
sensors

Article

Improved Bound Fit Algorithm for Fine Delay
Scheduling in a Multi-Group Scan of Ultrasonic
Phased Arrays

Yuzhong Li 1,2 , Wenming Tang 1 and Guixiong Liu 1,*
1 School of Mechanical & Automotive Engineering, South China University of Technology,

Guangzhou 510641, China; melyz@mail.scut.edu.cn (Y.L.); tang.wm@mail.scut.edu.cn (W.T.)
2 School of Information Engineering, Huizhou Economic and Polytechnic College, Huizhou 516057, China
* Correspondence: megxliu@scut.edu.cn; Tel.: +86-020-8711-0568

Received: 19 December 2018; Accepted: 16 February 2019; Published: 21 February 2019
����������
�������

Abstract: Multi-group scanning of ultrasonic phased arrays (UPAs) is a research field in distributed
sensor technology. Interpolation filters intended for fine delay modules can provide high-accuracy
time delays during the multi-group scanning of large-number-array elements in UPA instruments.
However, increasing focus precision requires a large increase in the number of fine delay modules.
In this paper, an architecture with fine delay modules for time division scheduling is explained in
detail. An improved bound fit (IBF) algorithm is proposed, and an analysis of its mathematical
model and time complexity is provided. The IBF algorithm was verified by experiment, wherein
the performances of list, longest processing time, bound fit, and IBF algorithms were compared
in terms of frame data scheduling in the multi-group scan. The experimental results prove that
the scheduling algorithm decreased the makespan by 8.76–21.48%, and achieved the frame rate
at 78 fps. The architecture reduced resource consumption by 30–40%. Therefore, the proposed
architecture, model, and algorithm can reduce makespan, improve real-time performance, and decrease
resource consumption.

Keywords: ultrasonic phased array; scheduling algorithm; multi-group sensors; FPGA

1. Introduction

Ultrasonic phased array (UPA) technology is an important nondestructive testing method that is
widely used in aerospace, shipbuilding, port machinery, and nuclear energy. With its multiple-group
scanning functionality and a large number of other elements, the multi-group scan UPA system can
provide extended scanning flexibility and image contrast, increased focal law diversification, and high
signal-to-noise ratio (SNR). Within the system, a number of filters in a given module determine the
precision of fine delay. The higher the precision, the better the image resolution. Classical all-parallel
fine delay modules require a lot of hardware resources, i.e., a multiplier, look-up table (LUT), register
(Reg), and an in field programmable gate array (FPGA). Synchronization and integration difficulty
need to be considered in the use of multi-chip schemes, while hardware resources are limited in single
chip schemes. Therefore, an architecture with time-division multiplexing is used to schedule frame
tasks between fine delay modules in a single chip. This method can significantly improve resource
utilization and reduce the number of resources used. However, when the sampling depth or the value
of the focal law is large, the frame rate (frames per second, fps) decreases, leading to worse real-time
performance of the distributed UPA instrument and a greatly reduced application scope. Therefore, it
is necessary to coordinate fine modules and frame tasks for multi-group scanning through algorithm
schedules, minimize idle time slots of resources in the fine delay modules, and reduce the makespan
of all frame tasks to improve time performance.

Sensors 2019, 19, 906; doi:10.3390/s19040906 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-1404-8473
http://dx.doi.org/10.3390/s19040906
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/4/906?type=check_update&version=2

Sensors 2019, 19, 906 2 of 13

In order to reduce the trade-off between the real-time processing of big data and system complexity,
many studies have been conducted on high-performance hardware architecture and corresponding
algorithms. Thus, various resource optimizations have been proposed. Holmes et al. [1] proposed
a UPA system called the full matrix capture and total focus method (FMC-TFM), which requires
the processing of large focus and delay data, and has been the mainstream architecture for research
in recent years. Njiki el al. [2] proposed a hardware architecture for big data processing based on
FMC and a large-scale phased array instrument, applied in the M2M NDT (nondestructive testing)
(Eddyfi Technologies, Québec, QC, Canada) UPA system. The proposed FMC-TFM architecture can
achieve a frame rate of 73.6 fps and 128 × 128 pixels in the region of interest. Shao and Yuan [3]
proposed a method based on the compute unified device architecture (CUDA) interface, a parallel
graphics processing unit (GPU), and whole parallel echo signal processing, wherein parallel GPUs
accelerate the method 2–3-fold compared to MATLAB (Mathworks, Co., Ltd., Natick, MA, USA), while
the multithreading CPU provides four times higher acceleration than a single thread. Guo et al. [4]
improved a TFM imaging system and proposed an algorithm based on read-only memory (ROM).
Zhang et al. [5] used a state machine, operation unit, and a large data storage unit to form the
TFM algorithm imaging system, which achieved good performance. Tang et al. [6] proposed a data
transmission algorithm for UPAs, but it does not work with delay and focus. Liu et al. [7] proposed an
improved 8× interpolation cascaded integrator-comb (CIC) filter parallel algorithm, which reduced
12.5% of addition and 29.2% of multiplication and yielded a time delay accuracy of 1 ns at 125 MHz.
Su et al. [8] proposed a parallel delay multiply and sum beamforming (PDMAS) algorithm, based on a
graphics processing unit (GPU) that improved the parallelism and stability of the beamformer with
a frame rate of 83 fps. However, these papers only focus on the performance of the delay and focus
module, and not the multi-group scan and its frame task scheduling.

