
sensors

Article

FPGA Modeling and Optimization of a SIMON
Lightweight Block Cipher

Sa’ed Abed 1,* , Reem Jaffal 1, Bassam Jamil Mohd 2 and Mohammad Alshayeji 1

1 Department of Computer Engineering, Kuwait University, Safat 13060, Kuwait; reem.jaffal@ku.edu.kw (R.J.);
m.alshayeji@ku.edu.kw (M.A.)

2 Department of Computer Engineering, Hashemite University, Zarqa 13115, Jordan; bassam@hu.edu.jo
* Correspondence: s.abed@ku.edu.kw; Tel.: +965-249-837-90

Received: 18 December 2018; Accepted: 18 February 2019; Published: 21 February 2019
����������
�������

Abstract: Security of sensitive data exchanged between devices is essential. Low-resource devices
(LRDs), designed for constrained environments, are increasingly becoming ubiquitous. Lightweight
block ciphers provide confidentiality for LRDs by balancing the required security with minimal
resource overhead. SIMON is a lightweight block cipher targeted for hardware implementations.
The objective of this research is to implement, optimize, and model SIMON cipher design for LRDs,
with an emphasis on energy and power, which are critical metrics for LRDs. Various implementations
use field-programmable gate array (FPGA) technology. Two types of design implementations
are examined: scalar and pipelined. Results show that scalar implementations require 39% less
resources and 45% less power consumption. The pipelined implementations demonstrate 12 times the
throughput and consume 31% less energy. Moreover, the most energy-efficient and optimum design
is a two-round pipelined implementation, which consumes 31% of the best scalar’s implementation
energy. The scalar design that consumes the least energy is a four-round implementation. The scalar
design that uses the least area and power is the one-round implementation. Balancing energy and
area, the two-round pipelined implementation is optimal for a continuous stream of data. One-round
and two-round scalar implementations are recommended for intermittent data applications.

Keywords: security; cipher; block cipher; encryption; lightweight block cipher; FPGA; power; energy;
low-resource devices; SIMON

1. Introduction

Recently, there was a rapid growth in applications based on low-resource devices (LRDs),
which include radio-frequency identification (RFID), wireless sensor networks (WSNs), smart cards,
wireless body area networks (WBANs), and the Internet of things (IoT) [1]. LRDs are designed
for constrained environments where cost, power consumption, energy, and available resources are
limited. As LRDs become ubiquitous in daily life, it is very important to protect the confidentiality of
exchanged data. The challenge is to balance an adequate security level with the limited resources in
LRDs. Special cipher implementation is required to optimize energy, power, and area while considering
the constraints of the devices, such as ciphers or lightweight ciphers.

In general, ciphers in cryptography are algorithms responsible for encryption and decryption
operations for an input message or plaintext by applying certain steps to generate the ciphertext.
The algorithm of ciphers consists of three main sub-algorithms: encryption algorithm, decryption
algorithm, and key-scheduling algorithm (also known as key-expansion) [2]. The key-scheduling or
expansion algorithm is responsible for generating sub-keys used in various encryption/decryption
steps. In most ciphers, key expansion is executed once for both decryption and encryption, while
in others is executed separately for encryption and decryption such as the case in Advanced

Sensors 2019, 19, 913; doi:10.3390/s19040913 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1849-9316
http://www.mdpi.com/1424-8220/19/4/913?type=check_update&version=1
http://dx.doi.org/10.3390/s19040913
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 913 2 of 28

Encryption Standard (AES) and RIJNDAEL ciphers [1,2]. Based on the number of keys used on
encryption/decryption algorithms, ciphers are categorized as asymmetric (public key) and symmetric
(private key) ciphers [1].

Asymmetric ciphers are more expensive and complex in terms of computation [1,2].
The asymmetric algorithm uses two keys: public key and private key. The public key is public
and can be accessible to everyone, while the private one is only known by one person and kept as a
secret key. The public key and the private key are related to each other internally; however, they cannot
be obtained from each other. Examples of popular asymmetric ciphers are RSA, DIFFIE-HELLMAN,
ALGAMMAL, elliptic curve cryptography, and DSA [3].

Lightweight ciphers can be designed as symmetric ciphers [4], which use one shared private
key employed in both encryption and decryption. Based on the number of processed bits and bytes,
symmetric ciphers are categorized as block ciphers and stream ciphers. Block cipher is an encryption
scheme for a fixed-size plaintext block [5]. Typically, blocks are 32 bits, 48 bits, 64 bits, or 128 bits. Block
ciphers have three main parameters: key size, block size, and number of rounds [1]. Some researchers
add the amount of logic in each round of the encryption algorithm as an additional parameter. Most of
the commonly used symmetric ciphers are block ciphers, which include Data Encryption Standard
(DES), 3DES, AES, BLOEFISH, and TWOFISH cipher [6]. On the other hand, stream ciphers perform
encryption one bit or byte of plaintext input at a time to reduce design complexity [5]. Stream
ciphers can be easily created by block ciphers. An example of the most popular stream cipher is
RC4 [6]. Other examples include SALSA20, GRAIN, and TRIVIUM [7–9]. Based on the structure of the
algorithms, block ciphers can be categorized into three groups: substitution permutation (SPN), Feistel
stream, and Lai–Massey [10]. Compared with conventional blocks, lightweight block ciphers balance
the following challenges: (1) minimal overhead (e.g., number of gates, memory footprint), because of
the low-cost smart devices, (2) minimal power and energy consumption, and (3) sufficient security
performance [10]. Cazorla et al. [11] stated that the lightweight cipher had smaller block sizes, such as
32 bits, 48 bits, or 64 bits. In addition, lightweight block ciphers simplified key scheduling, employing
elementary operations per round, and increasing the number of rounds.

Cipher implementations targeted for low-resource applications are classified into software
implementation and hardware implementation [1]. Hardware implementation is faster and lower
in power and energy consumption, as compared with software implementation [4]. Hardware
implementation is realized using application-specific integrated circuit (ASIC) technology or a
field-programmable gate array (FPGA) platform [1]. Traditionally, an ASIC had better performance
than an FPGA, but recent advances in FPGA technology reduced the speed gap [1,12]. FPGA provides
more flexibility, re-configurability features, low-cost designs [13], and efficient resource utilization
and hardware architecture [12]. Additionally, FPGA is well suited for implementing ciphers, as it
offers many advantages, such as algorithm agility, upload, and modification in addition to the security
features. Hardware implementation optimizes metrics, including throughput, area, power, and energy
performance. For LRDs, power and energy are the most important metrics.

SIMON and SPECK, published by the National Security Agency (NSA), are highly optimized
lightweight ciphers, which provide security and flexibility over a variety of configurations (different
block and key sizes). Each of these ciphers demonstrates excellent performance in both hardware
(in terms of area) and software (in terms of code size and memory usage), because of the flexible
implementations [14]. A SIMON cipher is targeted for hardware and a SPECK cipher is targeted for
software implementation [15]. While there are numerous published articles to optimize SIMON
implementation for area and throughput, little attention is paid to optimizing power/energy,
considered a fundamental issue in LRDs.

The novelty of this work is exercising various design options on SIMON FPGA implementations
and modeling the implementation performance metrics with emphasis on energy in order to achieve
the optimum design implementation. Reasonably accurate performance models are derived to better

Sensors 2019, 19, 913 3 of 28

implement current and future cipher designs. The following steps are considered to achieve the
aforementioned goal:

• Implement a basic SIMON design (scalar/non-pipelined) with one and multiple rounds. Scalar
implementations are more appropriate for intermittent (non-continuous) data.

• Implement and examine pipelined design (pipelined) with one and multiple rounds. Pipelined
designs are better suited to encrypt a continuous stream of data.

• Derive accurate performance models for throughput, area, power, and energy metrics based on
the implementation results.

• Determine the best implementation for each performance metric with a particular area and energy
(with slightly higher emphasis on energy), i.e., the most critical metrics in LRDs.

The rest of this paper is organized as follows: Section 2 reviews the related work in this area,
including software and hardware implementation for lightweight ciphers. Section 3 discusses the
proposed research methodology, the SIMON lightweight cipher algorithm, and the scalar and pipelined
implementations. Section 4 summarizes the implementation results. Section 5 presents the discussions
and guidelines. Finally, Section 6 details the conclusions and the recommendations for future work.

2. Related Work

Numerous studies examined SIMON and SPECK implementations on different software and
hardware platforms, as compared with other block ciphers. This section presents an overview of
these studies.

With regard to software implementation, Beaulieu et al. [16] implemented SIMON and SPECK
ciphers on an 8-bit AVR microcontroller’s platform to achieve optimal performance. SIMON and
SPECK were also compared with other block ciphers in the same AVR platform. SPECK demonstrated
the best performance. Hosseinzadeh et al. [17] implemented lightweight block ciphers on an
Atmega128 microprocessor, which were evaluated in terms of energy and memory performance.
The block ciphers included KLEIN-80, TWINE-80, PICCOLO-80, SPECK64/96, and SIMON64/96.
The results showed that SPECK64/96 was the best in terms of energy, followed by TWINE-80. In terms
of memory consumption, the TWINE-80 block cipher was best and SPECK64/ 96 was ranked third.
This study concluded that SPECK64/96 and TWINE-80 were the most suitable block ciphers for WSNs.

Several studies focused on hardware implementation using an ASIC flow. Beaulieu et al. [18]
presented different ASIC implementations for SIMON and SPECK, including bit-serial, iterated,
and partially and fully pipelined. The results concluded that SIMON had the highest efficiency when
compared to other ciphers. Beaulieu et al. [14] discussed SIMON and SPECK implementations on
ASIC hardware and 8-bit microcontroller software platforms. Comparisons with different lightweight
block ciphers were provided, such as KATAN, KLEIN, MCRYPTON, PICCOLO, PRESENT, and AES.
The ASIC results showed that PRESENT-80 achieved a throughput of 12.4 Kbps at 100 kHz within
1030 GE, while SIMON64/96 and SPECK 64/96 achieved higher throughput with less area (838 and
984 GE, respectively). Additionally, SIMON64/96 and SPECK64/96 provided 16 added bits of security.
SIMON128/128 and SPECK128/128 required half of the AES area, which was better for hardware
implementation. Beaulieu et al. [19] provided ASIC implementation results of different versions
of SIMON and SPECK block ciphers, in terms of area and throughput. A comparison of different
block ciphers (PRESENT, KATAN, KLEIN, PICCOLO, and AES) was also presented. The results
showed that SPECK had a small ASIC implementation; however, SIMON had the smallest area of all
investigated ciphers.

Other studies examined hardware implementations using an FPGA design flow. Beaulieu et
al. [19] discussed FPGA performance comparisons of SIMON, SPECK, and PRESENT on low-cost
Xilinx Spartan FPGAs. SIMON and SPECK demonstrated better area reduction in comparison to
AES and PRESENT. Wetzels et al. [20] implemented several hardware architectural designs for a
SIMON64/128 block cipher on a Xilinx Spartan-6 FPGA series platform. These designs included the

Sensors 2019, 19, 913 4 of 28

round function, as well as iterative, loop unrolling, inner-round pipelining, outer-round pipelining,
and mixed pipelining architectures. The issues and trade-offs between these designs were discussed.
Mixed pipelining architecture had the greatest throughput, while the round function was optimal in
terms of area. Performance results were demonstrated for throughput, area, and throughput-to-area.
Feizi et al. [21] implemented a SIMON32/64 block cipher in an FPGA model, Virtex-5 XC5VFX200T,
and presented the results. SIMON was found to be a very flexible algorithm, due to the range of block
and key sizes it offers. It is suitable for RFID systems and WSNs. SIMON32/64 has a small block
and key size, and, as a result, it is suitable for lightweight devices, where few resources are needed.
The larger key and block size offer more levels of security. Aysu et al. [15] suggested that SIMON is a
strong alternative to AES, because it provides an equivalent level of security with better area results.
The smallest area was achieved for low-cost FPGA by SIMON, which required 36 slices on a Spartan-3
FPGA and 13 slices on a Spartan-6 FPGA. Gulcan et al. [22] proposed a flexible FPGA hardware
architecture capable of using all SIMON configurations. The implementation results showed that
the proposed architecture required 90 and 32 slices on Spartan-3 and Spartan-6 FPGAs, respectively.
Wan et al. [23] proposed an ultra-low-power implementation of a SIMON cipher. A bit-serialized
SIMON core with 32-bit plaintext and 64-bit key was implemented. The design was based on adiabatic
circuits. The proposed architecture achieved a 27.5× higher energy efficiency (kilobit per second per
Watt) at the expense of 18% less throughput, as compared to conventional implementations. Yang et al.
proposed [24] the SIMECK cipher, which is similar to SIMON, and has the same rounds as SIMON.
SIMECK has a slightly smaller area and power. However, SIMECK is more vulnerable to attacks,
as several studies demonstrated including References [25,26].

In summary, SIMON exhibits superior hardware metrics, which makes it a good candidate for
hardware implementation, especially on an FPGA platform, because of its advantages over an ASIC.
While most of the implementations of SIMON targeted area optimization [15,19,22], it is clear that little
research was invested in power and energy, which are significant to LRD design. The focus of the work
in Reference [23] was circuit design, typically destined for custom design ICs or ASICs. Our work
is based on exploring design options in FPGA implementations. Therefore, these are two different
fields. Additionally, adiabatic circuits have major issues of strong dependency on parameter variations,
voltage threshold, and logic family. To our knowledge, this is the first work we know of which presents
analysis and modeling of SIMON metrics to achieve optimum design implementation, while focusing
on energy and power performance metrics.

