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Abstract: With the rapid development of mobile devices, mobile crowdsourcing has become an
important research focus. According to the task allocation, scholars have proposed many methods.
However, few works discuss combining social networks and mobile crowdsourcing. To maximize
the utilities of mobile crowdsourcing system, this paper proposes a task allocation model considering
the attributes of social networks for mobile crowdsourcing system. Starting from the homogeneity of
human beings, the relationship between friends in social networks is applied to mobile crowdsourcing
system. A task allocation algorithm based on the friend relationships is proposed. The GeoHash
coding mechanism is adopted in the process of calculating the strength of worker relationship, which
effectively protects the location privacy of workers. Utilizing synthetic dataset and the real-world Yelp
dataset, the performance of the proposed task allocation model was evaluated. Through comparison
experiments, the effectiveness and applicability of the proposed allocation mechanism were verified.
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1. Introduction

In recent years, a new framework has emerged, and mobile crowdsourcing has enable workers
to perform spatiotemporal tasks. With the development of various sensors (such as GPS and TP
(Temperature Probe)) and wireless mobile networks (such as 4G and 5G), the ability of smart devices to
process data is getting stronger and stronger. It is easy to participate in mobile crowdsourcing
for performing spatial tasks at specific locations for people, such as taking photos/videos [1],
uploading traffic information [2], weather conditions, online courier picking, booking services and
dating/meeting apps and games (e.g., Pokémon Go). It has greatly improved the quality of life and
promoted the development of online technology. At the same time, the market research institute
Newzoo [3] recently released the “2018 Global Mobile Market Report”, showing that by the end of
2018, the number of global smartphone users reached 3.3 billion, which means that there will be many
users in the future mobile crowdsourcing system. In general, mobile crowdsourcing systems (e.g., drip
taxis [4], hungry apps [5], etc.) can allocate or recommend spatial tasks to active workers who are close
to the task location. The mobile crowdsourcing system allocates the most suitable crowd workers to
each task based on the spatiotemporal attributes and the characteristics of tasks.

The most striking difference between mobile crowdsourcing and traditional crowdsourcing is
that workers can only perform the part of the spatial task close enough to them, so that workers can
actually move to the spatial task’s location before the task deadline. However, workers have no spatial
restrictions in traditional crowdsourcing systems. Therefore, researching and designing an effective
task allocation model to allocate tasks for workers is the main goal of mobile crowdsourcing.
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In [6], tasks of mobile crowdsourcing systems can be published in two different modes: Worker
Selected Tasks (WST) and Server Allocated Tasks (SAT). For WST mode, online workers can choose
any spatial task published by nearby requesters without having to coordinate with the mobile
crowdsourcing server. Due to the autonomy of WST, the platform cannot control the workers to
achieve a global optimal allocation strategy in terms of the number of allocated tasks or some objective
scores. For SAT mode, online workers will periodically report their location to the platform, so that the
platform can allocate tasks to nearby workers to optimize the effectiveness of mobile crowdsourcing.
In WST mode, workers do not need to report their location to the platform, but in SAT mode the
platform needs to track the locations of workers and protect the spatial privacy of workers. In addition,
in WST mode, certain tasks may never be selected because the platform has no control over the
characteristics of workers. However, in SAT mode, the server can allocate these tasks to the workers to
maximize the number of tasks allocated or maximize platform’s utility [7]. Therefore, in our paper,
we propose a task allocation model in SAT mode. Although there are many studies [7–12] on task
allocation methods for mobile crowdsourcing, their problem settings and optimization goals are not
exactly same.

At present, few research works [7,10–13] considered the relationship between friends when
allocating task in mobile crowdsourcing. A study [14] in the journal Nature Communications pointed
out that from the brain scan results, when friends react to the same thing, the brain wavelengths are
extremely similar. The research team led by Carolyn Parkinson, a social psychologist at the University
of California, Los Angeles, conducted experiments on 42 students. The researchers carried out each of
the reaction images one by one. In comparison, brain activity patterns are used to predict who is a
friend and who is a classmate. The final correct rate reached 48%. In the final report, the researchers
wrote: “Neural similarity increases with the friendship between people. These results show that we
are very similar to our friends in the way we perceive and respond to the world around us”. At the
same time, the reaction between friends is more similar than the reaction between non-friends. The
more similar the responses are, the more intimate their relationship are. Therefore, this paper deeply
explores the relationship between people and their friends to allocate the same or similar tasks that
the worker has performed to the workers’ friends, or allocate common tasks to the workers and his
friends, thereby reducing costs. For example, car pooling behavior saves more money than special car
behavior. The corresponding task/worker categories are shown in Table 1.

Table 1. Task/worker categories.

Task/Worker Catogories

A, B c1
C, D, E, F c2, c3

1, 5 c1
2 c2
3 c3
4 c4

Example. In Table 1, A–F represent six workers, while 1–5 represent five tasks, where Task 1 and
Task 5 belong to the same category of task. As shown in Figure 1, we assume that Worker A and
Worker B are university roommates who live together everyday. They are intimate, and not only have
similar professional skills, but are familiar with each other and understand each other. Completing a
job will be more tacit.