Although a multi-core CPU with single instruction multiple data (SIMD) and the GPU
programmed by CUDA also realizes the beamform function (delay and focus), Asano et al. [9]
found that a GPU was slower than a CPU for complex algorithms. Furthermore, they also found
that a GPU only has potential for naïve computation methods, due to its small local memory and
the memory access limitation in the architecture. The performance of a quad CPU is 1/12 to 1/7
that of a field programmable gate array (FPGA). The performance of an FPGA is only limited by
its size and bandwidth. FPGA is the mainstream solution for portable UPA instruments, and is
supported by manufacturers. Moreover, it is convenient for design and verification of the UPA system’s
integrated circuits. Therefore, this paper uses FPGA to implement the algorithm and architecture of
the multi-group scan UPA system.

The fine delay scheduling problem in the multi-group scanning of UPA systems, which we
address here, can be considered as a parallel machine scheduling problem. The aim is to decrease the
makespan, which can be represented as Pm||Cmax. It is a non-deterministic polynomial-time hard
(NP-hard) problem [10], which cannot be solved using polynomial algorithms. Heuristic algorithms
are a simple and effective method used to address NP-hard problems at present.

The most commonly used heuristic algorithms are the longest processing time algorithm (LPT) [11]
and the MULTIFIT algorithm. The MULTIFIT algorithm proposed by Coffman et al. [12] is based on
the first fit decreasing (FFD) iteration algorithm, which is used in bin-packing problems. However, the
MULTIFIT algorithm has much better performance than the LPT algorithm. Freisen et al. [13] studied
the absolute performance and time complexity of the MULTIFIT algorithm. Lee et al. [14] used a
combination of the LPT and MULTIFIT algorithms. Kang et al. [15] simplified the MULTIFIT algorithm
and combined it with the prepare algorithm (PA), in order to form the bound fit (BF) algorithm.
Li et al. [16] proposed the QUICKFIT algorithm, which is an improved BF algorithm in the iteration
stage. Based on the advantages of the LPT and BF algorithms, the improved bound fit (IBF) algorithm
is proposed here.

Sensors 2019, 19, 906 3 of 13

In this paper, a fine delay scheduling architecture was also analyzed considering multi-group-scan
echo data diversity, using a non-preempt model for the scheduling problem and proposing the IBF
algorithm for optimization.

The paper is organized as follows. In Section 2, the architecture of the fine delay module
scheduling for the multi-group scanning of UPA systems is presented, and the multi-group scan
problem is explained. In Section 3, the IBF algorithm is proposed and an analysis of its performance
and time complexity is provided. LIST, LPT, BF, and IBF algorithms are compared in Section 4. Finally,
a conclusion is provided in Section 5.

2. Fine Delay Module for Multi-Group Scanning of UPAs

2.1. Fine Delay Scheduling Principle

The delay method and focus scheduling based on different UPA instrument focal parameters (e.g.,
number of apertures, sending and receiving time, and data amount), which control the pulse repetition
frequency (PRF) and frame formation, are used for scheduling in multi-group scans. The delay
precision is 1.25 ns. Due to the limitation of the resources of the FPGA in our experiments, the system
architecture is designed as four groups and two fine delay modules. Each group has eight channels,
and each channel has 10-bit analog-digital converter (ADC). Sampling depth is 2–8 K, the number of
focal law ≤128, and read parameter length is 1024 in each group. The design frame rate is not less
than 24 fps, which meets the requirements of real-time display.

A diagram of the for mutli-group scanning is shown in Figure 1, labels 1©– 5© in Figure 1 are
described below.

Sensors 2019, 19 FOR PEER REVIEW 3

In this paper, a fine delay scheduling architecture was also analyzed considering multi-group-

scan echo data diversity, using a non-preempt model for the scheduling problem and proposing the

IBF algorithm for optimization.

The paper is organized as follows. In Section 2, the architecture of the fine delay module

scheduling for the multi-group scanning of UPA systems is presented, and the multi-group scan

problem is explained. In Section 3, the IBF algorithm is proposed and an analysis of its performance

and time complexity is provided. LIST, LPT, BF, and IBF algorithms are compared in Section 4.

Finally, a conclusion is provided in Section 5.

2. Fine Delay Module for Multi-Group Scanning of UPAs

2.1. Fine Delay Scheduling Principle

The delay method and focus scheduling based on different UPA instrument focal parameters

(e.g., number of apertures, sending and receiving time, and data amount), which control the pulse

repetition frequency (PRF) and frame formation, are used for scheduling in multi-group scans. The

delay precision is 1.25 ns. Due to the limitation of the resources of the FPGA in our experiments, the

system architecture is designed as four groups and two fine delay modules. Each group has eight

channels, and each channel has 10-bit analog-digital converter (ADC). Sampling depth is 2–8 K, the

number of focal law ≤128, and read parameter length is 1024 in each group. The design frame rate is

not less than 24 fps, which meets the requirements of real-time display.