3. Methods

The research goal was to implement and optimize a SIMON block cipher in terms of throughput,
area, power, and energy by considering different designs to determine the optimum implementation
for a SIMON cipher. The optimum implementation balances area and power/energy consumption.
The research steps to achieve this goal were as follows (see Figure 1):

• Implement the basic one-round SIMON scalar design to optimize the basic design.
• Implement scalar designs with multiple hardware rounds, e.g., 2, 4, 8, 16, or 32.
• Implement pipelined designs with one and multiple rounds.
• Measure and model the performance metrics (area, speed, power, and energy) for each step.
• Discuss recommendations for the optimum design.

Sensors 2019, 19, 913 5 of 28
Sensors 2018, 18, x FOR PEER REVIEW 5 of 28

Figure 1. Research steps.

These steps can be achieved by executing the FPGA design flow shown in Figure 2. Similar

FPGA design flows were used in other studies, including References [4,13,27–31]. The steps of the

FPGA flow were as follows:

• The cipher was designed and implemented at the register transfer level (RTL) using VerilogTM,

a hardware description language. The Verilog implementation was verified by dynamic

simulations using ModelSimTM. ModelSim provides wave-files, which capture the node activity

used to compute the power dissipation of the design.

• The design was synthesized and compiled using the Altera FPGA software package Quartus-II.

The choice of FPGA family should not impact the results of the research. Mohd et al. examined

several implementations of steganography algorithms in Altera and Xilinx FPGAs [32]. The

study concluded that Altera and Xilinx provide similar trending results.

• For Quartus-II synthesis, timing constraints were used during the compiling process.

• The design underwent the following analyses using Quartus-II:

- Timing analysis reported the maximum frequency of the design. The designs were compiled

with clock constraints of 50 MHz.

- Resource utilization analysis showed the number of logic elements (LEs) and the type (i.e.,

combinational, register logic, or both) used in the FPGA design [13]. LE is the smallest unit of

logic in the Altera architecture; it is compact and facilitates efficient logic utilization. Each LE

includes a four-input look-up table (LUT) and a programmable register. The LUT is a function

generator that can implement any function of four variables [33].

- Power analysis computed the average power of the design. The computed power is the dynamic

core power that consists of combinational, register, and clock. The power required by node

activities was extracted from the value change dump (VCD) files generated by ModelSim

simulations. This approach to computing power was used in other works, such as References

[4,13].

• Performance models for area, power, and energy were derived based on implementation results.

Figure 1. Research steps.

These steps can be achieved by executing the FPGA design flow shown in Figure 2. Similar FPGA
design flows were used in other studies, including References [4,13,27–31]. The steps of the FPGA flow
were as follows:

• The cipher was designed and implemented at the register transfer level (RTL) using VerilogTM,
a hardware description language. The Verilog implementation was verified by dynamic
simulations using ModelSimTM. ModelSim provides wave-files, which capture the node activity
used to compute the power dissipation of the design.

• The design was synthesized and compiled using the Altera FPGA software package Quartus-II.
The choice of FPGA family should not impact the results of the research. Mohd et al. examined
several implementations of steganography algorithms in Altera and Xilinx FPGAs [32]. The study
concluded that Altera and Xilinx provide similar trending results.

• For Quartus-II synthesis, timing constraints were used during the compiling process.
• The design underwent the following analyses using Quartus-II:

- Timing analysis reported the maximum frequency of the design. The designs were
compiled with clock constraints of 50 MHz.

- Resource utilization analysis showed the number of logic elements (LEs) and the type
(i.e., combinational, register logic, or both) used in the FPGA design [13]. LE is the smallest
unit of logic in the Altera architecture; it is compact and facilitates efficient logic utilization.
Each LE includes a four-input look-up table (LUT) and a programmable register. The LUT
is a function generator that can implement any function of four variables [33].

- Power analysis computed the average power of the design. The computed power is the
dynamic core power that consists of combinational, register, and clock. The power required
by node activities was extracted from the value change dump (VCD) files generated by
ModelSim simulations. This approach to computing power was used in other works,
such as References [4,13].

• Performance models for area, power, and energy were derived based on implementation results.

Sensors 2019, 19, 913 6 of 28
Sensors 2018, 18, x FOR PEER REVIEW 6 of 28

Figure 2. Design flow.

3.1. SIMON Algorithm

SIMON is one of the recently published lightweight block ciphers from the National Security

Agency (NSA). The structure of the SIMON cipher is based on a Feistel network, which is an iterated

cipher with an internal round function [34]. SIMON offers 10 different configurations depending on

block and key sizes, which can provide numerous levels of security [22]; see the list in Table 1.

Table 1. The SIMON configurations and parameters.

Security

Configuration

Block Size

(2n)

Key

Size

(mn)

Word

Size

(n)

Key

Words

(m)

Constant

sequence

(zj)

Rounds

(T)

1 32 64 16 4 z0 32

2 48 72 24 3 z0 36

3 48 96 24 4 z1 36

4 64 96 32 3 z2 42

5 64 128 32 4 z3 44

6 96 96 48 2 z2 52

7 96 144 48 3 z3 54

8 128 128 64 2 z2 68

9 128 192 64 3 z3 69

10 128 256 64 4 z4 72

Figure 2. Design flow.

3.1. SIMON Algorithm

SIMON is one of the recently published lightweight block ciphers from the National Security
Agency (NSA). The structure of the SIMON cipher is based on a Feistel network, which is an iterated
cipher with an internal round function [34]. SIMON offers 10 different configurations depending on
block and key sizes, which can provide numerous levels of security [22]; see the list in Table 1.

Table 1. The SIMON configurations and parameters.

Security
Configuration

Block Size
(2n)

Key Size
(mn)

Word Size
(n)

Key Words
(m)

Constant Sequence
(zj)

Rounds
(T)

1 32 64 16 4 z0 32
2 48 72 24 3 z0 36
3 48 96 24 4 z1 36
4 64 96 32 3 z2 42
5 64 128 32 4 z3 44
6 96 96 48 2 z2 52
7 96 144 48 3 z3 54
8 128 128 64 2 z2 68
9 128 192 64 3 z3 69

10 128 256 64 4 z4 72

The SIMON block cipher is represented as SIMON2n/mn, where 2n is the block size, and n is
the number of bits that define the word size, which could be 16, 24, 32, 48, or 64 bits. The key size is
identified by multiplying the number of words in a key, indicated by the parameter m, by the word
size, n, resulting in an mn-bit key length. For example, SIMON32/64 refers to 32-bit plaintext blocks,
a 64-bit key size, and a 16-bit word.

Sensors 2019, 19, 913 7 of 28

SIMON32/64 was chosen as the cipher configuration in this study, because it supports block and
key sizes appropriate for LRDs. Table 2 lists the SIMON notations used in this section. The parameters
for SIMON implementation were as follows:

• Block size (2n): 32;
• Key size (mn): 64;
• Word size (n): 16;
• Key words (m): 4;
• Constant sequence (zj): z0;

• Cipher rounds (T): 32.

Table 2. SIMON cipher notations.

Notation Description

⊕ Bitwise XOR
& Bitwise AND
Sj Left circular shift, Sj, by j bits

S−j Right circular shift, S−j, by j bits
n Word size
2n Block size
m Key words

mn Key size
i Round counter, where 0 ≤ i ≤ T − 1
zj Constant sequence, where j = 0, 1, 2, 3, 4
T Number of cipher rounds
F Round function
k Round key (sub-key)
c Constant

3.1.1. Round Function

Encryption and decryption operations in SIMON2n apply the following on n-bit words [14]:

• Bitwise XOR, ⊕;
• Bitwise AND, &;
• Left circular shift, Sj, by j bits.

Figure 3 shows the round function of the SIMON cipher, where the input plaintext block (2n) is
split into two equal words (each one is n-bit). In each round function, three circular shifts to the left
(shift left one, shift left eight, and shift left two) and bitwise AND logic operations are performed on
the left half block. The result is XOR-ed with the right half block and the round key. At the end of each
round, the left half value is transferred to the right block and the generated value is written back to the
left block. This round process is continuously repeated depending on the number of rounds within the
implemented configuration. The SIMON round encryption function, F, is represented in Equation (1).

F(x,y,k) = (y ⊕ ((S1 x & S8 x) ⊕ S2 x) ⊕ k), (1)

where k is the round key, x is the leftmost word of the cipher block, and y is the rightmost word.

Sensors 2019, 19, 913 8 of 28
Sensors 2018, 18, x FOR PEER REVIEW 8 of 28

where k is the round key, x is the leftmost word of the cipher block, and y is the rightmost word.

Figure 3. SIMON round function.

3.1.2. Key Schedule

The key schedule process applies the following basic operations on m words from the master

key with n-bits for each:

• Bitwise XOR, ⊕;

• Right circular shift, S-j, by j bits.

The SIMON key schedule function takes the master key and generates a sequence of T key words

(k0, k1, k2, …, kT − 1), where T represents the number of rounds. There are three different versions of the

key schedule function, depending on the block size and master key size, which can include two, three,

or four words (i.e., m = 2, 3, or 4). The key schedule function performs two circular shift operations to

the right (shift right one, and shift right three). The result is XORed with a fixed constant, c, and a

constant sequence, zj. There are five sequences for the constant zj, which are version-dependent (i.e.,

z0, z1, z2, z3 and z4), as shown in Table 1.

Figure 4 illustrates the key schedule function of SIMON for four master key words (i.e., m = 4)

of n-bits. These four sub-keys are generated on the first iteration of the key schedule function and are

used as the first four round keys. A new round key is generated in each key schedule iteration. The

block, ki, contains the round key required for the i-th round, where 0  i < (T − m) for the key schedule

function. The most significant word ki + 3 is circular shifted right by three (i.e., S−3), and then XORed

with the word ki + 1. The result is circular shifted right by one (i.e., S−1). Finally, the result is XORed

with the least significant word (ki) and the round constant (c ⊕ zij). The value of c is equal to (2n − 1)

⊕ 3, which is a string of (n − 2) ones and two zeroes on the least significant two bits (i.e., c = 2n – 4 =

0xff … fc). The constant sequence, zij, is computed as the i-th bit of the zj sequence (from the most

significant to least significant), where i is computed by (i − m) mod 62 for m ≤ i ≤ T − 1 and j is associated

with each configuration, as shown in Table 1.

For SIMON32/64 with four key words (m = 4), the c constant, and the round constant sequence,

zj, round keys are generated by Equation (2).

ki + m = c ⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1) (S−3 ki + 3 ⊕ ki + 1), (2)

where 0 ≤ i ≤ T − m, T = 32, m = 4, c = 216 – 4, and z0 =

01100111000011010100100010111110110011100001101010010001011111 (represented in little-endian).

Figure 3. SIMON round function.

3.1.2. Key Schedule

The key schedule process applies the following basic operations on m words from the master key
with n-bits for each:

• Bitwise XOR, ⊕;
• Right circular shift, S−j, by j bits.

The SIMON key schedule function takes the master key and generates a sequence of T key words
(k0, k1, k2, . . . , kT−1), where T represents the number of rounds. There are three different versions of the
key schedule function, depending on the block size and master key size, which can include two, three,
or four words (i.e., m = 2, 3, or 4). The key schedule function performs two circular shift operations
to the right (shift right one, and shift right three). The result is XORed with a fixed constant, c, and a
constant sequence, zj. There are five sequences for the constant zj, which are version-dependent (i.e.,
z0, z1, z2, z3 and z4), as shown in Table 1.

Figure 4 illustrates the key schedule function of SIMON for four master key words (i.e., m = 4)
of n-bits. These four sub-keys are generated on the first iteration of the key schedule function and
are used as the first four round keys. A new round key is generated in each key schedule iteration.
The block, ki, contains the round key required for the i-th round, where 0 ≤ i < (T − m) for the key
schedule function. The most significant word ki+3 is circular shifted right by three (i.e., S−3), and then
XORed with the word ki + 1. The result is circular shifted right by one (i.e., S−1). Finally, the result is
XORed with the least significant word (ki) and the round constant (c ⊕ zi

j). The value of c is equal
to (2n − 1) ⊕ 3, which is a string of (n − 2) ones and two zeroes on the least significant two bits
(i.e., c = 2n − 4 = 0xff . . . fc). The constant sequence, zi

j, is computed as the i-th bit of the zj sequence
(from the most significant to least significant), where i is computed by (i − m) mod 62 for m ≤ i ≤ T −
1 and j is associated with each configuration, as shown in Table 1.

For SIMON32/64 with four key words (m = 4), the c constant, and the round constant sequence,
zj, round keys are generated by Equation (2).

ki+m = c ⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1) (S−3 ki+3 ⊕ ki+1), (2)

where 0 ≤ i ≤ T − m, T = 32, m = 4, c = 216 − 4, and z0 = 011001110000110101001000101111101100111
00001101010010001011111 (represented in little-endian).

Sensors 2019, 19, 913 9 of 28
Sensors 2018, 18, x FOR PEER REVIEW 9 of 28

Figure 4. SIMON four-word key schedule.

3.2. Scalar Design

This section details the scalar design implementation of the SIMON cipher. Firstly, it discusses

the FPGA implementation of a basic scalar SIMON algorithm: the one-round implementation

(iterative). Secondly, multiple hardware rounds are instantiated in the implementation to optimize

area, power, and energy. A list of notations used in this section and the following sections is shown

in Table 3.

Table 3. Equation notations.

Notation Description

r Number of rounds implemented in hardware

R Number of iterations/rounds to encrypt one block

Tcycle Cycle time (i.e., clock period)

Tblock Time to encrypt one block

Cidle Setup cycles to load input plaintext and output ciphertext

CB Number of cycles to encrypt one block

3.2.1. Basic Scalar Design for One Round (Iterative)

In the basic scalar design, one hardware round of the encryption unit is implemented as

combinational logic connected to a single register and supplied with the proper round key. In the

first clock cycle, the plaintext block is loaded into the register to perform the first cipher round. The

result is then fed back to the circuit through the register. This process is repeated for T clock cycles,

where T is the number of cipher rounds, as stated in Table 2. The ciphertext block is stored in the

register. This design has two main features as follows:

1. Only one block cipher is encrypted at a time.

2. The number of clock cycles required to encrypt a single block cipher is equal to the number of

cipher rounds (i.e., T) plus the number of cycles to load plaintext and output ciphertext (i.e.,

Cidle).