In SAT mode, the mobile crowdsourcing platform can allocate Task 5 to Worker A and Worker
B, so that the two workers can work together. It will not only improve the quality of sensed data
and the completion rate of tasks, but also save the cost of moving to the target location, which can
reduce the unnecessary overhead and maximize the use of current resources. Conversely, if Task 5
is allocated to Worker E, Worker E will be required to bear the cost of task alone. For a more specific
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example, if Workers A and B are classmates with the same major, they have similar professional skills.
We assume that Workers A and B are majoring in computer science and technology. The five-pointed
star represents the task that needs ability of repairing computers. Worker A has performed Task 5. The
mobile crowdsourcing platform can allocate Task 1 to Workers A and B who have similar job skills.
The effect will be perfectly reflected in the completion, professionalism, time saving and allocation
matching of the tasks.

Figure 1. An Example of workers and tasks.

According to the above analysis, in this paper, we propose a Friend Relationship Strength Mobile
Crowdsourcing (FRS-MC) combining the adaptive threshold algorithm and GeoHash coding, which
aims to deeply explore the strength of the relationship between workers and their friends. Under the
constraints of the deadline of task and budget, this paper applies friend relationships to the task
allocation problem of mobile crowdsourcing, which can improve the accuracy of task allocation,
reduce the travel cost of workers and maximize the total utilities of the allocations (defined as the
total utilities of workers). Because the platform needs to track the locations of workers in SAT mode,
it needs to protect the spatial privacy of workers. GeoHash coding can provide high protection of
worker’s spatial location information. First, we explore the relationship strength between workers
and their friends on time attribute. Then, we explore the relationship strength between workers and
their friends on geographical attributes. Finally, our proposed FRS-MC algorithm is used to select the
workers with the highest relationship strength.

Specifically, we make the following contributions.

• We research the relationships among friends in social networks and apply them to task allocation
model in mobile crowdsourcing.

• The time relationship strength based on historical interaction information of friends, and the
geographical relationship strength based on GeoHash coding are researched to protect the privacy
of workers.

• We design an algorithm for task allocation based on friend relationship strength.
• Utilizing real dataset, the adaptation and effectiveness of the proposed FRS-MC algorithm are

verified through comparison with other task allocation methods.

In Section 2, we review the previous research in mobile crowdsourcing. Section 3 introduces the
definition of problems in the mobile crowdsourcing system. In Section 4, we introduce the proposed
model and give the algorithm. Finally, Section 6 summarizes the paper.

2. Related Work

In this section, we review the related works of mobile crowdsourcing, as well as task allocation
issues and incentives.
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2.1. Mobile Crowdsourcing

Mobile crowdsourcing is one of the emerging research focuses in resent years. It has attracted
great attentions from practitioners and scholars for many years. Anastasios et al. [15] researched
the meaningful spatiotemporal patterns and user’s mobility by analyzing users’ sign-in behaviors.
Howe et al. [16] first proposed the concept of crowdsourcing. Many systems and applications have
promoted the development of mobile crowdsourcing; e.g., SensoRcivico [17] provided a common
platform to support a variety of crowdsourcing tasks. Hu et al. [18] utilized crowdsourcing to improve
the quality of Point of Interest (POI) labels. However, thus far, few studies have stated what has been
achieved and what should be done. Zhao et al. [19] critically studied the basis of crowdsourcing
research by investigating the landscape of existing research, including theoretical foundations, research
methods and research focus.

Kazemi et al. [6] classified mobile crowdsourcing systems from two perspectives: people’s
motivation and publishing model. From the perspective of people’s motivation, the crowd workers
can be divided into two categories: reward-based workers can be rewarded according to the services
they provide; and self-based workers voluntarily perform tasks. In this paper, we propose FRS-MC
algorithm based on reward model that workers get paid after completing tasks.

2.2. Task Allocation

According to the release mode of crowd tasks, mobile crowdsourcing can also be divided into
two categories: worker selection task (WST) and server allocation task (SAT) [6]. In particular, for the
WST model, crowd tasks are published to all workers, and workers can choose any task themselves.
However, maximizing social welfare in task allocation is a NP-hard problem. Cheung et al. [20]
proposed an Asynchronous and Distributed Task Selection (ADTS) algorithm to help workers select
tasks. Conversely, for SAT mode, the mobile crowdsourcing platform will allocate tasks directly to
workers based on the location information.

Some of the previous works for WST model allow workers to select available tasks based on their
personal preferences [21,22]. However, according to the SAT mode, tasks in mobile crowdsourcing
system are allocated to workers for different purposes. For example, Hassan et al. [8], To et al. [9],
and Kazemi et al. [6] considered the problem of online spatial task allocation; the main goal is to
maximize the allocation for all tasks. Luan et al. [10] introduced hyperlocal mobile crowdsourcing,
and To et al. [11] maximized the number of allocated tasks with budget constraints. Based on the
crowdsourcing methods, Zhai et al. [23] studied the distributed scheme and allocated spectrum
sensing tasks for mobile terminals. The goal is to maximize the perceptual effect function to
solve the task allocation problem in cognitive radio networks. Li et al. [24] considered dynamic
participant recruitment issues for heterogeneous sensing tasks (with different time and spacial
requirements) to minimize sensing costs while maintaining a certain level of probability coverage.
Dang et al. [7] arranged the largest number of complex tasks for crowd workers based on worker
and task constraints, and minimized the cost of travel for allocation, while guaranteeing the maximal
number of task allocations.