A diagram of the for mutli-group scanning is shown in Figure 1, labels ①–⑤ in Figure 1 are

described below.

F

I

F

O

Multi-Group

Data separate

Scheduler

Data

storage

Coarse-

delay

control

Delay and scheduling parameters storage

Multi

phase

interpolat-

ion filter

fine -

delay

ADC

ADC

ADC

Group1

ADC

ADC

ADC

Group2

ADC

ADC

ADC

GroupN

DDR3 controller

Group

focus

Output

FPGA

DDR3 Group

memory

Input

Figure 1. Diagram of the fine delay module for multi-group scanning.

The presented block diagram includes the following parts:

(1) High speed multi-channel ADC module (HADC): Ultrasonic echo signals are subjected to high-

speed multi-channel ADC acquisition, conditioning conversion, and transformation into low-

voltage differential signaling (LVDS) serial signals. They are then fed to the FPGA for further

processing. ADCs are divided into groups according to the probe socket and multi-group scan.

(2) Fine delay scheduling module (FDS): The LVDS serial signal is first converted into a parallel

signal, then the parallel signal generated by the IP core is sent to the multi-channel first-in first-

out memory (FIFO), which is used for buffering and scheduling. The scheduling module consists

of several fine delay modules. The signal buffered in the FIFO is then fed to the scheduling

module, where it is forwarded to different fine delay modules. Thus, time division multiplexing

is achieved.

The fine-delay module used in this study contains the multi-level half-band filter that was

proposed by Liu and Tang [17]. A diagram of the multi-level half-band fine delay filter is presented

Figure 1. Diagram of the fine delay module for multi-group scanning.

The presented block diagram includes the following parts:

(1) High speed multi-channel ADC module (HADC): Ultrasonic echo signals are subjected to
high-speed multi-channel ADC acquisition, conditioning conversion, and transformation into
low-voltage differential signaling (LVDS) serial signals. They are then fed to the FPGA for further
processing. ADCs are divided into groups according to the probe socket and multi-group scan.

(2) Fine delay scheduling module (FDS): The LVDS serial signal is first converted into a parallel
signal, then the parallel signal generated by the IP core is sent to the multi-channel first-in first-out
memory (FIFO), which is used for buffering and scheduling. The scheduling module consists
of several fine delay modules. The signal buffered in the FIFO is then fed to the scheduling
module, where it is forwarded to different fine delay modules. Thus, time division multiplexing
is achieved.

The fine-delay module used in this study contains the multi-level half-band filter that was
proposed by Liu and Tang [17]. A diagram of the multi-level half-band fine delay filter is presented

Sensors 2019, 19, 906 4 of 13

in Figure 2, whereas its simulation diagram created in ModelSim (Mentor Co., Ltd., Wilsonville, OR,
USA) is shown in Figure 3.

Sensors 2019, 19 FOR PEER REVIEW 4

in Figure 2, whereas its simulation diagram created in ModelSim (Mentor Co., Ltd., Wilsonville, OR,

USA) is shown in Figure 3.

8 times

Interpo-

lation

Multi-level

half-band

filter

..

.

CP0
CP1

CP6
CP7

100MHz

FPGA

Figure 2. Diagram of fine delay module.

Figure 3. ModelSim simulation diagram of the multi-level half-band fine delay filter.

The multi-level half-band fine delay filter uses the interpolation method with eight time intervals

to design a half-band filter. The implementation of synthetic technology in the multi-level half-band

interpolation filter results in filter decomposition into eight sub-filters. Simultaneously, interpolation

with poly-phase decomposition is achieved. The eight filters delay the original signal for 0, 1.25, 2.5,

3.75, 5, 6.25, 7.5, and 8.75 ns. The data samples have a 10-bit length, and thus two 9-bit multipliers are

needed for multiplications. However, the multi-level half-band filter uses six 9-bit multipliers. In

addition, each channel has eight fine delay channels, so there are 96 (i.e., 6 × 2 × 8 = 96) 9-bit

multipliers. If all parallel delay is used in a 256-element UPA system, then 24,576 multipliers would

be needed. Given such large resource consumption, the integration of a single FPGA in the multi-

group scan module of a UPA system would be difficult.

(3) Coarse delay and sum module (CDS): Coarse delay is based on counter clock delay technology.

All the relative delay parameters of focal laws, calculated by a PC, can be loaded from the “delay

and scheduling parameters storage” block in Figure 1. The double data rate 3 (DDR3)

synchronous dynamic random access memory input signal addresses the corresponding coarse

delay parameter counted by the clock, and thus fixed integer coarse delay is achieved. The sum

module merges signals processed by fine delay and coarse delay blocks in an ultrasonic digital

beam, which represents the complete beamform of the focal laws. All signals of the ultrasonic

digital beam are stored in memory, and all signal groups form a corresponding beamform. In

other words, each focal law forms a digital beamform, and all the beamforms of the same group

generate the initial image information of that group.

(4) External DDR3: Since the internal RAM capacity of the FPGA is insufficient, a DDR3 controller

with two DDR3 memories is used for coarse delay data storage. DDR3 memory has a coarse

delay and reads the group focus module according to the group.