In the proposed design, the basic FPGA scalar design implementation of SIMON32/64 is

described in Figure 5. Three main blocks are considered: the control logic, the round logic, and the

key generation block.

• The control logic block is responsible for managing the external and internal activities of the

system. It controls three main registers: key, round counter, and X register. Additionally, it

organizes the sequence order of these activities’ functionalities through a finite-state machine

(FSM). The encryption process begins with the assertion of a start signal. The plaintext is then

loaded into the X register and the round counter is initialized to zero. The value of Key (master

key) is also stored in specific sub-key registers in order to perform the key generation process.

In the following cycles, the control block assigns sub-key and round counter values to the key

Figure 4. SIMON four-word key schedule.

3.2. Scalar Design

This section details the scalar design implementation of the SIMON cipher. Firstly, it discusses the
FPGA implementation of a basic scalar SIMON algorithm: the one-round implementation (iterative).
Secondly, multiple hardware rounds are instantiated in the implementation to optimize area, power,
and energy. A list of notations used in this section and the following sections is shown in Table 3.

Table 3. Equation notations.

Notation Description

r Number of rounds implemented in hardware
R Number of iterations/rounds to encrypt one block

Tcycle Cycle time (i.e., clock period)
Tblock Time to encrypt one block

Cidle
Setup cycles to load input plaintext and output
ciphertext

CB Number of cycles to encrypt one block

3.2.1. Basic Scalar Design for One Round (Iterative)

In the basic scalar design, one hardware round of the encryption unit is implemented as
combinational logic connected to a single register and supplied with the proper round key. In the first
clock cycle, the plaintext block is loaded into the register to perform the first cipher round. The result
is then fed back to the circuit through the register. This process is repeated for T clock cycles, where
T is the number of cipher rounds, as stated in Table 2. The ciphertext block is stored in the register.
This design has two main features as follows:

1. Only one block cipher is encrypted at a time.
2. The number of clock cycles required to encrypt a single block cipher is equal to the number of

cipher rounds (i.e., T) plus the number of cycles to load plaintext and output ciphertext (i.e.,
Cidle).

In the proposed design, the basic FPGA scalar design implementation of SIMON32/64 is described
in Figure 5. Three main blocks are considered: the control logic, the round logic, and the key
generation block.

Sensors 2019, 19, 913 10 of 28

• The control logic block is responsible for managing the external and internal activities of the
system. It controls three main registers: key, round counter, and X register. Additionally,
it organizes the sequence order of these activities’ functionalities through a finite-state machine
(FSM). The encryption process begins with the assertion of a start signal. The plaintext is then
loaded into the X register and the round counter is initialized to zero. The value of Key (master
key) is also stored in specific sub-key registers in order to perform the key generation process.
In the following cycles, the control block assigns sub-key and round counter values to the key
generation block and Xin to the round logic block. Once the counter reaches its maximum value
(the number of corresponding rounds has finished), the done signal is asserted by the control
block to state that the encryption process is complete.

• The key generation block generates the sub-key required for the current round.
• The round block performs one hardware round operation and updates the X register. In the last

clock cycle, the ciphertext value is saved in the X register.

Sensors 2018, 18, x FOR PEER REVIEW 10 of 28

generation block and Xin to the round logic block. Once the counter reaches its maximum value

(the number of corresponding rounds has finished), the done signal is asserted by the control

block to state that the encryption process is complete.

• The key generation block generates the sub-key required for the current round.

• The round block performs one hardware round operation and updates the X register. In the last

clock cycle, the ciphertext value is saved in the X register.

Figure 5. Basic SIMON field-programmable gate array (FPGA) design.

3.2.2. Scalar Design with Multiple Rounds (Loop Unrolling)

In the scalar design with multiple rounds, combinational logic is used to implement multiple

hardware rounds instead of one round, as in the basic design. The loop of the basic design is unrolled

to implement r rounds. If r is equal the number of rounds (i.e., T), a full loop unrolling design is the

result. However, if r is less than the maximum number of rounds, partial loop unrolling is the result.

The key schedules function is unrolled in the same manner. Hence, the number of iterations/rounds

R required to encrypt one block of data decreases by factor of r. R is expressed by Equation (3).

R = T/r, (3)

where r = 1, 2, 4, 8, 16, or 32.

The number of clock cycles required to encrypt a single block (CB) is obtained by Equation (4).

CB = R + Cidle. (4)

Figure 6 illustrates the design with two hardware rounds implemented into the SIMON cipher.

The main differences between the two-round design and the basic (iterative) design are as follows:

• There are two hardware rounds in the two-round design, Roundi + 0 and Roundi + 1, which are

executed simultaneously.

• There is a smaller counter in the two-round design: a 4-bit counter is required; in general, 2j-

round design requires a (5-j)-bit counter.

• Dataflow for each round starts from the X-register to Roundi + 0, and then to Roundi + 1, returning

to the X-register.

• Two sub-keys are generated each iteration instead of one sub-key, as in the basic design: sub-Ki + 0

and sub-Ki + 1 are required to feed Roundi + 0 and Roundi + 1.

Figure 5. Basic SIMON field-programmable gate array (FPGA) design.

3.2.2. Scalar Design with Multiple Rounds (Loop Unrolling)

In the scalar design with multiple rounds, combinational logic is used to implement multiple
hardware rounds instead of one round, as in the basic design. The loop of the basic design is unrolled
to implement r rounds. If r is equal the number of rounds (i.e., T), a full loop unrolling design is the
result. However, if r is less than the maximum number of rounds, partial loop unrolling is the result.
The key schedules function is unrolled in the same manner. Hence, the number of iterations/rounds R
required to encrypt one block of data decreases by factor of r. R is expressed by Equation (3).

R = T/r (3)

where r = 1, 2, 4, 8, 16, or 32.
The number of clock cycles required to encrypt a single block (CB) is obtained by Equation (4).

CB = R + Cidle. (4)

Figure 6 illustrates the design with two hardware rounds implemented into the SIMON cipher.
The main differences between the two-round design and the basic (iterative) design are as follows:

• There are two hardware rounds in the two-round design, Roundi+0 and Roundi+1, which are
executed simultaneously.

Sensors 2019, 19, 913 11 of 28

• There is a smaller counter in the two-round design: a 4-bit counter is required; in general, 2j-round
design requires a (5-j)-bit counter.

• Dataflow for each round starts from the X-register to Roundi+0, and then to Roundi+1, returning
to the X-register.

• Two sub-keys are generated each iteration instead of one sub-key, as in the basic design: sub-Ki+0

and sub-Ki+1 are required to feed Roundi+0 and Roundi+1.Sensors 2018, 18, x FOR PEER REVIEW 11 of 28

Figure 6. SIMON FPGA design with two rounds.

3.3. Pipelined Design

The 32-round (full loop unrolling) implementation of SIMON32/64 is extended to pipelined

design by inserting registers between the unrolled rounds. The pipelined design, performing more

than one task at a time, improves throughput. The pipeline design is better suited to process a

continuous stream of data. The difference between the basic design (iterative) and the pipelined

design is that new blocks of plaintext can be fed into the pipeline of each clock cycle, while, in the

basic design, blocks are fed after (T + 2) clock cycles. T is the number of cipher rounds and two cycles

are required to load in plaintext and output ciphertext. The pipelined design of SIMON32/64

encryption is shown in Figure 7. It consists of 32 stages with one round implemented in each stage,

and registers are instantiated between stages. In each clock cycle, a new plaintext can be fed to the

first stage. Key expansion functionality is implemented in the same pipelined method by instantiating

registers between sub-key generation functions to feed the appropriate sub-key to the round function.

Flavors of pipelined designs are implemented by varying the number of rounds (i.e., 1, 2, 4, 8, 16, and

32) in each pipelined stage. When the number of rounds per stage doubles, the number of stages is

halved. Figure 8 shows the implementation of two rounds per stage.

4. Results

In this section, results for scalar and pipelined design implementations are presented and

summarized. Implementation results include the following performance metrics: number of LEs,

maximum frequency, and power and energy consumption.

Figure 6. SIMON FPGA design with two rounds.

3.3. Pipelined Design

The 32-round (full loop unrolling) implementation of SIMON32/64 is extended to pipelined
design by inserting registers between the unrolled rounds. The pipelined design, performing more
than one task at a time, improves throughput. The pipeline design is better suited to process a
continuous stream of data. The difference between the basic design (iterative) and the pipelined design
is that new blocks of plaintext can be fed into the pipeline of each clock cycle, while, in the basic
design, blocks are fed after (T + 2) clock cycles. T is the number of cipher rounds and two cycles are
required to load in plaintext and output ciphertext. The pipelined design of SIMON32/64 encryption
is shown in Figure 7. It consists of 32 stages with one round implemented in each stage, and registers
are instantiated between stages. In each clock cycle, a new plaintext can be fed to the first stage.
Key expansion functionality is implemented in the same pipelined method by instantiating registers
between sub-key generation functions to feed the appropriate sub-key to the round function. Flavors
of pipelined designs are implemented by varying the number of rounds (i.e., 1, 2, 4, 8, 16, and 32) in
each pipelined stage. When the number of rounds per stage doubles, the number of stages is halved.
Figure 8 shows the implementation of two rounds per stage.

Sensors 2019, 19, 913 12 of 28
Sensors 2018, 18, x FOR PEER REVIEW 12 of 28

Figure 7. Implementation of one round per stage (pipelined design). Figure 7. Implementation of one round per stage (pipelined design).Sensors 2018, 18, x FOR PEER REVIEW 13 of 28

Figure 8. Implementation of two rounds per stage (pipelined design).

Results are illustrated in tables and graphs. Tables include the exact values, while graphs only

provide general trends of metrics. Metrics are normalized with respect to the one-round scalar design.

The following notations are used to illustrate the results clearly:

• Sr represents FPGA scalar implementation with r hardware rounds, where r = {1, 2, 4, 8, 16, 32}.

• SPr represents FPGA pipelined implementation with r hardware rounds per stage. The number

of pipeline stages is equal to (32/r). As an example, SP4 has four implemented rounds per stage

and has eight stages.

Table 4 lists the other notations used in this section.

Table 4. Results notations.

Notation Description

f Frequency of the design

LE Resource utilization of the design

P Power consumption of the design

E Energy of the design

4.1. Scalar Implementation Results

This section presents the performance metric results for FPGA scalar design implementations

illustrated in Subsection 3.2. Results are summarized in Table 5 and Figures 9–12.

Figure 8. Implementation of two rounds per stage (pipelined design).

Sensors 2019, 19, 913 13 of 28

4. Results

In this section, results for scalar and pipelined design implementations are presented and
summarized. Implementation results include the following performance metrics: number of LEs,
maximum frequency, and power and energy consumption.

Results are illustrated in tables and graphs. Tables include the exact values, while graphs only
provide general trends of metrics. Metrics are normalized with respect to the one-round scalar design.
The following notations are used to illustrate the results clearly:

• Sr represents FPGA scalar implementation with r hardware rounds, where r = {1, 2, 4, 8, 16, 32}.
• SPr represents FPGA pipelined implementation with r hardware rounds per stage. The number

of pipeline stages is equal to (32/r). As an example, SP4 has four implemented rounds per stage
and has eight stages.

Table 4 lists the other notations used in this section.

Table 4. Results notations.

Notation Description

f Frequency of the design
LE Resource utilization of the design
P Power consumption of the design
E Energy of the design

4.1. Scalar Implementation Results

This section presents the performance metric results for FPGA scalar design implementations
illustrated in Section 3.2. Results are summarized in Table 5 and Figures 9–12.

Table 5. Summary of the scalar implementation results. LE—logic element.

Scalar Implementation Fmax (MHz) LEs Power (mW) Energy (pJ/block)

S1 66. 2 210 1.68 2947
S2 66.19 294 2.9 2755
S4 56.42 479 4.02 2211
S8 53.11 858 9.16 3204.6
S16 46.41 2056 19.6 4900
S32 24.02 3469 22.64 4528

4.1.1. Frequency

The maximum frequency versus number of rounds implemented for scalar designs is shown
in Figure 9. Doubling the number of rounds leads to a decrease in the maximum frequency value.
Frequency decreases by an average of 10 MHz, which is 16% of the S1 frequency. This reduction in
frequency is due to the increase in the length of timing paths as more rounds are implemented in
one cycle.

From the values in Table 5 and Figure 9, the frequency trend (f) is modeled using Equation (5),
with an average model error of 10%.

f (S2k) = f (Sk) − 0.16 f (S1), (5)

where f (S1) = 66 MHz, Sr = S2k, and k = [1, 2, 4, 8, 16].

Sensors 2019, 19, 913 14 of 28

Sensors 2018, 18, x FOR PEER REVIEW 14 of 28

Table 5. Summary of the scalar implementation results. LE—logic element.

Scalar implementation Fmax (MHz) LEs Power (mW) Energy (pJ/block)

S1 66. 2 210 1.68 2947

S2 66.19 294 2.9 2755

S4 56.42 479 4.02 2211

S8 53.11 858 9.16 3204.6

S16 46.41 2056 19.6 4900

S32 24.02 3469 22.64 4528

4.1.1. Frequency

The maximum frequency versus number of rounds implemented for scalar designs is shown in

Figure 9. Doubling the number of rounds leads to a decrease in the maximum frequency value.