Tong et al. [25] solved the shortcomings of the existing offline methods (micro-tasks and mass
workers in actual applications appear dynamically and their spatiotemporal information cannot be
known in advance). Most previous works on mobile crowdsourcing design task allocation strategies to
maximize allocated scores. However, these methods are designed based on the available workers/tasks
in mobile crowdsourcing system when the worker/task is allocated. These strategies may achieve local
optimum due to ignoring future workers/tasks that may join the system. Cheng et al. [26] considered
both existing and future (through prediction) workers/tasks to achieve global optimum task allocations.
Lian et al. [27] considered a reliable diversity-based mobile crowdsourcing problem, and allocated
workers for spatial tasks to maximize the diversity and reliability of mobile crowdsourcing system.
Cheng et al. [12] considered a mobile crowdsourcing scenario that each worker has a set of qualified
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skills, and each spatial task (e.g., repairing a house, decorating a room, and entertaining a ceremony) is
time-limited and budget-limited.

2.3. Other Related Works

In traditional crowdsourcing, crowd participants accept and complete tasks through the
web platform without having to consider privacy protection issues. In mobile crowdsourcing,
crowdsourcing participants need to submit location information to the platform, which generates the
risk of privacy leakage. The location information of crowdsourcing participants is also an important
factor to be considered for task allocation. The location privacy protection problem has been studied
in the field of location-based services. Wang et al. [28] proposed an incentive mechanism for static
selection of worker candidates, and then dynamically selected the winner after bidding. Under the
framework of this incentive mechanism, privacy protection is proposed to protect the privacy of
workers. Wang et al. [29,30] proposed a real-time location privacy protection for mobile crowdsourcing
systems. An improved two-stage auction algorithm based on trust and privacy sensitivity (TATP)
is proposed. They also proposed a k-ε-differential privacy protection to prevent user’s location
information from leaking. Chi et al. [31] proposed a location privacy protection mechanism CKD
(k-anonymity and differential privacy-preserving). Hu et al. [32] proposed an incentive mechanism
based on multi-attribute reverse auction for mobile crowdsourcing. Li et al. [33] proposed two
algorithms to select appropriate mobile crowdsensing participants and calculate the payments to
them. Duan et al. [34] proposed two distributed auction schemes, namely cost-preferred auction
scheme (CPAS) and time schedule-preferred auction scheme (TPAS), which differ on the methods of
task scheduling, winner determination, and payment computation. Li et al. [35] proposed a novel
network model and an influence propagation model taking influence propagation in both online social
networks and the physical world into consideration. Cai et al. [36] proposed a novel mechanism
for data uploading in smart cyber-physical systems, which considers both energy conservation and
privacy preservation. Zhang et al. [37] proposed a novel privacy checking algorithm and an efficient
one to accelerate the privacy checking process. Liu et al. [13,38] constructed a security protocol that
preserves the location privacy of workers and task requesters. To et al. [39] distributed the location of
tasks and workers based on geographic indistinguishability, and then designed techniques to quantify
the achievable probabilities between tasks and workers.

3. Problem Definition

In this section, we present the definitions of the task allocation model based on friend relationship
for mobile crowdsourcing.

3.1. Crowdsourcing Workers with Friends

First, we give the definition of crowdsourcing workers with friends in mobile crowdsourcing.
Assume that Pt = {p1, p2, . . . , pk} is a set of all workers in timestamp t in mobile crowdsourcing, that
is, there are k workers at timestamp t. Each of them can perform some types of crowdsourcing tasks.

Definition 1. (Crowdsourcing Workers with Friends) W = {w1, w2, ..., wm} represents the set of
crowdsourcing workers in the mobile crowdsourcing, each wi(1 ≤ i ≤ n) has a set of friends
Ωi= { f1, f2, ..., fr} (∈ Pt), which means that wi has r friends. The crowdsourcing worker can move with
the speed vi and has a maximal moving distance di. The service quality of wi is presented by qi.

In Definition 1, crowd workers can move dynamically with the speed vi in any direction, the
position of wi is shown by li.They can freely join or leave the mobile crowdsourcing system from li to a
maximal distance di. Therefore, wi can be shown by wi =< li, vi, di, Ωi, qi >.
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3.2. Crowdsourcing Task with Categories

In this section, we present the definition of a crowd task with categories in a mobile crowdsourcing
system. Assume that ψ= {g1, g2, ..., go} is a set of all categories of tasks in the mobile crowdsourcing,
that is to say, there are o types of tasks in the mobile crowdsourcing.

Definition 2. (Crowdsourcing Tasks with Categories) T = {t1, t2, ..., tn} denotes the crowdsourcing task set
in the mobile crowdsourcing, each tj(1 ≤ j ≤ n) has a category set Gj= {g1, g2, ..., gs} (∈ ψ), which means
that tj belongs to s categories. Each task has a budget Bj for crowd workers.

As given in Definition 2, the task requester publishes a mobile task tj with the category that
requires the worker to physically move to a specific location lj and arrive at lj before the arrival
deadline ej. At the same time, the task requester also specifies the budget Bj, which is the maximum
amount he/she is willing to pay for the worker. This budget Bj can be a bonus cash or bonus point in
mobile crowdsourcing system. At the same time, this task belongs to certain categories, e.g., it can
belong to both decoration and construction. Therefore, tj can be shown by tj =< lj, Gj, ej, Bj >.

3.3. Allocation Problem

Given the crowdsourcing task set T, the crowdsourcing worker set W, the crowdsourcing task
and the crowdsourcing workers appear one after another in a certain order. The solution goal is to
find the task allocation of T and W, and M ⊆ T ×W. To maximize the total utility of task allocation,
it should satisfy the following constraints:

1. Deadline constraint: When a crowdsourcing task tj or a crowdsourcing worker wi appears, task
allocations can be given, and the crowdsourcing worker’s arrival time satisfies the deadline of tj.