(5) Delay and scheduling parameters storage (DSPS): Delay and scheduling parameters storage is a

large-scale storage block in the FPGA. The delay and scheduling parameters are calculated using

a focal law calculator in the PC, corresponding to the input data entered by the user. DSPS

contains a scheduling table, the pulse repetition frequency of each group, and the time delay

parameter for both fine and coarse delays according to focal laws. It also includes algorithmic

Figure 2. Diagram of fine delay module.

Sensors 2019, 19 FOR PEER REVIEW 4

in Figure 2, whereas its simulation diagram created in ModelSim (Mentor Co., Ltd., Wilsonville, OR,

USA) is shown in Figure 3.

8 times

Interpo-

lation

Multi-level

half-band

filter

.

..

CP0
CP1

CP6
CP7

100MHz

FPGA

Figure 2. Diagram of fine delay module.

Figure 3. ModelSim simulation diagram of the multi-level half-band fine delay filter.

The multi-level half-band fine delay filter uses the interpolation method with eight time intervals

to design a half-band filter. The implementation of synthetic technology in the multi-level half-band

interpolation filter results in filter decomposition into eight sub-filters. Simultaneously, interpolation

with poly-phase decomposition is achieved. The eight filters delay the original signal for 0, 1.25, 2.5,

3.75, 5, 6.25, 7.5, and 8.75 ns. The data samples have a 10-bit length, and thus two 9-bit multipliers are

needed for multiplications. However, the multi-level half-band filter uses six 9-bit multipliers. In

addition, each channel has eight fine delay channels, so there are 96 (i.e., 6 × 2 × 8 = 96) 9-bit

multipliers. If all parallel delay is used in a 256-element UPA system, then 24,576 multipliers would

be needed. Given such large resource consumption, the integration of a single FPGA in the multi-

group scan module of a UPA system would be difficult.

(3) Coarse delay and sum module (CDS): Coarse delay is based on counter clock delay technology.

All the relative delay parameters of focal laws, calculated by a PC, can be loaded from the “delay

and scheduling parameters storage” block in Figure 1. The double data rate 3 (DDR3)

synchronous dynamic random access memory input signal addresses the corresponding coarse

delay parameter counted by the clock, and thus fixed integer coarse delay is achieved. The sum

module merges signals processed by fine delay and coarse delay blocks in an ultrasonic digital

beam, which represents the complete beamform of the focal laws. All signals of the ultrasonic

digital beam are stored in memory, and all signal groups form a corresponding beamform. In

other words, each focal law forms a digital beamform, and all the beamforms of the same group

generate the initial image information of that group.

(4) External DDR3: Since the internal RAM capacity of the FPGA is insufficient, a DDR3 controller

with two DDR3 memories is used for coarse delay data storage. DDR3 memory has a coarse

delay and reads the group focus module according to the group.

(5) Delay and scheduling parameters storage (DSPS): Delay and scheduling parameters storage is a

large-scale storage block in the FPGA. The delay and scheduling parameters are calculated using

a focal law calculator in the PC, corresponding to the input data entered by the user. DSPS

contains a scheduling table, the pulse repetition frequency of each group, and the time delay

parameter for both fine and coarse delays according to focal laws. It also includes algorithmic

Figure 3. ModelSim simulation diagram of the multi-level half-band fine delay filter.

The multi-level half-band fine delay filter uses the interpolation method with eight time intervals
to design a half-band filter. The implementation of synthetic technology in the multi-level half-band
interpolation filter results in filter decomposition into eight sub-filters. Simultaneously, interpolation
with poly-phase decomposition is achieved. The eight filters delay the original signal for 0, 1.25, 2.5,
3.75, 5, 6.25, 7.5, and 8.75 ns. The data samples have a 10-bit length, and thus two 9-bit multipliers
are needed for multiplications. However, the multi-level half-band filter uses six 9-bit multipliers.
In addition, each channel has eight fine delay channels, so there are 96 (i.e., 6 × 2 × 8 = 96) 9-bit
multipliers. If all parallel delay is used in a 256-element UPA system, then 24,576 multipliers would be
needed. Given such large resource consumption, the integration of a single FPGA in the multi-group
scan module of a UPA system would be difficult.

(3) Coarse delay and sum module (CDS): Coarse delay is based on counter clock delay technology.
All the relative delay parameters of focal laws, calculated by a PC, can be loaded from the
“delay and scheduling parameters storage” block in Figure 1. The double data rate 3 (DDR3)
synchronous dynamic random access memory input signal addresses the corresponding coarse
delay parameter counted by the clock, and thus fixed integer coarse delay is achieved. The sum
module merges signals processed by fine delay and coarse delay blocks in an ultrasonic digital
beam, which represents the complete beamform of the focal laws. All signals of the ultrasonic
digital beam are stored in memory, and all signal groups form a corresponding beamform.
In other words, each focal law forms a digital beamform, and all the beamforms of the same
group generate the initial image information of that group.

(4) External DDR3: Since the internal RAM capacity of the FPGA is insufficient, a DDR3 controller
with two DDR3 memories is used for coarse delay data storage. DDR3 memory has a coarse
delay and reads the group focus module according to the group.