Frequency decreases by an average of 10 MHz, which is 16% of the S1 frequency. This reduction in

frequency is due to the increase in the length of timing paths as more rounds are implemented in one

cycle.

From the values in Table 5 and Figure 9, the frequency trend (f) is modeled using Equation (5),

with an average model error of 10%.

f (S2k) = f (Sk) − 0.16 f (S1), (5)

where f (S1) = 66 MHz, Sr = S2k, and k = [1, 2, 4, 8, 16].

Figure 9. Frequency trend versus number of rounds for scalar implementations.

4.1.2. Resource utilization

Table 6 illustrates the resource utilization based on the type of LUTs, which can be 4-input

functions, 3-input functions, 2-or-less input functions, and register only. Also, in this section, we

present analysis of resources in terms of combinational LEs and register LEs. Register LEs include

“register only” LEs and “combinational with a register” LEs. The latter analysis facilitates better

understanding of power results.

Table 6. Summary of the scalar implementation look-up table (LUT) results.

Scalar implementation LEs LUT-4 LUT-3 LUT-2 or less LUT RegOnly

S1 210 50 108 52 0

S2 294 121 103 68 2

S4 479 228 95 121 35

S8 858 554 191 98 15

S16 2056 1466 434 140 16

S32 3469 2410 718 324 17

0

20

40

60

80

S_1 S_2 S_4 S_8 S_16 S_32

Fmax (MHz)

Figure 9. Frequency trend versus number of rounds for scalar implementations.

4.1.2. Resource utilization

Table 6 illustrates the resource utilization based on the type of LUTs, which can be 4-input
functions, 3-input functions, 2-or-less input functions, and register only. Also, in this section, we
present analysis of resources in terms of combinational LEs and register LEs. Register LEs include
“register only” LEs and “combinational with a register” LEs. The latter analysis facilitates better
understanding of power results.

Table 6. Summary of the scalar implementation look-up table (LUT) results.

Scalar Implementation LEs LUT-4 LUT-3 LUT-2 or less LUT RegOnly

S1 210 50 108 52 0
S2 294 121 103 68 2
S4 479 228 95 121 35
S8 858 554 191 98 15
S16 2056 1466 434 140 16
S32 3469 2410 718 324 17

Figure 10 shows the number of LEs versus the number of rounds implemented in the hardware
for scalar designs. The number of LEs (which indicates the utilized resources) increases by an average
of 78% when the number of rounds is doubled. To understand the source of this increase, the different
types of LEs are identified, including combinational LEs and register LEs. Figure 10 also plots the LE
components. Clearly, combinational LEs exhibit growth, while register LEs are constant, with respect
to an increase in the number of implemented rounds. The growth component of LEs increases by 102%
when the number of rounds is doubled. This is because the synthesis tool minimizes and shares the
logic cones efficiently [13] and reuses the combinational logic. The number register LEs, however,
is constant for each hardware implementation, except for the counter register, as it decreases by one bit
when doubling the number of implemented rounds. Hence, the trend for the number of LEs (LE) is
modeled using Equation (6) with an average model error of 9.4%.

LE (S2k) = LE (S2k (Comb)) + LE (S1 (Register))
= 2.02 LE (Sk (Comb)) + LE (S1 (Register)),

(6)

where LE (S1 (Comb)) = 105, LE (S1 (Register)) = 105, Sr = S2k, and k = [1, 2, 4, 8, 16].

4.1.3. Power

Figure 11 describes the total power dissipation versus the number of implemented hardware
rounds. Power increases by an average of 73% when the number of implemented rounds is doubled.
Based on the type of circuit, there are two main components of power: sequential and combinational.
Figure 11 also illustrates the contributions of combinational and sequential power. The following
conclusions are drawn:

Sensors 2019, 19, 913 15 of 28

• Combinational power (which estimates the combinational logic power) increases by 105% when
the number of rounds is doubled. The increase in the combinational power is due to an increase
in implemented logic, as well as an increase in glitch power [35].

• Sequential power (which estimates the sequential logic, i.e., register, control block) increases by
an average of 30%.

• The main reason for the total power increasing is the combinational power.
• The power trend shows a slight increase for S32 power when compared to the overall increasing

average for other scalar designs. This is due to the reduction in combinational power growth at this
point, as S32 is optimized by the synthesis tool to reduce wiring, thereby reducing routing power.

The power trend (p) is modeled according to Equation (7) with an average model error of 13.2%.

P (S2k) = P (S2k (Comb)) + P (S2k (Seq))
= 2.05 P (Sk (Comb)) + 1.30 P (Sk (Seq)),

(7)

where P (S1 (Comb)) = 0.6 mW, P (S1 (Seq)) = 1.1 mW, Sr = S2k, and k = [1, 2, 4, 8, 16].

Sensors 2018, 18, x FOR PEER REVIEW 15 of 28

Figure 10 shows the number of LEs versus the number of rounds implemented in the hardware

for scalar designs. The number of LEs (which indicates the utilized resources) increases by an average

of 78% when the number of rounds is doubled. To understand the source of this increase, the different

types of LEs are identified, including combinational LEs and register LEs. Figure 10 also plots the LE

components. Clearly, combinational LEs exhibit growth, while register LEs are constant, with respect

to an increase in the number of implemented rounds. The growth component of LEs increases by

102% when the number of rounds is doubled. This is because the synthesis tool minimizes and shares

the logic cones efficiently [13] and reuses the combinational logic. The number register LEs, however,

is constant for each hardware implementation, except for the counter register, as it decreases by one

bit when doubling the number of implemented rounds. Hence, the trend for the number of LEs (LE)

is modeled using Equation (6) with an average model error of 9.4%.

Figure 10. Resource utilization trend and its components versus number of rounds for scalar

implementations.

LE (S2k) = LE (S2k (Comb)) + LE (S1 (Register))

= 2.02 LE (Sk (Comb)) + LE (S1 (Register)),
(6)

where LE (S1 (Comb)) = 105, LE (S1 (Register)) = 105, Sr = S2k, and k = [1, 2, 4, 8, 16].

4.1.3. Power

Figure 11 describes the total power dissipation versus the number of implemented hardware

rounds. Power increases by an average of 73% when the number of implemented rounds is doubled.

Based on the type of circuit, there are two main components of power: sequential and combinational.

Figure 11 also illustrates the contributions of combinational and sequential power. The following

conclusions are drawn:

• Combinational power (which estimates the combinational logic power) increases by 105% when

the number of rounds is doubled. The increase in the combinational power is due to an increase

in implemented logic, as well as an increase in glitch power [35].

• Sequential power (which estimates the sequential logic, i.e., register, control block) increases by

an average of 30%.

• The main reason for the total power increasing is the combinational power.

• The power trend shows a slight increase for S32 power when compared to the overall increasing

average for other scalar designs. This is due to the reduction in combinational power growth at

this point, as S32 is optimized by the synthesis tool to reduce wiring, thereby reducing routing

power.

The power trend (p) is modeled according to Equation (7) with an average model error of 13.2%.

0

500

1000

1500

2000

2500

3000

3500

4000

S_1 S_2 S_4 S_8 S_16 S_32

Comb. Reg. Total LEs

Figure 10. Resource utilization trend and its components versus number of rounds for
scalar implementations.

Sensors 2018, 18, x FOR PEER REVIEW 16 of 28

P (S2k) = P (S2k (Comb)) + P (S2k (Seq))

= 2.05 P (Sk (Comb)) + 1.30 P (Sk (Seq)),
(7)

where P (S1 (Comb)) = 0.6 mW, P (S1 (Seq)) = 1.1 mW, Sr = S2k, and k = [1, 2, 4, 8, 16].

Figure 11. The power trend and its components for scalar implementations.

4.1.4. Energy

“Energy per block” is computed by multiplying “average power” by the “time to process one

block”, which is expressed in Equation (8).

Tblock = CB × Tcycle

= (R + Cidle) × Tcycle

= (T/r + 2) × Tcycle.

(8)

The two cycles in Equation (8) are required to load in plaintext and output ciphertext (i.e., Cidle).

Energy per block versus number of implemented hardware rounds is illustrated in Figure 12.

Doubling the number of rounds decreases energy from S1 to S4. S4 has the least energy dissipation

(optimum design). Energy increases from S4 until it reaches its maximum value at S16 and slightly

decreases again at S32.

To understand the behavior of the energy curve, the following facts are required:

• Increasing the number of implemented rounds increases combinational power and (to a lesser

extent) sequential power, as shown in Figure 11.

• Increasing the number of implemented rounds, r, decreases the time to process one block (Tblock).

The synthesis tool performs better routing optimization in some implementations, resulting in

noticeably less routing power.

Figure 12 shows the contribution of energy components (combinational and sequential) to the

total energy. Based on the aforementioned facts, the following is found:

0

5

10

15

20

25

S_1 S_2 S_4 S_8 S_16 S_32

mW Total Power Comb. Seq.

Figure 11. The power trend and its components for scalar implementations.

Sensors 2019, 19, 913 16 of 28

4.1.4. Energy

“Energy per block” is computed by multiplying “average power” by the “time to process one
block”, which is expressed in Equation (8).

Tblock = CB × Tcycle
= (R + Cidle) × Tcycle
= (T/r + 2) × Tcycle.

(8)

The two cycles in Equation (8) are required to load in plaintext and output ciphertext (i.e., Cidle).
Energy per block versus number of implemented hardware rounds is illustrated in Figure 12.

Doubling the number of rounds decreases energy from S1 to S4. S4 has the least energy dissipation
(optimum design). Energy increases from S4 until it reaches its maximum value at S16 and slightly
decreases again at S32.

To understand the behavior of the energy curve, the following facts are required:

• Increasing the number of implemented rounds increases combinational power and (to a lesser
extent) sequential power, as shown in Figure 11.

• Increasing the number of implemented rounds, r, decreases the time to process one block (Tblock).

The synthesis tool performs better routing optimization in some implementations, resulting in
noticeably less routing power.

Figure 12 shows the contribution of energy components (combinational and sequential) to the
total energy. Based on the aforementioned facts, the following is found:

• Combinational energy in general increases 42% when the number of implemented rounds doubles.
Routing power in S16 is not optimized, as compared to S32 and S8.

• Sequential energy slightly decays as the number of implemented rounds is doubled.
• Since energy is estimated by multiplying power with time to encrypt the block, and power and

time exhibit different behavior with respect to r, the energy trend has a V-like curve, as seen in
Figure 12.

• The highest energy consumption value at S16 is due to the high combinational energy from the
high routing power/energy with additional glitch power/energy [36]. The drop of energy at S32

is due to the drop in combinational energy, as the tools optimize better for larger logic.

The energy trend (E) is modeled using Equation (9), with an average model error of 11.7%.

E (S2k) = E (S2k (Comb)) + E (S2k (Seq))
= 1.42 E (Sk (Comb)) + 0.73 E (Sk (Seq)),

(9)

where E (S1 (Comb)) = 850 pJ, E (S1 (Seq)) = 1990 pJ, Sr = S2k, and k = [1, 2, 4, 8, 16].

4.2. Pipelined Implementation Results

This section discusses the performance metric results for the FPGA pipelined design
implementations discussed in Section 3.3. Results are summarized in Table 7 and Figures 13–16.

Table 7. Summary of the pipelined implementation results.

Pipelined Implementation Fmax (MHz) LEs Power (mW) Energy (pJ/block)

SP1 66.2 2057 13.88 694.2
SP2 66.2 2008 13.69 684.4
SP4 57.32 2891 17.58 879
SP8 36.39 2918 27.60 1379.8
SP16 32.68 3338 23.32 1166
SP32 23.79 3361 23.76 1187.8

Sensors 2019, 19, 913 17 of 28
Sensors 2018, 18, x FOR PEER REVIEW 17 of 28

Figure 12. Energy trend and its components for scalar implementations.

• Combinational energy in general increases 42% when the number of implemented rounds

doubles. Routing power in S16 is not optimized, as compared to S32 and S8.

• Sequential energy slightly decays as the number of implemented rounds is doubled.

• Since energy is estimated by multiplying power with time to encrypt the block, and power and

time exhibit different behavior with respect to r, the energy trend has a V-like curve, as seen in

Figure 12.

• The highest energy consumption value at S16 is due to the high combinational energy from the

high routing power/energy with additional glitch power/energy [36]. The drop of energy at S32

is due to the drop in combinational energy, as the tools optimize better for larger logic.

The energy trend (E) is modeled using Equation (9), with an average model error of 11.7%.

E (S2k) = E (S2k (Comb)) + E (S2k (Seq))

= 1.42 E (Sk (Comb)) + 0.73 E (Sk (Seq)),
(9)

where E (S1 (Comb)) = 850 pJ, E (S1 (Seq)) = 1990 pJ, Sr = S2k, and k = [1, 2, 4, 8, 16].

4.2. Pipelined Implementation Results

This section discusses the performance metric results for the FPGA pipelined design

implementations discussed in Subsection 3.3. Results are summarized in Table 7 and Figures 13–16.

Table 7. Summary of the pipelined implementation results.

Pipelined

implementation Fmax (MHz) LEs Power (mW) Energy (pJ/block)

SP1 66.2 2057 13.88 694.2

SP2 66.2 2008 13.69 684.4

SP4 57.32 2891 17.58 879

SP8 36.39 2918 27.60 1379.8

SP16 32.68 3338 23.32 1166

SP32 23.79 3361 23.76 1187.8

4.2.1. Frequency

Maximum frequency versus number of rounds implemented in a pipelined stage is shown in

Figure 13. The trend is similar to the case of the scalar design, where doubling the number of rounds

results in a drop in frequency of 10 MHz, which is equivalent to 16% of the SP1 frequency. Doubling

0

1000

2000

3000

4000

5000

6000

S_1 S_2 S_4 S_8 S_16 S_32

pJ/block Total Energy Comb. Seq.