2. Invariant constraint: Once allocated, task allocations cannot be changed.
3. Spatial constraint: The task allocation < wi, tj > needs to satisfy that the moving distance of wj

cannot exceed his maximal moving distance.
4. Budget constraint: The payment paid by the requester for wi cannot exceed the maximal budget

of tj.

To allocate worker wi to task tj, we need to pay his cost cij (the driving cost in this paper), which
is related to the travel cost from wi’s position li to tj’s position lj. The value of cij can be calculated by
the gas/transport fee per kilometer and the moving distance. For public transportation, the cost of cij
can be calculated by multiplying the cost per kilometer by the distance traveled. For walking, we can
also provide workers with a compensation fee that is proportional to his/her distance traveled.

Without loss of generality, assume that the cost cij is proportional to the travel distance dist(li, lj),
where dist(li, lj) is the distance function between wi and tj. Formally, we have cij = Fi · dist(li, lj),
where Fi is the constant parameter (e.g., gas/transport fee per kilometer). In our paper, we use the
actual distance in the Google Maps API as the distance function. The descriptions for symbols are
shown in Table 2.
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Table 2. Symbols and notations.

Symbol Description

Pt the set of all workers at timestamp t
W the set of all workers in mobile crowdsourcing
T the set of all tasks in mobile crowdsourcing
li the position of wi
lj the position of tj
vi the speed of wi
di maximum moving distance of wi
Ωi the set of wi’s friends
qi the service quality of wi
Gj the category set of tj
ej the deadline of tj
Bj the budget of tj

4. The Proposed Allocation Model

In this section, the corresponding solutions for the problems of time relationship strength and
geographical relationship strength are presented.

4.1. Time Relationship Strength

The time relationship strength between workers and friends can be expressed by basic interactions
between two workers (e.g., sending messages) or static public information (e.g., common hobbies).
We represent this interaction or static information as an impact factor. The impact factor represents
the identifiable and countable expression of the worker relationship. It can influence the relationship
strength in a positive or negative way based on social attributes.

Impact factors can exist in multiple social networks. The impact factors of each social network may
have different weights. The weight of impact factor indicates its relative impact on the strength of the
final relationship. In our mobile crowdsourcing system, the weight of impact factor for each source is
manually assigned. According to the behavior of workers, the weights of impact factors are determined.
According to the evaluation for Facebook social network [40], the weight of common hobbies is set
as 0.3, the weight of learning in the same school is set as 0.1, and the weight of boyfriend/girlfriend
relationship is set as 0.9. The final relationship strength is also affected by the number of impact factors,
because the using frequency of social networks has an impact on the strength of relationships.

People’s activities are divided into short-term activities, long-term activities and permanent
activities. The impact factor of a short-term activity represents a single expression of the relationship.
The date and time of this event can be recognized. In addition, we can estimate the duration of
relationship through experience, e.g., when sending a message, the duration of influence time is
two days.

The impact factor of a long-term activity is used for the activities that we can identify the start
time and end time. As the previous type, we can estimate the duration of its impact, e.g., studying at
the same school from September 2017 to June 2020, which the duration of impact is estimated as three
years.

The impact factor of a permanent activity represents a permanent activity or some static
information, and we cannot define its start and end dates, e.g., family relations. Therefore, the
relationship strength of one impact factor is shown by Equation (1).

I(s, f ) = ws f ·

u
∑

i=1
Ft

1 + ln(1 + uc)
(1)
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where s is a social network, ws f is the weight of impact factor f of social network s, u indicates the
number of impact factors in the relationship between the worker and his friend, uc is the count of
instances of impact factors in social network s, and Ft indicates the function expressing time impact.
Because we use the time attribute to calculate the relationship strength of one impact factor, Equation (1)
is used to calculate the time relationship strength of one impact factor. Ft depends on the type of
impact factor. We determine three time impact functions based on the types of activities.

Short-term activity:

Ft(ts f ,tc,ta) =


1

1+logts f
(max(1,tc−ta))

tc ≥ ta

0 tc < ta
(2)

where ts f is the time of the impact duration in days, tc indicates the current time, ta is the start time of
the short-term activity, and tc − ta is the time of duration of the short-term activity.

Long-term activity:

Ft(ts f ,tc,ts,te) =


1

1+logts f
(max(1,tc−te))

tc > te

1
2 tc ∈< ts, te >

0 tc < ts

(3)

where ts f is the time of the impact duration in days, tc is the current time, ts indicates the start time of
the long-term activity, and te means the end time of the long-term activity. For example, a worker and
his friend are studying at the same school from September 2017 to June 2020. ts f is three years, ts is
September 2017, te is June 2020, and tc is the current system time.

Permanent activity:

Ft =
1
2

(4)

Because permanent activities cannot be estimated, it can be set as a fixed value 1
2 . According to

the time relationship strength, its calculation method is discussed by an instance.

(a) Direct Relationship (b) Indirect Relationship

(c) Composite Relationship

Figure 2. Types of relationship.
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The relationships between people can be roughly divided into three types. Figure 2a shows the
direct relationship between friends. For example, Workers A and B are friends. Figure 2b shows the
indirect relationship between friends. For example, Workers A and B are not friends, but they have a
common friend. Figure 2c shows the complex relationship between friends. For example, there is a
direct relationship and an indirect relationship between Workers A and E.