(5) Delay and scheduling parameters storage (DSPS): Delay and scheduling parameters storage is
a large-scale storage block in the FPGA. The delay and scheduling parameters are calculated
using a focal law calculator in the PC, corresponding to the input data entered by the user. DSPS
contains a scheduling table, the pulse repetition frequency of each group, and the time delay
parameter for both fine and coarse delays according to focal laws. It also includes algorithmic

Sensors 2019, 19, 906 5 of 13

control for scheduling Mux and Demux based on the above parameters. A fine delay scheduling
model diagram in the multi-scan group is presented in Figure 4.

Sensors 2019, 19 FOR PEER REVIEW 5

control for scheduling Mux and Demux based on the above parameters. A fine delay scheduling

model diagram in the multi-scan group is presented in Figure 4.

8 ch 8 ch 8 ch 8 ch

FIFO FIFO FIFO FIFO

Mux

Fine-delay1 Fine-delay2

Demux

Coarse delay Coarse delay Coarse delayCoarse delay

Group 1 Beam

Algorithm

control

Group 2 Beam

Group 3 Beam

Group 4 Beam

Figure 4. Fine delay scheduling model diagram in the multi-scan group.

2.2. Fine Delay Scheduling Problem in Multi-Group Scanning

The parameters of the fine delay module for multi-group scanning of UPAs are presented in

Table 1. Here, we represent the symbols used in the scheduling problems with brackets.

Table 1. Parameters of the fine delay module for multi-group scanning of a ultrasonic

phased array (UPA) system.

Symbol Parameter

Group
N Number of groups (n) 1

FocalLaw

iN Number of focal laws in the ith group

Sample

iD Sample depth of the ith group

FDModule
N Number of fine delay modules (m) 1

RP

iT Read parameter time of focal law

Tclock-cycle Clock period in FPGA
i

p
t Processing time in the ith Group (pi) 1

1 Symbols in brackets are those used in the scheduling problem.

Fine-delay scheduling for multi-group scanning of UPAs must satisfy four conditions:

(1) Each focal law must be separately processed in fine delay modules. In other words, one fine

delay module must process only one focal law datum.

(2) The process cannot be interrupted or preemptive, i.e., a no-interrupt non-preemptive (NINP)

model is adopted.

(3) There is no time gap between the start time of focal law and the start time of the pulse repetition

period.

(4) The sample depth is less than the pulse repetition period.

Condition (1) avoids timing confusion, condition (2) avoids interruption of the fine delay signal

processing, and condition (3) compacts the frame task for scheduling and decreases the time slot

waste. Condition (4) ensures that the fine delay processing will not exceed its abilities, leading to echo

data overlap.

Before a description of the fine delay scheduling problem is presented, some parameters must

be defined:

Figure 4. Fine delay scheduling model diagram in the multi-scan group.

2.2. Fine Delay Scheduling Problem in Multi-Group Scanning

The parameters of the fine delay module for multi-group scanning of UPAs are presented in
Table 1. Here, we represent the symbols used in the scheduling problems with brackets.

Table 1. Parameters of the fine delay module for multi-group scanning of a ultrasonic phased array
(UPA) system.

Symbol Parameter

NGroup Number of groups (n) 1

Ni
FocalLaw Number of focal laws in the ith group

Di
Sample Sample depth of the ith group

NFDModule Number of fine delay modules (m) 1

Ti
RP Read parameter time of focal law

Tclock-cycle Clock period in FPGA
ti

p Processing time in the ith group (pi) 1

1 Symbols in brackets are those used in the scheduling problem.

Fine-delay scheduling for multi-group scanning of UPAs must satisfy four conditions:

(1) Each focal law must be separately processed in fine delay modules. In other words, one fine
delay module must process only one focal law datum.

(2) The process cannot be interrupted or preemptive, i.e., a no-interrupt non-preemptive (NINP)
model is adopted.

(3) There is no time gap between the start time of focal law and the start time of the pulse
repetition period.

(4) The sample depth is less than the pulse repetition period.

Condition (1) avoids timing confusion, condition (2) avoids interruption of the fine delay signal
processing, and condition (3) compacts the frame task for scheduling and decreases the time slot
waste. Condition (4) ensures that the fine delay processing will not exceed its abilities, leading to echo
data overlap.

Before a description of the fine delay scheduling problem is presented, some parameters must
be defined:

Sensors 2019, 19, 906 6 of 13

Definition 1. Frame task.

If it is assumed that the ith scan has focal law frame Ni
FocalLaw and sample depth Di

Sample, then the
frame task is the time needed to complete all beamforms (or focal laws) of the image.

Definition 2. Frame task deadline.

The frame task deadline represents the time the system needs to generate a complete image for all
groups, and it must be less than 1/24 s for real-time applications.

Schematic diagrams of the frame task and frame task deadline are presented in Figure 5a,b,
respectively.

Sensors 2019, 19 FOR PEER REVIEW 6

Definition 1: Frame task.
If it is assumed that the ith scan has focal law frame FocalLaw

iN and sample depth Sample
iD , then

the frame task is the time needed to complete all beamforms (or focal laws) of the image.
Definition 2: Frame task deadline.
The frame task deadline represents the time the system needs to generate a complete image for

all groups, and it must be less than 1/24 s for real-time applications.
Schematic diagrams of the frame task and frame task deadline are presented in Figure 5a,b,

respectively.