Figure 12. Energy trend and its components for scalar implementations.

Sensors 2018, 18, x FOR PEER REVIEW 18 of 28

the number of rounds implemented in one pipeline stage increases the critical timing paths and

decreases frequency. The frequency trend (f) is modeled according to Equation (10) with an average

model error of 9.8%.

Figure 13. Frequency trend versus number of rounds for pipelined implementations.

f (SP2k) = f (SPk) − 0.16 f (SP1), (10)

where f (SP1) = 66 MHz, SPr = SP2k, and k = [1, 2, 4, 8, 16].

4.2.2. Resource Utilization

The resource utilization based on the type of LUTs is illustrated in Table 8. In this section, we

present analysis of resources in terms of combinational LEs and register LEs. The latter analysis

facilitates better understanding of power results as stated before.

Table 8. Summary of the pipelined implementation LUT results.

Pipelined implementation LEs LUT-4 LUT-3 LUT-2 or less LUT RegOnly

SP1 2057 1400 83 477 97

SP2 2008 1379 263 349 17

SP4 2891 2001 461 347 82

SP8 2918 2031 562 277 48

SP16 3338 2264 766 282 26

SP32 3361 2422 591 325 23

Figure 14 shows the number of LEs versus the number of rounds per pipeline stage. There is a

slight increase in LEs (an average of 15%) when doubling the number of rounds, except for SP2. To

better understand this trend, Figure 14 also clarifies the source of the number of LEs as combinational-

only LEs and register LEs. The number of combinational LEs increases when doubling the number

of rounds per stage (similar to the scalar design), while the total number of register LEs decreases.

This can be justified by the fact that total number of register LEs increases with the number of stages,

as more registers are inserted between stages. SP1 has the largest number of registers, as it has the

largest number of stages and pipeline partial results every round [13].

Generally, combinational LEs grow by an average of 40%. The total number of register LEs

decays by an average of 42%. Clearly, from Table 7 and Figure 14, the number of LEs (LE) for SP2k is

modeled using Equation (11) with an average error of 15.4%.

LE (SP2k) = LE (SP2k (Comb)) + LE (SP2k (Register))

= 1.4 LE (SPk (Comb)) + 0.58 LE (SPk (Register)),
(11)

0

10

20

30

40

50

60

70

SP_1 SP_2 SP_4 SP_8 SP_16 SP_32

Fmax (MHz)

Figure 13. Frequency trend versus number of rounds for pipelined implementations.

4.2.1. Frequency

Maximum frequency versus number of rounds implemented in a pipelined stage is shown in
Figure 13. The trend is similar to the case of the scalar design, where doubling the number of rounds
results in a drop in frequency of 10 MHz, which is equivalent to 16% of the SP1 frequency. Doubling the
number of rounds implemented in one pipeline stage increases the critical timing paths and decreases
frequency. The frequency trend (f) is modeled according to Equation (10) with an average model error
of 9.8%.

f (SP2k) = f (SPk) − 0.16 f (SP1), (10)

where f (SP1) = 66 MHz, SPr = SP2k, and k = [1, 2, 4, 8, 16].

4.2.2. Resource Utilization

The resource utilization based on the type of LUTs is illustrated in Table 8. In this section, we
present analysis of resources in terms of combinational LEs and register LEs. The latter analysis
facilitates better understanding of power results as stated before.

Sensors 2019, 19, 913 18 of 28

Table 8. Summary of the pipelined implementation LUT results.

Pipelined Implementation LEs LUT-4 LUT-3 LUT-2 or less LUT RegOnly

SP1 2057 1400 83 477 97
SP2 2008 1379 263 349 17
SP4 2891 2001 461 347 82
SP8 2918 2031 562 277 48
SP16 3338 2264 766 282 26
SP32 3361 2422 591 325 23

Figure 14 shows the number of LEs versus the number of rounds per pipeline stage. There is
a slight increase in LEs (an average of 15%) when doubling the number of rounds, except for
SP2. To better understand this trend, Figure 14 also clarifies the source of the number of LEs as
combinational-only LEs and register LEs. The number of combinational LEs increases when doubling
the number of rounds per stage (similar to the scalar design), while the total number of register LEs
decreases. This can be justified by the fact that total number of register LEs increases with the number
of stages, as more registers are inserted between stages. SP1 has the largest number of registers, as it
has the largest number of stages and pipeline partial results every round [13].

Generally, combinational LEs grow by an average of 40%. The total number of register LEs decays
by an average of 42%. Clearly, from Table 7 and Figure 14, the number of LEs (LE) for SP2k is modeled
using Equation (11) with an average error of 15.4%.

LE (SP2k) = LE (SP2k (Comb)) + LE (SP2k (Register))
= 1.4 LE (SPk (Comb)) + 0.58 LE (SPk (Register)),

(11)

where LE (SP1 (Comb)) = 800, LE (SP1 (Register)) = 1594, SPr = SP2k, and k = [1, 2, 4, 8, 16].
Sensors 2018, 18, x FOR PEER REVIEW 19 of 28

where LE (SP1 (Comb)) = 800, LE (SP1 (Register)) = 1594, SPr = SP2k, and k = [1, 2, 4, 8, 16].

Figure 14. Resource utilization trend and its components versus number of rounds for pipelined

implementations.

4.2.3. Power

The power trend across pipelined implementations is shown in Figure 15. Initially, power

slightly decreases to its minimum value at SP2, and then increases until reaching its maximum value

at SP8 before decreasing to SP16 and increasing to SP32. Overall, total power increases by an average

of 14% when doubling number of implemented rounds. Figure 15 also plots power components

(combinational and sequential power). The following is observed:

• As the number of rounds is doubled, combinational power grows by an average of 35%.

• As the number of rounds is doubled, sequential power decays by an average of 20% and the

number of register LEs decreases.

The reason for the drop in the power at SP16 is due to combinational power, which is higher for

SP8 because of the routing power. Combinational power reduction at SP16 relates to how the synthesis

tool works in order to reduce connections and optimize the algorithm.

From Table 7 and Figure 15, the power trend (𝑃) for SP2k is modeled using Equation (12) with

an average model error of 14%.

P (SP2k) = P (SP2k (Comb)) + P (SP2k (Seq))

= 1.35 P (SPk (Comb)) + 0.8 P (SPk (Seq)),
(12)

where P (SP1 (Comb)) = 5 mW, P (SP1 (Seq)) = 10 mW, SPr = SP2k, and k = [1, 2, 4, 8, 16].

.

Figure 15. The power trend and its components for pipelined implementations

0

500

1000

1500

2000

2500

3000

3500

4000

SP_1 SP_2 SP_4 SP_8 SP_16 SP_32

Comb. Reg. Total LEs

0

5

10

15

20

25

30

SP_1 SP_2 SP_4 SP_8 SP_16 SP_32

mW Total Power Comb. seq.

Figure 14. Resource utilization trend and its components versus number of rounds for
pipelined implementations.

4.2.3. Power

The power trend across pipelined implementations is shown in Figure 15. Initially, power slightly
decreases to its minimum value at SP2, and then increases until reaching its maximum value at
SP8 before decreasing to SP16 and increasing to SP32. Overall, total power increases by an average
of 14% when doubling number of implemented rounds. Figure 15 also plots power components
(combinational and sequential power). The following is observed:

• As the number of rounds is doubled, combinational power grows by an average of 35%.

Sensors 2019, 19, 913 19 of 28

• As the number of rounds is doubled, sequential power decays by an average of 20% and the
number of register LEs decreases.

The reason for the drop in the power at SP16 is due to combinational power, which is higher for
SP8 because of the routing power. Combinational power reduction at SP16 relates to how the synthesis
tool works in order to reduce connections and optimize the algorithm.

From Table 7 and Figure 15, the power trend (P) for SP2k is modeled using Equation (12) with an
average model error of 14%.

P (SP2k) = P (SP2k (Comb)) + P (SP2k (Seq))
= 1.35 P (SPk (Comb)) + 0.8 P (SPk (Seq)),

(12)

where P (SP1 (Comb)) = 5 mW, P (SP1 (Seq)) = 10 mW, SPr = SP2k, and k = [1, 2, 4, 8, 16].

Sensors 2018, 18, x FOR PEER REVIEW 19 of 28

where LE (SP1 (Comb)) = 800, LE (SP1 (Register)) = 1594, SPr = SP2k, and k = [1, 2, 4, 8, 16].

Figure 14. Resource utilization trend and its components versus number of rounds for pipelined

implementations.

4.2.3. Power

The power trend across pipelined implementations is shown in Figure 15. Initially, power

slightly decreases to its minimum value at SP2, and then increases until reaching its maximum value

at SP8 before decreasing to SP16 and increasing to SP32. Overall, total power increases by an average

of 14% when doubling number of implemented rounds. Figure 15 also plots power components

(combinational and sequential power). The following is observed:

• As the number of rounds is doubled, combinational power grows by an average of 35%.

• As the number of rounds is doubled, sequential power decays by an average of 20% and the

number of register LEs decreases.

The reason for the drop in the power at SP16 is due to combinational power, which is higher for

SP8 because of the routing power. Combinational power reduction at SP16 relates to how the synthesis

tool works in order to reduce connections and optimize the algorithm.

From Table 7 and Figure 15, the power trend (𝑃) for SP2k is modeled using Equation (12) with

an average model error of 14%.

P (SP2k) = P (SP2k (Comb)) + P (SP2k (Seq))

= 1.35 P (SPk (Comb)) + 0.8 P (SPk (Seq)),
(12)

where P (SP1 (Comb)) = 5 mW, P (SP1 (Seq)) = 10 mW, SPr = SP2k, and k = [1, 2, 4, 8, 16].

.

Figure 15. The power trend and its components for pipelined implementations

0

500

1000

1500

2000

2500

3000

3500

4000

SP_1 SP_2 SP_4 SP_8 SP_16 SP_32

Comb. Reg. Total LEs

0

5

10

15

20

25

30

SP_1 SP_2 SP_4 SP_8 SP_16 SP_32

mW Total Power Comb. seq.

Figure 15. The power trend and its components for pipelined implementations.

4.2.4. Energy

Energy to encrypt one block is computed by multiplying total power with the time required
to encrypt the block. In the case of a full pipelined implementation, time to encrypt is one cycle,
because every cycle of the pipeline completes one block. It is assumed that data are continuous
(i.e., not intermittent). Energy per block versus number of rounds per pipeline stage is illustrated in
Figure 16. The following is observed:

• The energy curve looks the same as the power curve with minimum energy at SP2. Energy
increases gradually until reaching SP8, decays at SP16, and then increases to SP32.

• To better understand this trend, Figure 16 plots the energy components throughout pipelined
implementations, which are combinational and sequential. Combinational energy increases by an
average of 50%, while sequential decreases by an average of 15%. The growth in combinational
energy is due to the glitch and interconnect power, while the decay in sequential energy is because
of the decreasing number of flip-flops as the number of rounds per stage is doubled. The decay
of combinational energy at SP16 is due to how the synthesis tool routes the connections and
optimizes the design, as stated in Section 4.2.3.

From Figure 16, the energy trend (E) for SP2k is modeled according to Equation (13) with an
average model error of 14%.

E (SP2k) = E (SP2k (Comb)) + E (SP2k (Seq))
= 1.5 E (SPk (Comb)) + 0.85 E (SPk (Seq)),

(13)

where E (SP1 (Comb)) = 170 pJ, E (SP1 (Seq)) = 520 pJ, SPr = SP2k, and k = [1, 2, 4, 8, 16].

Sensors 2019, 19, 913 20 of 28

Sensors 2018, 18, x FOR PEER REVIEW 20 of 28

4.2.4. Energy

Energy to encrypt one block is computed by multiplying total power with the time required to

encrypt the block. In the case of a full pipelined implementation, time to encrypt is one cycle, because

every cycle of the pipeline completes one block. It is assumed that data are continuous (i.e., not

intermittent). Energy per block versus number of rounds per pipeline stage is illustrated in Figure 16.

The following is observed:

• The energy curve looks the same as the power curve with minimum energy at SP2. Energy

increases gradually until reaching SP8, decays at SP16, and then increases to SP32.

• To better understand this trend, Figure 16 plots the energy components throughout pipelined

implementations, which are combinational and sequential. Combinational energy increases by

an average of 50%, while sequential decreases by an average of 15%. The growth in

combinational energy is due to the glitch and interconnect power, while the decay in sequential

energy is because of the decreasing number of flip-flops as the number of rounds per stage is

doubled. The decay of combinational energy at SP16 is due to how the synthesis tool routes the

connections and optimizes the design, as stated in Section 4.2.3.

From Figure 16, the energy trend (𝐸) for SP2k is modeled according to Equation (13) with an

average model error of 14%.

E (SP2k) = E (SP2k (Comb)) + E (SP2k (Seq))

= 1.5 E (SPk (Comb)) + 0.85 E (SPk (Seq)),
(13)

where E (SP1 (Comb)) = 170 pJ, E (SP1 (Seq)) = 520 pJ, SPr = SP2k, and k = [1, 2, 4, 8, 16].

Figure 16. Energy trend and its components for pipelined implementations.

5. Discussion

In this section, the implementation results for scalar and pipelined designs presented in previous

sections are analyzed and discussed in order to draw guidelines and conclusions. Moreover, the best

design option or implementation for each performance metric is shown. Firstly, speed/timing and

throughput metrics are discussed, followed by power and utilized resources (LEs) and the energy

metric. Then, the optimum design is described. Finally, the implementations are discussed from a

security perspective.

5.1. Speed and Throughput

The fastest scalar and pipelined implementations are S1, S2, SP1, and SP2. These designs have the

lowest logic in the clock cycle, the smallest period, and the fastest frequency. Throughput (encrypted-

bits per second) is measured for each scalar and pipelined implementation, as shown in Figure 17.