4.1.1. Direct Relationship Strength

The direct relationship between the two workers is obtained by Equation (5).

TRSd(w1, w2) =
n

∑
s

m

∑
f

I (s, f ) (5)

where n represents the number of social networks and m represents the number of impact factors in
the social network.

4.1.2. Indirect Relationship Strength

The indirect relationship strength between the two workers is obtained by Equation (6).

TRSid(w1, w2) = e−γd
d

∏
i=1

TRSd(w1, w2) (6)

where γ represents the attenuation coefficient of the length of relationship path, and d represents
the length of relationship strength. In addition, e−γd is an attenuation function whose value varies
continuously from 0 to 1, as illustrated in Figure 3. The x-coordinates of Figure 3 indicate the length of
relationship strength d. e−γd represents the weight factor of relationship path in all paths. In general,
there are multiple relationship paths between two workers. Because the length of relationship has
different effects on the relationship strength, we cannot consider all paths as equivalent. Therefore, we
use weighted average to calculate the indirect relationship strength for all paths.

Figure 3. Attenuation function of e−γd.
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Assume there are n paths represented as {P1, P2, ..., Pn} between worker w1 and worker w2.
The weights are {e−γd1 , e−γd2 , ..., e−γdn}, respectively. Therefore, the indirect relationship strength for
all paths is shown by Equation (7) through improving Equation (6).

TRSid(w1, w2) =

n
∑

i=1

[
e−γdi

di
∏
i=1

TRSd(w1, w2)

]
n
∑

i=1
e−γdi

(7)

4.1.3. Composite Relationship Strength

Based on the direct relationship strength and indirect relationship strength, the final composite
relationship strength is computed by Equation (8).

TRS(w1, w2) = α ·
n

∑
s

m

∑
f

I(s, f ) + β ·

n
∑

i=1

[
e−γdi

di
∏
i=1

TRSd(w1, w2)

]
n
∑

i=1
e−γdi

(8)

where α and β are the weights of direct relationship strength and indirect relationship strength,
respectively, and α + β = 1.

4.2. Geographical Relationship Strength

In mobile crowdsourcing, the location information is an important attribute, which can affect the
efficiency of task allocation. When a worker and his friend have strong time relationship strength,
but the distance between them is very large, it cannot allocate the same task for them. In this paper, we
use GeoHash code to calculate the location-based relationship strength, and different ranges can be
obtained according to different digits. GeoHash converts two-dimensional latitude and longitude into
a string. For example, Figure 4 shows the GeoHash strings of nine regions in Beijing, namely WX4ER,
WX4G2, WX4G3, etc. Each string represents a rectangular area. That is to say, all points (latitude and
longitude coordinates) in this rectangular area share the same GeoHash string, which can not only be
used for the calculation of geographical relationship strength, but also protect the location privacies of
workers and tasks in mobile crowdsourcing (only indicates the approximate location of the area rather
than the specific point). The GeoHash string represents not a point, but a rectangular area, such as the
code wx4g0ec19. The worker can post the address code to indicate that he/she stays near Beihai Park,
but does not expose his/her exact position.

Algorithm 1 shows the calculation method of geographical relationship strength based on
GeoHash. First, entering the latitude and longitude coordinates lw1 and lw2 of worker w1 and worker w2,
the coordinate format is l =< longitude, latitude >. Then, the corresponding binary codes geoLogw1 ,
geoLatw1 , geoLogw2 , and geoLatw2 of latitude and longitude of the position are obtained according
to the GeoHash code. We combine the GeoHash codes of latitude and longitude to generate a new
string following the rule of even bit longitude, odd bit latitude. The new resulting string is processed
into a code sequences Basew1 , Basew2 following the rules of base32 encoding. Then, the two codes are
compared starting from the first position of the sequence until a different encoding is encountered to
obtain Basecon.

Let Precisionmax be the maximal precision. We utilize Softmax activation function to represent
their geographical relationship strength. The calculation of geographical relationship strength is shown
by Equation (9).

LRS=
e|Basecon |

Precisionmax
∑

j=1
ej

(9)
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where |Basecon| indicates the length of Basecon,LRS ∈ [0, 1].

Figure 4. GeoHash.

Algorithm 1 The LRS algorithm.

Require: lw1 , lw2 , Precisionmax;
Ensure: LRS;

1: geoLogw1 , geoLatw1 , geoLogw2 , geoLatw2 ← Calculate GeoHash binary code based on latitude and

longitude;
2: geow1 , geow2 ← Combine geoLogw1 , geoLatw1 , geoLogw2 , geoLatw2 with 2 strings according to the

principle of “even bit longitude, odd bit latitude";
3: Basew1 , Basew2 ← Process geow1 , geow2 according to the rules of base32 encoding;
4: Basecon ← Calculate the same string starting from the first digit of the two strings;
5: LRS← By Equation (9);
6: return LRS;

4.3. Mixed Relationship Strength

In the above two sections, the time attribute and geographical attribute are discussed.
The calculation method of relationship strength between worker w1 and friend w2 is obtained by
Equation (10).

RS(w1, w2) = − ln(TRS(w1, w2) · LRS(w1, w2)) (10)

where TRS(w1, w2), LRS(w1, w2) ∈ [0, 1], we get the logarithm of TRS(w1, w2) · LRS(w1, w2) in order
to amplify the data.

