 0.4669

Experiment 6 η 90 91 92 93 95
〈e〉 0.47355 0.47354 0.47356 0.47358 0.47368
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Table A4. Results of the experiments to identify the almost optimum value of η giving the smallest 〈e〉
when Correlation is Ignored (CI).

Experiment 1 η 1 10 100 1000 10,000
〈e〉 0.71 0.59 0.45 0.36 0.47

Experiment 2 η 100 500 1000 5000 10,000
〈e〉 0.40 0.36 0.35 0.40 0.50

Experiment 3 η 500 750 1000 2500 5000
〈e〉 0.349 0.336 0.329 0.327 0.365

Experiment 4 η 1000 2000 2500 3500 5000
〈e〉 0.364 0.353 0.356 0.367 0.392

Experiment 5 η 1000 1500 2000 2250 2500
〈e〉 0.354 0.344 0.340 0.341 0.341

Experiment 6 η 1500 1750 2000 2100 2250
〈e〉 0.36438 0.36315 0.36319 0.36348 0.36416

Experiment 7 η 1500 1600 1750 1850 2000
〈e〉 0.3394 0.3391 0.3392 0.3395 0.3402
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