0

200

400

600

800

1000

1200

1400

1600

SP_1 SP_2 SP_4 SP_8 SP_16 SP_32

pJ/block Total Energy Comb. Seq.

Figure 16. Energy trend and its components for pipelined implementations.

5. Discussion

In this section, the implementation results for scalar and pipelined designs presented in previous
sections are analyzed and discussed in order to draw guidelines and conclusions. Moreover, the best
design option or implementation for each performance metric is shown. Firstly, speed/timing and
throughput metrics are discussed, followed by power and utilized resources (LEs) and the energy
metric. Then, the optimum design is described. Finally, the implementations are discussed from a
security perspective.

5.1. Speed and Throughput

The fastest scalar and pipelined implementations are S1, S2, SP1, and SP2. These designs have
the lowest logic in the clock cycle, the smallest period, and the fastest frequency. Throughput
(encrypted-bits per second) is measured for each scalar and pipelined implementation, as shown
in Figure 17.Sensors 2018, 18, x FOR PEER REVIEW 21 of 28

Figure 17. Throughput (encrypted-bits per second).

Clearly, the pipelined implementations demonstrate better throughput (12 times higher than

scalar). The best pipelined implementations are SP1 and SP2, while the best scalar implementations

are S16 and S8. It is important to highlight that the pipelined design does not realize its full potential

unless pipeline stages are full of encrypted blocks and, hence, are appropriate for applications with

continuous streams of data blocks.

5.2. Power and LEs

It is obvious that power and resource utilization (number of LEs) trends are related, as average

growth with doubling hardware rounds is approximately the same. Figure 18 illustrates the trends

for combinational power and combinational LEs of scalar implementations versus number of rounds.

Figure 18 also illustrates the trend for sequential power and sequential LEs. Combinational power

and number of combinational LEs exhibit the same increasing trend. Moreover, the growth in power

(i.e., 2.05) is slightly higher than the growth of combinational logic (i.e., 2.02). Thus, power is not only

affected by the number of LEs, but also by interconnects and glitch power [36].

As the number of rounds is doubled, sequential power increases, with no change in sequential

logic. This is attributed to an increase in the activity of sequential circuits when more rounds are

implemented in the hardware. The following results are observed for scalar implementations as the

number of rounds is doubled:

• 102% growth in combinational LEs and 105% growth in combinational power.

• No change in sequential LEs and a 30% increase in sequential power.

Figure 18. Combinational power vs. combinational logic elements (Les) and sequential power vs.

sequential LEs for scalar implementations.

0

500

1000

1500

2000

2500

S_
1

S_
2

S_
4

S_
8

S_
1

6

S_
3

2

SP
_

1

SP
_

2

SP
_

4

SP
_

8

SP
_

1
6

SP
_

3
2

Throughput

0

5

10

15

20

25

30

35

S_1 S_2 S_4 S_8 S_16 S_32

Comb. Power Comb. LEs

Seq. Power Seq. LEs

Figure 17. Throughput (encrypted-bits per second).

Clearly, the pipelined implementations demonstrate better throughput (12 times higher than
scalar). The best pipelined implementations are SP1 and SP2, while the best scalar implementations
are S16 and S8. It is important to highlight that the pipelined design does not realize its full potential
unless pipeline stages are full of encrypted blocks and, hence, are appropriate for applications with
continuous streams of data blocks.

Sensors 2019, 19, 913 21 of 28

5.2. Power and LEs

It is obvious that power and resource utilization (number of LEs) trends are related, as average
growth with doubling hardware rounds is approximately the same. Figure 18 illustrates the trends
for combinational power and combinational LEs of scalar implementations versus number of rounds.
Figure 18 also illustrates the trend for sequential power and sequential LEs. Combinational power
and number of combinational LEs exhibit the same increasing trend. Moreover, the growth in power
(i.e., 2.05) is slightly higher than the growth of combinational logic (i.e., 2.02). Thus, power is not only
affected by the number of LEs, but also by interconnects and glitch power [36].

As the number of rounds is doubled, sequential power increases, with no change in sequential
logic. This is attributed to an increase in the activity of sequential circuits when more rounds are
implemented in the hardware. The following results are observed for scalar implementations as the
number of rounds is doubled:

• 102% growth in combinational LEs and 105% growth in combinational power.
• No change in sequential LEs and a 30% increase in sequential power.

Sensors 2018, 18, x FOR PEER REVIEW 21 of 28

Figure 17. Throughput (encrypted-bits per second).

Clearly, the pipelined implementations demonstrate better throughput (12 times higher than

scalar). The best pipelined implementations are SP1 and SP2, while the best scalar implementations

are S16 and S8. It is important to highlight that the pipelined design does not realize its full potential

unless pipeline stages are full of encrypted blocks and, hence, are appropriate for applications with

continuous streams of data blocks.

5.2. Power and LEs

It is obvious that power and resource utilization (number of LEs) trends are related, as average

growth with doubling hardware rounds is approximately the same. Figure 18 illustrates the trends

for combinational power and combinational LEs of scalar implementations versus number of rounds.

Figure 18 also illustrates the trend for sequential power and sequential LEs. Combinational power

and number of combinational LEs exhibit the same increasing trend. Moreover, the growth in power

(i.e., 2.05) is slightly higher than the growth of combinational logic (i.e., 2.02). Thus, power is not only

affected by the number of LEs, but also by interconnects and glitch power [36].

As the number of rounds is doubled, sequential power increases, with no change in sequential

logic. This is attributed to an increase in the activity of sequential circuits when more rounds are

implemented in the hardware. The following results are observed for scalar implementations as the

number of rounds is doubled:

• 102% growth in combinational LEs and 105% growth in combinational power.

• No change in sequential LEs and a 30% increase in sequential power.

Figure 18. Combinational power vs. combinational logic elements (Les) and sequential power vs.

sequential LEs for scalar implementations.

0

500

1000

1500

2000

2500

S_
1

S_
2

S_
4

S_
8

S_
1

6

S_
3

2

SP
_

1

SP
_

2

SP
_

4

SP
_

8

SP
_

1
6

SP
_

3
2

Throughput

0

5

10

15

20

25

30

35

S_1 S_2 S_4 S_8 S_16 S_32

Comb. Power Comb. LEs

Seq. Power Seq. LEs

Figure 18. Combinational power vs. combinational logic elements (Les) and sequential power vs.
sequential LEs for scalar implementations.

The combinational power and combinational LEs of pipelined implementations versus the
number of rounds is shown in Figure 19, in addition to the sequential power and sequential LEs.
The combinational power and combinational LEs trends increase in a similar manner; however, power
growth is lower except for the case of SP8. Thus, power is not only affected by resource utilization,
but also by interconnects and glitch power, as stated above. As the number of rounds is doubled,
sequential power and sequential logic decrease, but the power decays less. The following results are
observed for pipelined implementations as the number of rounds is doubled:

• 40% growth in combinational LEs and 35% growth in combinational power.
• 42% decay in sequential LEs and 20% decay in sequential power.

Clearly, there is a correlation between resources (represented by LEs) and power, since dynamic
power is proportional to design area [13]. Although there is a relationship between power and the
number of LEs, there are other factors contributing related to the following:

• Interconnect power and glitch power [36].
• The way the synthesis tool routes the connections and optimizes the designs.

When comparing scalar to pipelined implementations with respect to the number of LEs and
power consumption, it is found that scalar designs are best in terms of power and resource utilization.

Sensors 2019, 19, 913 22 of 28

Scalar implementations have lower LEs and power, as shown in Figure 20a,b, respectively. Scalar
implementations consume, on average, 45% of the pipelined power and 39% of the pipelined LEs.
Regarding scalar implementations, the best is S1 (the basic design), as it has the least power and the least
number of LEs. Moreover, it consumes only 12% of the power of the best pipelined implementation
(i.e., SP2), and the number of LEs is 10% that of SP2.

Sensors 2018, 18, x FOR PEER REVIEW 22 of 28

The combinational power and combinational LEs of pipelined implementations versus the

number of rounds is shown in Figure 19, in addition to the sequential power and sequential LEs. The

combinational power and combinational LEs trends increase in a similar manner; however, power

growth is lower except for the case of SP8. Thus, power is not only affected by resource utilization,

but also by interconnects and glitch power, as stated above. As the number of rounds is doubled,

sequential power and sequential logic decrease, but the power decays less. The following results are

observed for pipelined implementations as the number of rounds is doubled:

• 40% growth in combinational LEs and 35% growth in combinational power.

• 42% decay in sequential LEs and 20% decay in sequential power.

Clearly, there is a correlation between resources (represented by LEs) and power, since dynamic

power is proportional to design area [13]. Although there is a relationship between power and the

number of LEs, there are other factors contributing related to the following:

• Interconnect power and glitch power [36].

• The way the synthesis tool routes the connections and optimizes the designs.

Figure 19. Combinational power vs. combinational LEs and sequential power vs. sequential LEs for

pipelined implementations.

When comparing scalar to pipelined implementations with respect to the number of LEs and

power consumption, it is found that scalar designs are best in terms of power and resource utilization.

Scalar implementations have lower LEs and power, as shown in Figures 20a,b, respectively. Scalar

implementations consume, on average, 45% of the pipelined power and 39% of the pipelined LEs.

Regarding scalar implementations, the best is S1 (the basic design), as it has the least power and the

least number of LEs. Moreover, it consumes only 12% of the power of the best pipelined

implementation (i.e., SP2), and the number of LEs is 10% that of SP2.

(a) (b)

Figure 20. Power and LEs for scalar and pipelined implementations. (a) Total LEs for scalar and

pipelined implementations; (b) total power for scalar and pipelined implementations.

0

5

10

SP_1 SP_2 SP_4 SP_8 SP_16SP_32

Comb. Power Comb. LEs

Seq. Power Seq. LEs

0

1000

2000

3000

4000

1 2 4 8 16 32

Total LEs (Scalar)

Total LEs (Pipelined)

0

5

10

15

20

25

30

1 2 4 8 16 32

 Power (Scalar) Power (Pipelined)

Figure 19. Combinational power vs. combinational LEs and sequential power vs. sequential LEs for
pipelined implementations.

Sensors 2018, 18, x FOR PEER REVIEW 22 of 28

The combinational power and combinational LEs of pipelined implementations versus the

number of rounds is shown in Figure 19, in addition to the sequential power and sequential LEs. The

combinational power and combinational LEs trends increase in a similar manner; however, power

growth is lower except for the case of SP8. Thus, power is not only affected by resource utilization,

but also by interconnects and glitch power, as stated above. As the number of rounds is doubled,

sequential power and sequential logic decrease, but the power decays less. The following results are

observed for pipelined implementations as the number of rounds is doubled:

• 40% growth in combinational LEs and 35% growth in combinational power.

• 42% decay in sequential LEs and 20% decay in sequential power.

Clearly, there is a correlation between resources (represented by LEs) and power, since dynamic

power is proportional to design area [13]. Although there is a relationship between power and the

number of LEs, there are other factors contributing related to the following:

• Interconnect power and glitch power [36].

• The way the synthesis tool routes the connections and optimizes the designs.

Figure 19. Combinational power vs. combinational LEs and sequential power vs. sequential LEs for

pipelined implementations.

When comparing scalar to pipelined implementations with respect to the number of LEs and

power consumption, it is found that scalar designs are best in terms of power and resource utilization.

Scalar implementations have lower LEs and power, as shown in Figures 20a,b, respectively. Scalar

implementations consume, on average, 45% of the pipelined power and 39% of the pipelined LEs.

Regarding scalar implementations, the best is S1 (the basic design), as it has the least power and the

least number of LEs. Moreover, it consumes only 12% of the power of the best pipelined

implementation (i.e., SP2), and the number of LEs is 10% that of SP2.

(a) (b)

Figure 20. Power and LEs for scalar and pipelined implementations. (a) Total LEs for scalar and

pipelined implementations; (b) total power for scalar and pipelined implementations.

0

5

10

SP_1 SP_2 SP_4 SP_8 SP_16SP_32

Comb. Power Comb. LEs

Seq. Power Seq. LEs

0

1000

2000

3000

4000

1 2 4 8 16 32

Total LEs (Scalar)

Total LEs (Pipelined)

0

5

10

15

20

25

30

1 2 4 8 16 32

 Power (Scalar) Power (Pipelined)

Figure 20. Power and LEs for scalar and pipelined implementations. (a) Total LEs for scalar and
pipelined implementations; (b) total power for scalar and pipelined implementations.

5.3. Energy

Energy per block for all implementations (scalar and pipeline) is shown in Figure 21.
This curve indicates the energy trend in order to easily identify the maximum and minimum energy
implementations. The energy trend is different in scalar and pipelined designs. The combinational
and sequential energy trends contribute to this total result.

The control and round logic concepts in scalar and pipelined implementations are presented as
block diagrams in Figures 22 and 23, respectively. It should be noted that control logic includes the
control signals and registers that are not part of round and key scheduling logic.

Sensors 2019, 19, 913 23 of 28

Sensors 2018, 18, x FOR PEER REVIEW 23 of 28

5.3. Energy

Energy per block for all implementations (scalar and pipeline) is shown in Figure 21. This curve

indicates the energy trend in order to easily identify the maximum and minimum energy

implementations. The energy trend is different in scalar and pipelined designs. The combinational

and sequential energy trends contribute to this total result.

Figure 21. Energy per block for scalar and pipelined implementations.

The control and round logic concepts in scalar and pipelined implementations are presented as

block diagrams in Figures 22 and 23, respectively. It should be noted that control logic includes the

control signals and registers that are not part of round and key scheduling logic.

Figure 22. Control and round logic in scalar designs.