4.4. The FRS-MC Algorithm

In this section, we present the friend relationship-based task allocation model FRS-MC.
Algorithm 2 shows the process of FRS-MC algorithm. The task set T, the worker set W, and the
maximal utility Umax learned through historical records are given. The tasks and workers appear
randomly in mobile crowdsourcing system. The new task will be added into the set AppearTaskList.
The new worker will be added into the set CandidateList, and the friends of the new worker in
CandidateList will be found too. If the CandidateList set is empty, there is no worker in the allocated
worker set who are friends of the new worker. By randomly selecting a threshold ek, the utilities of tasks
and workers should be greater than ek. The value of k will be randomly selected from 0, 1, . . . , θ − 1,
where θ can be obtained by dln(Umax + 1)e. Umax can be obtained through historical records. The value
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of k will be generated randomly according to the probability pk. When the task allocation is completed,
the algorithm updates the weight ωk of threshold ek by the equation ωk = ωk(1 + δ)uk/Umax , and
updates the values of SumW and pk, correspondingly, where uk indicates the utility if ek is always used
as the threshold. If the CandidateList set is not empty, then we calculate the time relationship strength
and geographical relationship strength of the newly appearing worker and his friends who already
exist in mobile crowdsourcing system. The system selects the worker with the strongest relationship
with the newly-emerged worker, and finds the category of task that this worker has done. Then, the
system finds the existing tasks that have are in this category. The system then selects the task for them
with the highest budget from this task set for allocation.

Algorithm 2 The FRS algorithm.

Require: W,T,Umax;
Ensure: M;

1: ListWT ←mix W,T;
2: shuffle ListWT;
3: θ ← dln(Umax + 1)e
4: i = 0, 1, . . . , θ − 1, wi = 1, SumW = ∑i wi, pi = wi/SumW
5: for each object ∈ ListWT do

6: if object is worker then

7: CandidateList← Find a list of workers who are friends with the object in the system
8: if CandidateList is not Null then

9: for each candidate ∈ CandidateList do

10: Calculate the time relationship strength between candidate and object
11: Calculate the geographical relationship strength between candidate and object
12: end for
13: Get the categories of tasks that workers having the strongest relationship with object in

CandidateList have performed and allocate this kind of task to object
14: Add to M
15: else

16: Randomly choose one as the k value from 0, 1, . . . , θ − 1 according to the probability pi
17: Allocate tasks that meet all constraints and utilities of the allocation are higher than ek

18: Add to M
19: ωk = ωk(1 + δ)uk/Umax

20: Update SumW and pi
21: end if
22: else

23: Append to AppearTaskList
24: end if
25: end for

5. Experiments and Analysis

5.1. Experimental Methodology

In this section, the methods of experimental evaluation and experimental results are presented.
Real world (REAL) and synthetic (SYN) datasets were used to verify the performance of the proposed
task allocation model.

The Yelp dataset [41] as real data was utilized to conduction comparison experiments. Yelp is a
social network dedicated to local business directory services and review sites, which includes 188,593
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enterprises, 1,518,169 users and 5,996,997 comments. For this dataset, we treated Yelp users as mobile
crowdsourcing workers and enterprises as mobile crowdsourcing tasks. In Yelp dataset, the location
information of workers is not provided. In the experiments, one of the worker’s comments was
selected, and the position of the corresponding enterprise of the selected comment was considered the
position of the worker. Therefore, the location attribute of workers can be obtained. Figure 5a,b show
the distribution of workers and tasks provided by the Amap [42]. The average rating in this dataset
was considered the worker’s service quality. In addition, the Yelp dataset also provides the rating that
the company receives, which considered the budget of the task. The allocatable time for the task was
set to the business hours of the enterprise.

(a) Distribution of Yelp workers (b) Distribution of Yelp tasks

Figure 5. Yelp dataset.

According to the synthetic data, based on Gaussian distribution, the locations of workers and
tasks in the 2D data space [0, 5] 2 were generated. The actual latitude and longitude were used to
calculate the distance. According to the quality of worker’s sensed data, we generated data that fit the
Gaussian distribution with an expected value of 0.7 and a variance of 0.1. In terms of worker’s friends,
we set a set of 10,000 workers in advance. For each worker, we randomly sampled 10 workers from the
set as the friends of the worker. In terms of task categories, we set a set of 20 categories in advance.
According to each task, we randomly sampled three categories from the set as the category of the task.

We conducted comparison experiments for GeoHash coding precision, and the precision was set
as 8, 10 and 12, respectively. To evaluate the performance of our proposed algorithm, we compared our
proposed FRS algorithm with greedy algorithm, random threshold algorithm and adaptive threshold
algorithm, and the precision was set as 12. Greedy selects a “best” worker-and-task assignment with
the highest utility each time, which is a local optimal approach. The random threshold algorithm [43]
randomly selects a threshold, and when the allocation is greater than the threshold, the allocation is
completed. The adaptive threshold algorithm [44] is improved on the basis of the random threshold
algorithm, which can improve the probability of occurrence of a ideal threshold.

For each group of experiments, the utility, the number of allocations and the running time were
compared. All experiments were run on Windows 10 operating system with Intel(R) Core(TM) i5-6500
@3.20GHz CPU, 8.00GB Memory, Python2.7 and PyCharm 2018.2.4 simulation platform.