…

…

 1 st

frame task i

The i th focal-law

frame task 1 frame task 2

frame task 3 frame task 4 frame task 5
frame task
deadline

2 nd

Fine delay
module i

(a)Frame task

(b)Frame task and frame task deadline

Figure 5. Schematic diagram of: (a) Frame task and (b) Frame task and frame task deadline.

The time parameters used in the proposed algorithm are defined as follows.
Start time, i

st , is defined by:

= 0i
st Group1,2,...,i N= (1)

Processing time, i
pt , is defined by:

= × ×sample clock-cycle RP FocalLaw(+)i i i i
pt D T T N Group1,2,...,i N= (2)

End time, i
dt , is defined by:

= 1 / 24 i
dt s Group1,2,...,i N= (3)

Therefore, the question can be set as max||mP C , and the scheduling model is defined by:

=

=∑
1

 z = () 1,2,...,
n

j
p ij

j
Min Max t x i m (4)

subject to:

=

≤ = =∑
1

 1,2,..., 1,2,...,
n

j
p ij d i

j
t x t y i m j n (5)

=

= = =∑
1

1 1,2,..., 1,2,...,
m

ij
i

x i m j n (6)

Figure 5. Schematic diagram of: (a) Frame task and (b) Frame task and frame task deadline.

The time parameters used in the proposed algorithm are defined as follows.
Start time, ti

s, is defined by:
ti
s = 0 i = 1, 2, . . . , NGroup (1)

Processing time, ti
p, is defined by:

ti
p = (Di

sample × Tclock−cycle + Ti
RP)× Ni

FocalLaw i = 1, 2, . . . , NGroup (2)

End time, ti
d, is defined by:

ti
d = 1/24 s i = 1, 2, . . . , NGroup (3)

Therefore, the question can be set as Pm||Cmax , and the scheduling model is defined by:

Min z = Max(
n

∑
j=1

tj
pxij) i = 1, 2, . . . , m (4)

subject to:
n

∑
j=1

tj
pxij ≤ tdyi i = 1, 2, . . . , m j = 1, 2, . . . , n (5)

m

∑
i=1

xij = 1 i = 1, 2, . . . , m j = 1, 2, . . . , n (6)

xij ∈ {0, 1} (7)

td ≤ 1/24 (8)

Sensors 2019, 19, 906 7 of 13

Equation (4) refers to the scheduling goal of minimizing the project’s maximum completion time,
which represents the time needed for the completion of all project tasks. In this paper, we consider the
frame task as the job or task of the scheduling problem. According to Equation (5), the time allocation
of each fine delay module cannot be greater than td. Equations (6) and (7) show that any task can be
assigned only to one processor, and xij is an assigned variable that is equal to zero or one. Equation (8)
represents all fame tasks that must be finished before the frame task deadline.

3. IBF Algorithm

Since there is no dependency between tasks, the fine delay scheduling problem in multi-group
scanning can be considered as an independent, parallel processor scheduling task.

The IBF algorithm parameters are defined as follows. Input is the set of tasks T = {ti, i = 1,2, . . . ,n},
the number of fine-delay modules is m, and the number of tasks is n. Output is the maximal processing
time, CIBF

max.
The IBF algorithm steps are as follows:
Step 1. Sort tasks T in descending order according to the task processing time: pi, i = 1,2, . . . ,n;

Step 2. Assume that A = 1
m

n
∑

i=1
pi and Lj, j = 1, 2, . . . , m are the focus and delay module

pointers, respectively;
Step 3. Use the LPT algorithm to obtain the maximal processing time CLPT

max. Let l = 1 and
B(1) = CLPT

max;
Step 4. If A < max(Lj) < B(l), go to step 5; otherwise, go to step 8;
Step 5. Let l = l + 1, i = 1, B(l) = min(max(Lj), B(l − 1) − 1);
Step 6. If there is at least one j that satisfies the condition Lj + pi ≤ B(l), then allocate task ti to the

focus and delay module, which satisfies condition Lj + pi ≤ B(l). Otherwise, allocate the task to the
focus and delay module, which provides the minimal value of Lj + pi;

Step 7. Set i = i + 1, and if i ≤ n, go back to step 6; otherwise, go back to step 4;
Step 8. CIBF

max = min(B(1), B(2), B(l − 1)).
In step 3, the LPT algorithm is used to calculate the initial processing time in order to better

approximate the initial conditions. Steps 4–8 represent the prepare algorithm (PA). Thus, the IBF
algorithm is a combination of LPT and PA that improves the boundary and convergence of iteration,
and achieves better performance in terms of local search and iterative progression. The IBF flowchart
is shown in Figure 6.