In scalar one-round implementation, energy is computed by multiplying power by 32 cycles. In

two-round implementation, energy is computed by multiplying power by 16 cycles (half the number

of cycles of the previous implementation). Thus, instead of executing one round logic and one control

logic (control signals and registers) per cycle as in the case of one-round implementation, two rounds

of logic and one control logic are executed. As a result, doubling the number of rounds, r, decreases

the number of cycles by a factor of two. This process results in the following:

• The control logic, which includes the control signals (e.g., clock, done, start signals, etc.) and

registers (e.g., flip-flops, round counter), is executed 50% less as r is doubled. As the number of

rounds is increased, the number of hardware iterations decreases. Hence, control logic energy

decreases. Generally, clock and registers contribute less to energy with a higher number of

rounds, which leads to energy savings. This is one source of the decreasing trend.

0

1000

2000

3000

4000

5000

6000

pJ/block Total Energy Comb Seq

Figure 21. Energy per block for scalar and pipelined implementations.

Sensors 2018, 18, x FOR PEER REVIEW 23 of 28

5.3. Energy

Energy per block for all implementations (scalar and pipeline) is shown in Figure 21. This curve

indicates the energy trend in order to easily identify the maximum and minimum energy

implementations. The energy trend is different in scalar and pipelined designs. The combinational

and sequential energy trends contribute to this total result.

Figure 21. Energy per block for scalar and pipelined implementations.

The control and round logic concepts in scalar and pipelined implementations are presented as

block diagrams in Figures 22 and 23, respectively. It should be noted that control logic includes the

control signals and registers that are not part of round and key scheduling logic.

Figure 22. Control and round logic in scalar designs.

In scalar one-round implementation, energy is computed by multiplying power by 32 cycles. In

two-round implementation, energy is computed by multiplying power by 16 cycles (half the number

of cycles of the previous implementation). Thus, instead of executing one round logic and one control

logic (control signals and registers) per cycle as in the case of one-round implementation, two rounds

of logic and one control logic are executed. As a result, doubling the number of rounds, r, decreases

the number of cycles by a factor of two. This process results in the following:

• The control logic, which includes the control signals (e.g., clock, done, start signals, etc.) and

registers (e.g., flip-flops, round counter), is executed 50% less as r is doubled. As the number of

rounds is increased, the number of hardware iterations decreases. Hence, control logic energy

decreases. Generally, clock and registers contribute less to energy with a higher number of

rounds, which leads to energy savings. This is one source of the decreasing trend.

0

1000

2000

3000

4000

5000

6000

pJ/block Total Energy Comb Seq

Figure 22. Control and round logic in scalar designs.

In scalar one-round implementation, energy is computed by multiplying power by 32 cycles.
In two-round implementation, energy is computed by multiplying power by 16 cycles (half the number
of cycles of the previous implementation). Thus, instead of executing one round logic and one control
logic (control signals and registers) per cycle as in the case of one-round implementation, two rounds
of logic and one control logic are executed. As a result, doubling the number of rounds, r, decreases
the number of cycles by a factor of two. This process results in the following:

• The control logic, which includes the control signals (e.g., clock, done, start signals, etc.) and
registers (e.g., flip-flops, round counter), is executed 50% less as r is doubled. As the number of
rounds is increased, the number of hardware iterations decreases. Hence, control logic energy
decreases. Generally, clock and registers contribute less to energy with a higher number of rounds,
which leads to energy savings. This is one source of the decreasing trend.

• Theoretically, the round logic should not be affected, because, as the number of rounds
implemented in the hardware is doubled, cycles are halved. Yet, the following factors should also
be taken into consideration when the number of hardware rounds, r, is doubled:

- The synthesis tool can find more opportunity to optimize larger logic, as there is a better
chance to reduce the logic. Thus, doubling the number of hardware rounds typically
results in an area less than the summation of the two rounds. This is another source for the
decreasing trend [37].

Sensors 2019, 19, 913 24 of 28

- The logic becomes more complex with a larger number of rounds, due to many
interconnections and levels. Thus, glitch and interconnect power and energy tend to
increase [36].

Sensors 2018, 18, x FOR PEER REVIEW 24 of 28

• Theoretically, the round logic should not be affected, because, as the number of rounds

implemented in the hardware is doubled, cycles are halved. Yet, the following factors should

also be taken into consideration when the number of hardware rounds, r, is doubled:

- The synthesis tool can find more opportunity to optimize larger logic, as there is a better chance

to reduce the logic. Thus, doubling the number of hardware rounds typically results in an area

less than the summation of the two rounds. This is another source for the decreasing trend [37].

- The logic becomes more complex with a larger number of rounds, due to many interconnections

and levels. Thus, glitch and interconnect power and energy tend to increase [36].

Figure 23. Control and round logic in pipelined designs.

The same control and round logic concepts are applied to pipelined implementation, as shown

in Figure 23, with the addition of register logic. For one-round implementation, energy is computed

by multiplying power with time to encrypt one block per stage. For example, consider the case of

four-round implementation, where the cycle time increases as four rounds are processed in each

stage. Hence, as the number of rounds, r, per stage is doubled, the clock period increases. This results

in the following:

• The control logic is executed less as r is doubled. As the number of rounds per stage increases,

the number of stages and the round counter decreases. Hence, control logic is simplified when

doubling the number of rounds, and, as a result, power/energy decreases. This is one source of

the decreasing trend in the pipelined implementation.

• The round logic is affected by two main factors as follows:

- The synthesis tool tends to optimize larger logic better, as opportunities for sharing and

minimizing logic cones increases. Therefore, as the number of rounds per stage is increased,

power and energy decrease. This is another source for the decreasing trend.

- Stage complexity increases as number of rounds per stage is doubled. As the level of complexity

increases, interconnection, routing, and glitch power and energy increase. This is one source for

the increase in the energy trend.

• The registers (i.e., flip flops) inserted between pipeline stages reduce by a factor of two when the

number of rounds per stage is doubled, and the number of stages is halved. Thus, power and

energy decrease. This is another source of the decreasing trend.

Figure 23. Control and round logic in pipelined designs.

The same control and round logic concepts are applied to pipelined implementation, as shown
in Figure 23, with the addition of register logic. For one-round implementation, energy is computed
by multiplying power with time to encrypt one block per stage. For example, consider the case of
four-round implementation, where the cycle time increases as four rounds are processed in each stage.
Hence, as the number of rounds, r, per stage is doubled, the clock period increases. This results in the
following:

• The control logic is executed less as r is doubled. As the number of rounds per stage increases,
the number of stages and the round counter decreases. Hence, control logic is simplified when
doubling the number of rounds, and, as a result, power/energy decreases. This is one source of
the decreasing trend in the pipelined implementation.

• The round logic is affected by two main factors as follows:

- The synthesis tool tends to optimize larger logic better, as opportunities for sharing and
minimizing logic cones increases. Therefore, as the number of rounds per stage is increased,
power and energy decrease. This is another source for the decreasing trend.

- Stage complexity increases as number of rounds per stage is doubled. As the level of
complexity increases, interconnection, routing, and glitch power and energy increase.
This is one source for the increase in the energy trend.

• The registers (i.e., flip flops) inserted between pipeline stages reduce by a factor of two when the
number of rounds per stage is doubled, and the number of stages is halved. Thus, power and
energy decrease. This is another source of the decreasing trend.

This analysis explains the mechanisms behind the energy trend. Energy also depends on the
algorithm and the implementation. In general, pipelined designs dissipate lower energy compared
to scalar designs. SP2 reports the lowest energy dissipation value closely followed by SP1 across all
pipelined designs. For scalar designs, S4 has the lowest energy. Thus, the best implementation in terms
of energy consumption is SP2, as it consumes 31% of the best scalar design (i.e., S4).

Sensors 2019, 19, 913 25 of 28

5.4. The Optimum Design

This section determines the best implementation of a lightweight cipher for LRDs. There are many
performance metrics (i.e., throughput, power, area, and energy) to be considered, as discussed in the
previous sections. In each performance metric, one implementation is optimum. Thus, the question is
which metric is the most critical to consider. The answer will be the application to be used in lightweight
ciphers. As stated before, lightweight block ciphers are suited for LRDs, as constrained environments
supporting secure communication. With the continued minimization of transistor features and the
need to increase battery lifetime, energy becomes the most critical issue for LRDs. Additionally,
providing an adequate level of security without exceeding the resource limitation is critical. Therefore,
energy and area are the most critical factors to be considered, with slightly higher emphasis on energy.
The optimum metric is introduced in Equation (14), as in Reference [13], to compare different design
implementations. This metric rewards the design implementations with minimum area and energy
and emphasizes minimal energy.

Metric = Eµ × LE, (14)

where µ is the energy emphasis factor, and is evaluated using following values: 1.0, 1.2, 1.4, 1.6, 1.8,
and 2.0.

Figure 24 shows the scalar and pipelined implementation trends using the metric in Equation (14)
with different µ values. Changing the value of µ shows which design performs best at different energy
levels. According to the curves in Figure 24, the following observations are drawn:

• With a higher emphasis on energy (µ > 1.5), the optimum implementation is SP2 followed by SP1.
• With a lower emphasis on energy (1 < µ < 1.5), the optimum implementation is S1 followed by S2.
• For scalar implementations, the optimum design is S1 followed by S2 and S4.
• In pipelined implementations, the optimum design is SP2 followed by SP1.

In general, balanced energy and area requirements lead to the following conclusions:

• Pipelined implementation performs better with a higher emphasis on energy and, as a result,
is the best choice for low-resource/constrained devices.

• SP2 is best for the low-energy requirement, and S1 is the best for the low-resource requirement.
• The best implementations are SP2, SP1, S1, S2, and S4.

The above conclusions are combined with the recommended usage for pipelined implementations
started earlier (i.e., pipeline implementations are a better fit for applications with continuous blocks of
data). Therefore, two-round pipelined implementation is optimum for applications with continuous
streams of data, and one-round and two-round scalar implementations are recommended for
intermittent data applications.

Sensors 2018, 18, x FOR PEER REVIEW 25 of 28

This analysis explains the mechanisms behind the energy trend. Energy also depends on the

algorithm and the implementation. In general, pipelined designs dissipate lower energy compared

to scalar designs. SP2 reports the lowest energy dissipation value closely followed by SP1 across all

pipelined designs. For scalar designs, S4 has the lowest energy. Thus, the best implementation in

terms of energy consumption is SP2, as it consumes 31% of the best scalar design (i.e., S4).

5.4. The Optimum Design

This section determines the best implementation of a lightweight cipher for LRDs. There are

many performance metrics (i.e., throughput, power, area, and energy) to be considered, as discussed

in the previous sections. In each performance metric, one implementation is optimum. Thus, the

question is which metric is the most critical to consider. The answer will be the application to be used

in lightweight ciphers. As stated before, lightweight block ciphers are suited for LRDs, as constrained

environments supporting secure communication. With the continued minimization of transistor

features and the need to increase battery lifetime, energy becomes the most critical issue for LRDs.

Additionally, providing an adequate level of security without exceeding the resource limitation is

critical. Therefore, energy and area are the most critical factors to be considered, with slightly higher

emphasis on energy. The optimum metric is introduced in Equation (14), as in Reference [13], to

compare different design implementations. This metric rewards the design implementations with

minimum area and energy and emphasizes minimal energy.

Metric = Eµ × LE, (14)

where µ is the energy emphasis factor, and is evaluated using following values: 1.0, 1.2, 1.4, 1.6, 1.8,

and 2.0.

Figure 24 shows the scalar and pipelined implementation trends using the metric in Equation

(14) with different µ values. Changing the value of µ shows which design performs best at different

energy levels. According to the curves in Figure 24, the following observations are drawn:

• With a higher emphasis on energy (µ > 1.5), the optimum implementation is SP2 followed by SP1.

• With a lower emphasis on energy (1 < µ < 1.5), the optimum implementation is S1 followed by

S2.

• For scalar implementations, the optimum design is S1 followed by S2 and S4.

• In pipelined implementations, the optimum design is SP2 followed by SP1.

In general, balanced energy and area requirements lead to the following conclusions:

• Pipelined implementation performs better with a higher emphasis on energy and, as a result, is

the best choice for low-resource/constrained devices.

• SP2 is best for the low-energy requirement, and S1 is the best for the low-resource requirement.

• The best implementations are SP2, SP1, S1, S2, and S4.

The above conclusions are combined with the recommended usage for pipelined

implementations started earlier (i.e., pipeline implementations are a better fit for applications with

continuous blocks of data). Therefore, two-round pipelined implementation is optimum for

applications with continuous streams of data, and one-round and two-round scalar implementations

are

Figure 24. Eµ × LE, where µ is the energy emphasis factor

0

20

40

60
1 1.2 1.4 1.6 1.8 2

Figure 24. Eµ × LE, where µ is the energy emphasis factor.

5.5. Implementations and Security

The presented implementations of the SIMON cipher do not alter the SIMON algorithm.
The implementations exercise different design options to improve the performance metrics. Therefore,

Sensors 2019, 19, 913 26 of 28

it is expected all implementations provide the same level of confidentiality security service. The only
exception, however, is side-channel attack, which is implementation-dependent. Side-channel
attack exploits the relationship between analog leakage (e.g., power) and the data manipulated
by implemented design.

Bhasin et al. were successful in mounting side-channel attack and retrieval of the secret key
in FPGA implementation of the SIMON cipher [38]. Bhasin et al. recommended loop unrolling to
achieve higher side-channel attack resistance at minimal overhead [38]. For the presented pipelined
implementations, all rounds are implemented in hardware, which provides optimum protection from
side-channel attacks.