5.2. Experiments on Synthetic Data

5.2.1. Effect of the Precision

FRS model with different geographical precisions will have different effects on the experimental
results, thus three groups of comparison experiments were conducted to illustrate the effect of different
geographical precisions for utility, number of allocations and running times. Each group of comparison
experiments included 10 experiments, and the experimental settings are shown in Table 3.
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Table 3. Experimental settings for the effect of precision.

Utility/Number of Allocation/Running Time

Workers 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
Tasks 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000

Precision 8/10/12 8/10/12 8/10/12 8/10/12 8/10/12 8/10/12 8/10/12 8/10/12 8/10/12 8/10/12

The x-coordinates of Figure 6a–c indicate the number of workers in the mobile crowdsourcing
system.The y-coordinate of Figure 6a indicates the allocation utility, the y-coordinate of Figure 6b
indicates the number of allocations, and the y-coordinate of Figure 6c indicates the running time.
Figure 6a presents the experimental results on utilities under different values of precision. The utilities
increased with the increase of workers, and the utilities reached steady state when the number of
workers was big enough. However, the FRS algorithm when precision = 12 was more efficient than
the FRS algorithm when precision = 8 and precision = 10, and the utilities could reach the maximal
value more quickly. This was because higher geographical precision led to more accurate geographical
relationship strength between workers and their friends. It was easier to find a friend with a stronger
relationship for the worker.

(a) Utility (b) Number of allocations

(c) Running times

Figure 6. The effect of precision.
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Figure 6b shows the experimental results on the number of allocations under different values
of precisions. The number of allocations increased with the increase of workers, and the number of
allocations reached stable state in the end. However, the FRS algorithm when precision = 12 had a
higher allocation utility than the FRS algorithm when precision = 8 and precision = 10, and reached
the maximal number of allocations more quickly.

Figure 6c shows the influence of different geographical precisions on algorithm running time.
In Figure 6c, it can be seen that different precisions had little effect on running time.

From these three groups of comparison experiments, it can be seen that the FRS algorithm when
precision = 12 was better than other FRS algorithms in terms of utilities and number of allocations.
In the following experiments, we selected precision = 12 for FRS algorithm.

To illustrate the applicability of our proposed FRS algorithm for different numbers of workers
and tasks, the proposed FRS algorithm on synthetic dataset was compared with greedy algorithm,
random threshold algorithm and adaptive threshold algorithm. According to the synthetic dataset, we
conducted the comparison experiments on small-scale dataset and large-scale dataset.

5.2.2. Effect of Small-Scale Data

The experimental settings for small-scale data are shown in Table 4. The x-coordinate of
Figure 7a–c all indicate the number of workers in the mobile crowdsourcing system. The y-coordinate
of Figure 7a indicates the allocation utility, the y-coordinate of Figure 7b indicates the number of
allocations, and the y-coordinate of Figure 7c indicates the running time.

Table 4. Experimental settings for effect of the small-scale data.

Utility/Number of Allocation/Running Time

Workers 100 200 300 400 500 600 700 800 900 1000
Tasks 300 300 300 300 300 300 300 300 300 300

Precision 12 12 12 12 12 12 12 12 12 12

Figure 7a shows that, when the number of workers was more than 500, our proposed FRS
algorithm was better than the other three algorithms and had an upward trend. When the number
of workers exceeded 800, the utilities of the other three algorithms decreased, but the utility of FRS
algorithm still increased steadily. This was because that FRS algorithm was designed based on the
relationship of friend. The more workers there were, the easier it was to find friends of a certain worker,
thus the more tasks could be allocated to this worker, and the higher was the utility of the allocation.

Figure 7b shows that the numbers of allocations of greedy, random threshold and adaptive
threshold algorithms were almost same, and the number of allocations of FRS algorithm was lower
than the other three algorithms. This was because that FRS algorithm needed to calculate the strength
of friendship relationship to find the tasks that could be allocated. The matching conditions were more
stringent, which resulted in fewer allocations. However, it did not affect the overall utility, as shown
in Figure 7a.

Figure 7c shows that the running time of FRS algorithm was higher than the other three algorithms,
because the FRS algorithm first finds the worker’s friend and then calculates the strength of relationship
with the friend. Although the FRS algorithm took a long time to run, it took milliseconds to process
each object. Therefore, the proposed FRS algorithm can meet the real-time requirements.

From these three groups of experiments, we found that our proposed FRS algorithm is suitable
for mobile crowdsourcing system on small-scale dataset, and is better than the other three algorithms
in terms of utility.
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(a) Utility (b) Number of allocations

(c) Running times

Figure 7. Effect of small-scale data.

5.2.3. Effect of Large-Scale Data

The experimental settings for large-scale data are shown in Table 5. The x-coordinate of Figure 8a–c
indicates the number of workers in the mobile crowdsourcing system. The y-coordinate of Figure 8a
indicates the allocation utility, the y-coordinate of Figure 8b indicates the number of allocations, and
the y-coordinate of Figure 8c indicates the running time.

Table 5. Experimental settings for effect of large-scale data.

Utility/Number of Allocation/Running Time

Workers 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
Tasks 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000

Precision 12 12 12 12 12 12 12 12 12 12
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(a) Utility (b) Number of allocations

(c) Running times

Figure 8. Effect of large-scale data.

Figure 8a shows that, when the number of workers was more than 4000, the FRS algorithm was
better than the other three algorithms and had an upward trend. In addition, it can be seen that,
when the number of workers exceeded the number of tasks, the utilities of the other three algorithms
remained almost unchanged, while the FRS algorithm increased steadily. This was because that FRS
algorithm was designed based on the relationship of friend. The larger was the number of workers,
the easier it was to find the friends of a certain worker is, thus the more tasks could be allocated to this
worker, and the higher was the utility of the allocation.