The IBF algorithm analysis is obtained for B(1) = CLPT
max. In the case the iteration stops at

l = 2, then the output algorithm result will be CIBF
max = CLPT

max. If the iteration stops at l = 3, then the
output result will be CIBF

max = CPA(B(0))
max , and that wil be the makespan. If the iteration stops at l > 3,

then CIBF
max = CPA(B(l−1))

max .
From B(l) = min(max(Lj), B(l − 1) − 1), we obtain B(l) ≤ B(l − 1) − 1. Thus, B(2) ≤ B(1) − 1,

B(3) ≤ B(2) − 1 ≤ (B(1) − 1) − 1 = B(1) − 2.
After induction B(l) ≤ B(1) − (l − 1). Therefore, the absolute performance of the IBF algorithm is

defined by:

CIBF
max ≤

(
4
3
− 1

3m

)
COPT

max − (l − 1) (9)

If the iteration number is equal to one, the IBF time complexity is defined by:

O(n log n + nl log m) (10)

If the number of iterations is greater than one, IBF employs the PA, which represents the FFD
algorithm used in the bin-packing problem.

Sensors 2019, 19, 906 8 of 13

Sensors 2019, 19 FOR PEER REVIEW 8

Figure 6. Improved bound fit algorithm (IBF) flowchart. LPT: longest processing time
algorithm.

The IBF algorithm analysis is obtained for LPT
max(1)B C= . In the case the iteration stops at l = 2, then

the output algorithm result will be IBF LPT
max maxC C= . If the iteration stops at l = 3, then the output result

will be IBF PA(B(0))
max maxC C= , and that wil be the makespan. If the iteration stops at l > 3, then

IBF PA(B(1))
max max

lC C −= .
From B(l) = min(max(Lj), B(l − 1) − 1), we obtain B(l) ≤ B(l − 1) − 1. Thus, B(2) ≤ B(1) − 1, B(3) ≤ B(2)

− 1 ≤ (B(1) − 1) − 1 = B(1) − 2.
After induction B(l) ≤ B(1) − (l − 1). Therefore, the absolute performance of the IBF algorithm is

defined by:

IBF OPT
max max

4 1 (1)
3 3

C C l
m

≤ − − −

 (9)

If the iteration number is equal to one, the IBF time complexity is defined by:

()+log logO n n nl m (10)

If the number of iterations is greater than one, IBF employs the PA, which represents the FFD
algorithm used in the bin-packing problem.

4. Experimental Results

4.1. Time Performance

In order to determine the real-time performance of the IBF algorithm, a randomly generated set
of tasks was used. The set and real-time deadline were used to simulate a UPA multi-group fine delay
scheduling problem. The specific task generation process was as follows. First, m time blocks were

Commented [Z5]: We revised Cmax,IBF and
Cmax,OPT to regular.

Figure 6. Improved bound fit algorithm (IBF) flowchart. LPT: longest processing time algorithm.

4. Experimental Results

4.1. Time Performance

In order to determine the real-time performance of the IBF algorithm, a randomly generated set
of tasks was used. The set and real-time deadline were used to simulate a UPA multi-group fine delay
scheduling problem. The specific task generation process was as follows. First, m time blocks were
generated. The length of each time block was as long as the deadline td. Then, each task block was
divided into h = dn/me+ 1 parts, and thus h × m tasks were obtained in m time blocks. Afterward,
n tasks from h × m tasks that were generated from the previous step were chosen to create a set of
tasks, and all task lengths were multiplied by 0.99. Thus, a random generation of a set of tasks was
produced. The whole experiment ran in I7-4850HQ (Intel Corporation, Santa Clara, CA, USA) 8 GB
RAM with MATLAB 2016a.

This process was conducted to ensure that the processing time of each generated task was not
greater than the real-time deadline. All generated tasks did not exceed the calculating ability of the
fine-delay module. In other words, a feasible solution always existed for a given scheduling in terms
of the number of modules that satisfied the required conditions. The generated set was subjected to a
random uniform distribution, and a variety of large scopes were covered.

Five tests were conducted with the following parameters: the number of fine-delay modules m,
the ratio of number of tasks and fine delay modules k = n/m, the real-time deadline d, the number
of iterations K, and makespan Cmax. Each test was generated 100 times, and the average result was
calculated. The LIST, LPT, BF, and IBF algorithms were compared.

Test 1 compared LPT, BF, and IBF algorithms in terms of makespan. In Figure 7a, the parameter
settings were: m = 4, k = 2–10, and d = 1000. Note that each curve had a peak value at k = 3, because
when k = 3, the method generating the problem reduced the number of tasks and increased the length.
Under this condition, the problem was difficult to schedule. With gradually increasing k, all curves
gradually declined. IBF had the smallest makespan at k < 8, and when k ≥ 8, IBF and BF almost had the
same makespan performance. This is because with the increase in k, the problem produced more tasks
and the length decreased. That is, the smaller the granularity of the tasks, the greater the role of the
scheduling algorithm. In Figure 7b, the parameter settings were: m = 2–10, k = 4, and d = 1000. We can
see that the IBF algorithm still had the smallest makespan, but with the increase in m, the gap between
BF and IBF continued to narrow. Although k was unchanged, the larger the value of m, the greater

Sensors 2019, 19, 906 9 of 13

the permutations and combinations of the scheduling algorithm were. In makespan comparisons,
IBF always had the best performance, but, as parameters k and m increased, the performance of BF
and IBF gradually approached each other.