For scalar implementations, S32 unrolls all rounds and implements them in hardware, which is
similar to pipelined implementations. S1 does not unroll rounds as it implements one round in
hardware. Hence, S1 is most vulnerable to side-channel attacks amongst all implementations.
Other scalar implementations unroll and implement a different number of rounds in hardware. Thus,
when side-channel attack is a concern, the optimum scalar implementations might be slightly modified
to be S2 and S4.

6. Conclusions

This paper discussed the hardware implementations of SIMON lightweight cipher algorithm
targeting secure communication in LRDs. Several scalar and pipelined FPGA implementations of the
SIMON32/64 lightweight cipher were designed and examined with different numbers of hardware
rounds per cycle.

Pipelined implementations performed better than scalar designs in terms of throughput
performance by a factor of 12. The best pipelined implementations were SP1 and SP2, while S16 followed
by S8 were the best scalar implementations. Additionally, the number of LEs and the measured power
consumption trends were very similar. The best implementations in terms of LEs and power were
scalar. Scalar implementations consumed, on average, 45% of the pipelined implementations power.
Scalar LEs utilized 39% of pipelined LEs. As for scalar implementations, S1 was best; it consumed
only 12% of the power of the best pipelined implementation (i.e., SP2) and the number of LEs for S1

was 10% that of SP2. In terms of energy dissipation, SP2 was best followed by SP1. Pipelined designs
reported the lowest values for energy consumption compared to scalar designs. The best pipelined
design (i.e., SP2) consumed only 31% of the best scalar design (i.e., S4).

Balancing energy and area, the optimum pipelined implementations were SP2 and SP1, while
the best scalar implementations were S1, S2, and S4. The SP2 implementation is optimum for
continuous streams of data, whereas S1 and S2 are recommended for intermittent data applications.
When considering channel-side attack, S1 is not favorable.

This paper contributed to deriving accurate models for lightweight cipher performance metrics
and providing general guidelines for future lightweight ciphers. This study also discussed
opportunities to better implement future cipher designs with optimized energy and area, which is
critical for LRDs targeting lightweight ciphers for the security purposes.

Future cipher designs should carefully examine small-round logic versus large-round logic.
Small-round logic requires many rounds, T. Large-round logic implies few rounds. Historically,
lightweight cipher designers choose small logic for better area and implement one round in hardware.
However, this study showed that the one-round design was not optimal for energy. S4 and SP2 were
best in terms of energy consumption. Our recommendation is to consider “fewer” larger rounds for
future cipher design. This was also noted in Reference [37].

Future research could extend the work with different SIMON configurations and derive
more general performance models for the SIMON cipher, depending on algorithm parameters
(e.g., block size, key size, key words, and number of rounds). This would allow for the prediction
of various performance metrics (including throughput, power, area, and energy) for each SIMON

Sensors 2019, 19, 913 27 of 28

configuration. Extending the derived models to other platforms, such as ASIC technology, is also
being considered.

Author Contributions: Conceptualization, S.A. and B.J.M.; methodology, S.A. and B.J.M.; software, S.A., R.J.
and B.J.M.; validation, S.A., R.J. and B.J.M.; formal analysis, S.A., R.J., B.J.M. and M.A.; investigation, S.A., R.J.
and B.J.M.; resources, S.A. and R.J.; data curation, S.A., R.J. and M.A.; writing—original draft preparation, S.A.,
R.J. and B.J.M.; writing—review and editing, S.A., R.J., B.J.M. and M.A.; visualization, S.A., R.J., B.J.M. and M.A.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mohd, B.J.; Hayajneh, T.; Vasilakos, A.V. A survey on lightweight block ciphers for low-resource devices:
Comparative study and open issues. J. Netw. Comput. Appl. 2015, 58, 73–93. [CrossRef]

2. Law, Y.W.; Doumen, J.; Hartel, P. Survey and benchmark of block ciphers for wireless sensor networks.
ACM Trans. Sens. Netw. 2006, 2, 65–93. [CrossRef]

3. Symmetric, vs Asymmetric Ciphers. Available online: http://windowsitpro.com/security/symmetric-vs-
asymmetric-ciphers (accessed on 12 July 2018).

4. Mohd, B.J.; Hayajneh, T.; Yousef, K.M.A.; Khalaf, Z.A.; Bhuiyan, M.Z.A. Hardware design and modeling
of lightweight block ciphers for secure communications. Future Gener. Comput. Syst. 2017, 83, 510–521.
[CrossRef]

5. Katz, J.; Menezes, A.J.; Van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography, 1st ed.; CRC Press:
Boca Raton, FL, USA, 1996.

6. An Introduction to Stream Ciphers and Block Ciphers. Available online: http://www.jscape.com/blog/
stream-cipher-vs-block-cipher (accessed on 10 August 2018).

7. Bernstein, D.J. The Salsa20 family of stream ciphers. In New Stream Cipher Designs; Springer:
Berlin/Heidelberg, Germany, 2008; Volume 4986, pp. 84–97.

8. Hell, M.; Johansson, T.; Meier, W. Grain: A stream cipher for constrained environments. Int. J. Wirel. Mob.
Comput. 2007, 2, 86–93. [CrossRef]

9. De Canniere, C. Trivium: A stream cipher construction inspired by block cipher design principles.
In International Conference on Information Security; Springer: Berlin/Heidelberg, Germany, 2006; pp. 171–186.

10. Fan, X.; Mandal, K.; Gong, G. Wg-8: A lightweight stream cipher for resource-constrained smart devices.
In International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness; Springer:
Berlin/Heidelberg, Germany, 2013; Volume 115, pp. 617–632.

11. Cazorla, M.; Marquet, K.; Minier, M. Survey and benchmark of lightweight block ciphers for wireless sensor
networks. In Proceedings of the 2013 International Conference on Security and Cryptography (SECRYPT),
Reykjavik, Iceland, 29–31 July 2013; pp. 1–6.

12. Wollinger, T.; Guajardo, J.; Paar, C. Security on FPGAs: State-of-the-art implementations and attacks.
ACM Trans. Embed. Comput. Syst. 2004, 3, 534–574. [CrossRef]

13. Mohd, B.J.; Hayajneh, T.; Khalaf, Z.A.; Ahmad Yousef, K.M. Modeling and optimization of the lightweight
HIGHT block cipher design with FPGA implementation. Secur. Commun. Netw. 2016, 9, 2200–2216.
[CrossRef]

14. Beaulieu, R.; Treatman-Clark, S.; Shors, D.; Weeks, B.; Smith, J.; Wingers, L. The SIMON and SPECK families
of lightweight block ciphers. Available online: https://eprint.iacr.org/2013/404 (accessed on 22 April 2018).

15. Aysu, A.; Gulcan, E.; Schaumont, P. SIMON Says, Break Area Records of Block Ciphers on FPGAs.
IEEE Embed. Syst. Lett. 2014, 6, 37–40. [CrossRef]

16. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. The SIMON and SPECK block
ciphers on AVR 8-bit microcontrollers. In International Workshop on Lightweight Cryptography for Security and
Privacy; Springer: Cham, Switzerland, 2015; pp. 3–20.

17. Hosseinzadeh, J.; Bafghi, A.G. Software Implementation and Evaluation of Lightweight Symmetric Block
Ciphers of the Energy Perspectives and Memory. Int. J. Eng. Educ. 2017, 9, 1–6.

18. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. Implementation and Performance
of the Simon and Speck Lightweight Block Ciphers on ASICs. Unpublished work.

http://dx.doi.org/10.1016/j.jnca.2015.09.001
http://dx.doi.org/10.1145/1138127.1138130
http://windowsitpro.com/security/symmetric-vs-asymmetric-ciphers
http://windowsitpro.com/security/symmetric-vs-asymmetric-ciphers
http://dx.doi.org/10.1016/j.future.2017.03.025
http://www.jscape.com/blog/stream-cipher-vs-block-cipher
http://www.jscape.com/blog/stream-cipher-vs-block-cipher
http://dx.doi.org/10.1504/IJWMC.2007.013798
http://dx.doi.org/10.1145/1015047.1015052
http://dx.doi.org/10.1002/sec.1479
https://eprint.iacr.org/2013/404
http://dx.doi.org/10.1109/LES.2014.2314961

Sensors 2019, 19, 913 28 of 28

19. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. SIMON and SPECK: Block
Ciphers for the Internet of Things. Available online: https://eprint.iacr.org/2015/585 (accessed on 10 March
2018).

20. Wetzels, J.; Bokslag, W. Simple SIMON: FPGA implementations of the SIMON 64/128 Block Cipher. Cryptogr.
Eng. Kerckhoffs Inst. 2015, 1, 1–20.

21. Feizi, S.; Ahmadi, A.; Nemati, A. A hardware implementation of SIMON cryptography algorithm.
In Proceedings of the 2014 4th International eConference on Computer and Knowledge Engineering (ICCKE),
Mashhad, Iran, 29–30 October 2014; pp. 245–250.

22. Gulcan, E.; Aysu, A.; Schaumont, P. A flexible and compact hardware architecture for the SIMON block cipher.
In International Workshop on Lightweight Cryptography for Security and Privacy; Springer: Cham, Switzerland,
2014; Volume 8898, pp. 34–50.

23. Wan, T.; Salman, H. Ultra Low Power SIMON Core for Lightweight Encryption. In Proceedings of the 2018
IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5.

24. Yang, G.; Zhu, B.; Suder, V.; Aagaard, M.D.; Gong, G. The simeck family of lightweight block ciphers.
In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 307–329.

25. Ryabko, B.; Soskov, A. Application of the distinguishing attack to lightweight block ciphers. In Proceedings
of the 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON),
Novosibirsk, Russia, 18–22 September 2017; pp. 338–341.

26. Kölbl, S.; Roy, A. A brief comparison of Simon and Simeck. In International Workshop on Lightweight
Cryptography for Security and Privacy; Springer: Cham, Switzerland, 2016.

27. Zhang, X.; Heys, H.M.; Li, C. Fpga implementation and energy cost analysis of two light-weight involutional
block ciphers targeted to wireless sensor networks. Mob. Netw. Appl. 2013, 18, 222–234. [CrossRef]

28. Abed, S.; Mohd, B.J.; Al-bayati, Z.; Alouneh, S. Low power Wallace multiplier design based on wide counters.
Int. J. Circuit Theory Appl. 2012, 40, 1175–1185. [CrossRef]

29. Hayajneh, T.; Ullah, S.; Mohd, B.; Balagani, K. An Enhanced WLAN Security System with FPGA
Implementation for Multimedia Applications. IEEE Syst. J. 2015, 11, 2536–2545. [CrossRef]

30. Mohd, B.J.; Hayajneh, T.; Abed, S.; Itradat, A. Analysis and modeling of FPGA implementations of spatial
steganography methods. J. Circuits Syst. Comput. 2014, 23, 1450018. [CrossRef]

31. Mohd, B.J.; Hayajneh, T. Wavelet-transform steganography: Algorithm and hardware implementation. Int. J.
Electron. Secur. Digit. Forensics 2013, 5, 241–256. [CrossRef]

32. Mohd, B.J.; Hayajneh, T.; Khalaf, Z.A.; Vasilakos, A.V. A comparative study of steganography designs based
on multiple FPGA platforms. Int. J. Electron. Secur. Digit. Forensics 2016, 8, 164–190. [CrossRef]

33. Altera Cyclone II Device Handbook. Available online: http://www.altera.com/products/devices/cyclone2/
cy2-index.jsp (accessed on 12 August 2018).

34. Menezes, A.J.; van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography, 5th ed.; CRC Press:
Boca Raton, FL, USA, 2001; p. 251.

35. Mohd, B.; Hayajneh, T.; Shakir, M.; Qaraqe, K.; Vasilakos, A. Energy model for light-weight block ciphers
for WBAN applications. In Proceedings of the 2014 EAI 4th International Conference on Wireless Mobile
Communication and Healthcare (Mobihealth), Athens, Greece, 3–5 November 2014; pp. 1–4.

36. Kolay, S.; Mukhopadhyay, D. Khudra: A new lightweight block cipher for FPGAs. In International Conference
on Security, Privacy, and Applied Cryptography Engineering; Chakraborty, R.S., Matyas, V., Schaumont, P., Eds.;
Springer: Cham, Switzerland, 2014; pp. 126–145.

37. Mohd, B.J.; Hayajneh, T. Lightweight Block Ciphers for IoT: Energy Optimization and Survivability
Techniques. IEEE Access 2018, 6, 35966–35978. [CrossRef]

38. Bhasin, S.; Graba, T.; Danger, J.L.; Najm, Z. A look into SIMON from a side-channel perspective.
In Proceedings of the 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST),
Arlington, VA, USA, 6–7 May 2014; pp. 56–59.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://eprint.iacr.org/2015/585
http://dx.doi.org/10.1007/s11036-012-0353-7
http://dx.doi.org/10.1002/cta.779
http://dx.doi.org/10.1109/JSYST.2015.2424702
http://dx.doi.org/10.1142/S0218126614500182
http://dx.doi.org/10.1504/IJESDF.2013.058657
http://dx.doi.org/10.1504/IJESDF.2016.075589
http://www.altera.com/products/devices/ cyclone2/cy2-index.jsp
http://www.altera.com/products/devices/ cyclone2/cy2-index.jsp
http://dx.doi.org/10.1109/ACCESS.2018.2848586
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Methods
	SIMON Algorithm
	Round Function
	Key Schedule

	Scalar Design
	Basic Scalar Design for One Round (Iterative)
	Scalar Design with Multiple Rounds (Loop Unrolling)

	Pipelined Design

	Results
	Scalar Implementation Results
	Frequency
	Resource utilization
	Power
	Energy

	Pipelined Implementation Results
	Frequency
	Resource Utilization
	Power
	Energy

	Discussion
	Speed and Throughput
	Power and LEs
	Energy
	The Optimum Design
	Implementations and Security

	Conclusions
	References