Figure 8b shows that the numbers of allocations of greedy, random threshold and adaptive
threshold algorithms were almost same, and the number of allocation of FRS algorithm was lower
than the other three algorithms. This was because that FRS algorithm needs to calculate the strength of
friendship relationship to find the tasks that can be allocated, thus the matching conditions are more
stringent, which results in the decrease of the number of allocations. However, it did not affect the
overall utilities, as shown in Figure 8a.

Figure 8c shows that the running time of FRS algorithm was higher than the other three algorithms.
This was because that the FRS algorithm firstly finds the worker’s friend and then calculates the
strength of friend relationship. Although the FRS algorithm took a long time to run, it took milliseconds
to process each object. Therefore, it could meet the real-time requirements.
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Through the above comparison experiments, it was found that the FRS algorithm is applicable
for mobile crowdsourcing system, and is better than the other three algorithms in terms of utilities.
In addition, the greater is the number of workers in the platform, the better the effect will be.

5.2.4. Effect of the Number of Tasks

In addition, we conducted an experiment with a group of 1000 workers with an increasing number
of tasks from 1000 to 10,000 to show the effect of different numbers of tasks on experimental results.
The experimental settings are shown in Table 6. The x-coordinate of Figure 9a–c indicate the number of
workers in mobile crowdsourcing system. The y-coordinate of Figure 9a indicates the allocation utility,
the y-coordinate of Figure 9b indicates the number of allocations, and the y-coordinate of Figure 9c
indicates the running time.

Table 6. Experimental settings for effect of the number of tasks.

Utility/Number of Allocation/Running Time

Workers 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Tasks 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

Precision 12 12 12 12 12 12 12 12 12 12

(a) Utility (b) Number of allocations

(c) Running times

Figure 9. Effect of the number of tasks.
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Figure 9a shows that the utilities of all algorithms increased from the beginning of the experiment.
When the number of tasks was more than 2000, the utilities of the other three algorithms decreased,
but the FRS algorithm continued to increase steadily. This was because, when the number of tasks
increased, it was easier to choose the tasks with higher budget for allocation.

Figure 9b shows that the numbers of allocations of greedy, random threshold and adaptive
threshold algorithms were almost the same, and the number of allocations of FRS algorithm was lower
than the other three algorithms. This was because that FRS algorithm needs to calculate the strength of
friend relationship to find the tasks that can be allocated. Therefore, the matching conditions are more
stringent, which results in the decrease of the number of allocations. However, it did not affect the
overall utilities, as shown in Figure 9a.

Figure 9c shows that the running time of FRS algorithm was higher than the other three algorithms
because the FRS algorithm firstly finds the worker’s friend and then calculates the strength of friend
relationship. Although the FRS algorithm took a long time to run, it took milliseconds to process each
object. Therefore, it could meet the real-time requirements.

Through this group of experiment, it was found that, when the number of tasks in mobile
crowdsourcing system was greater than the number of workers, the FRS algorithm was better than
the other three algorithms in terms of utilities, and the effect was significant. From the experimental
results, it was also found that the more workers and tasks there are in the mobile crowdsourcing
system, the better the effect will be.

5.3. Experiments on Real Data

We also conducted experiments on Yelp public dataset to verify the adaptability of the proposed
FRS algorithm. Yelp original data have 188,593 tasks and 1,518,169 workers, among which 3000 tasks
and 50,000 workers were selected for the experiments. The experimental settings are shown in Table 7.

Table 7. Experimental settings for Yelp real dataset.

Utility/Number of Allocation/Running Time

Workers 50,000
Tasks 3000

Precision 12

Figure 10a shows that FRS algorithm was significantly better than the other three algorithms in
terms of utility, which was the same as the experimental results on synthetic data. The number of
workers in the experiment was very large, which made it easier for the system to find the friends of
workers and allocate tasks.

Figure 10b shows that the number of allocation of FRS algorithm was lower than greedy algorithm,
but better than random threshold algorithm and adaptive threshold algorithm. FRS algorithm allocated
tasks almost completely, thus its allocation efficiency was better than the other algorithms. According
to the FRS algorithm, the more workers there are in the system, the better the allocation effect will be.

Through the experiments, we found that our proposed FRS algorithm is fully adaptable to the
real world, and the more workers there are in the system, the better the effect will be.
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(a) Utility (b) Number of allocations

(c) Running times

Figure 10. Comparison result of Yelp dataset.

6. Conclusions

With the development of mobile crowdsourcing, how to allocate appropriate tasks for workers
has become the focus of research. Starting from the homogeneity of human beings, the relationship
between friends in social networks is applied to mobile crowdsourcing system. This paper proposes a
friend-based task allocation model (FRS), which can maximize the utility of mobile crowdsourcing
system. The GeoHash coding mechanism is adopted in the process of calculating the strength of
worker relationship, which effectively protects the location privacy of workers. The effectiveness and
adaptation of the proposed FRS model in small-scale and large-scale mobile crowdsourcing systems
were verified through comparison with traditional Greedy algorithm, Random threshold algorithm
and Adaptive threshold algorithm on real dataset and simulation datasets.

In future works, the task allocation mechanism based on social attributes of workers will be
further studied to improve the efficiency of the mobile crowdsourcing systems.
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