Sensors 2019, 19 FOR PEER REVIEW 9

generated. The length of each time block was as long as the deadline td. Then, each task block was
divided into / 1h n m= + parts, and thus h × m tasks were obtained in m time blocks. Afterward, n

tasks from h × m tasks that were generated from the previous step were chosen to create a set of tasks,
and all task lengths were multiplied by 0.99. Thus, a random generation of a set of tasks was
produced. The whole experiment ran in I7-4850HQ (Intel Corporation, Santa Clara, CA, USA) 8 GB
RAM with MATLAB 2016a.

This process was conducted to ensure that the processing time of each generated task was not
greater than the real-time deadline. All generated tasks did not exceed the calculating ability of the
fine-delay module. In other words, a feasible solution always existed for a given scheduling in terms
of the number of modules that satisfied the required conditions. The generated set was subjected to
a random uniform distribution, and a variety of large scopes were covered.

Five tests were conducted with the following parameters: the number of fine-delay modules m,
the ratio of number of tasks and fine delay modules k = n/m, the real-time deadline d, the number of
iterations K, and makespan Cmax. Each test was generated 100 times, and the average result was
calculated. The LIST, LPT, BF, and IBF algorithms were compared.

Test 1 compared LPT, BF, and IBF algorithms in terms of makespan. In Figure 7a, the parameter
settings were: m = 4, k = 2–10, and d = 1000. Note that each curve had a peak value at k = 3, because
when k = 3, the method generating the problem reduced the number of tasks and increased the length.
Under this condition, the problem was difficult to schedule. With gradually increasing k, all curves
gradually declined. IBF had the smallest makespan at k < 8, and when k ≥ 8, IBF and BF almost had
the same makespan performance. This is because with the increase in k, the problem produced more
tasks and the length decreased. That is, the smaller the granularity of the tasks, the greater the role of
the scheduling algorithm. In Figure 7b, the parameter settings were: m = 2–10, k = 4, and d = 1000. We
can see that the IBF algorithm still had the smallest makespan, but with the increase in m, the gap
between BF and IBF continued to narrow. Although k was unchanged, the larger the value of m, the
greater the permutations and combinations of the scheduling algorithm were. In makespan
comparisons, IBF always had the best performance, but, as parameters k and m increased, the
performance of BF and IBF gradually approached each other.

(a) (b)

Figure 7. Comparison of LPT, bound fit (BF), and IBF in terms of makespan with (a) variable
k (ratio of the number of tasks n and the number of fine delay modules m) and (b) variable
number of fine delay modules m.

Test 2 compared LPT, BF, and IBF in terms of the missed deadline rate (MDR) with variables k
and m. The parameter settings in Figure 8a were the same as in Figure 7a, and those in Figure 7b were
applied to Figure 8b. The MDR is defined as the number of times a deadline was missed when a

Figure 7. Comparison of LPT, bound fit (BF), and IBF in terms of makespan with (a) variable k (ratio of
the number of tasks n and the number of fine delay modules m) and (b) variable number of fine delay
modules m.

Test 2 compared LPT, BF, and IBF in terms of the missed deadline rate (MDR) with variables k
and m. The parameter settings in Figure 8a were the same as in Figure 7a, and those in Figure 7b
were applied to Figure 8b. The MDR is defined as the number of times a deadline was missed when a
scheduling problem was generated randomly 100 times. Figure 8a shows that all curves had a peak
value at k = 3, and then gradually decreased with increasing k. The reason is similar to test 1. Note that
in Figure 8b, IBF had the smallest makespan, but when m > 9, the values of BF and IBF were basically
the same. IBF was still the best in MDR performance, and with the increase in k, the scheduling
performance improved as well. When k > 8, IBF was not significantly superior to BF.

Test 3 compared LPT, BF, and IBF using statistical plots. Parameter settings were m = 4, k = 4,
and calculation was run 100 times to obtain the makespan. Figure 9a shows the box plot. Note that the
IBF algorithm had the lowest median and upper limits and the narrowest interquartile range (IQR).
This shows that IBF scheduling had the best overall performance and the most centralized data. In the
95% confidence interval (CI) plot in Figure 9b, IBF had the lowest mean and the narrowest 95% CI.
The IBF algorithm outperformed the BF and LPT algorithms in terms of statistical performance.

Sensors 2019, 19 FOR PEER REVIEW 10

scheduling problem was generated randomly 100 times. Figure 8a shows that all curves had a peak
value at k = 3, and then gradually decreased with increasing k. The reason is similar to test 1. Note
that in Figure 8b, IBF had the smallest makespan, but when m > 9, the values of BF and IBF were
basically the same. IBF was still the best in MDR performance, and with the increase in k, the
scheduling performance improved as well. When k > 8, IBF was not significantly superior to BF.

(a) (b)

Figure 8. Comparison of LPT, BF, and IBF in terms of missed deadline rate (MDR) with (a)
k (the ratio of the number of tasks n and the number of fine-delay modules m) and (b)
variable number of fine delay modules m.

Test 3 compared LPT, BF, and IBF using statistical plots. Parameter settings were m = 4, k = 4,
and calculation was run 100 times to obtain the makespan. Figure 9a shows the box plot. Note that
the IBF algorithm had the lowest median and upper limits and the narrowest interquartile range
(IQR). This shows that IBF scheduling had the best overall performance and the most centralized
data. In the 95% confidence interval (CI) plot in Figure 9b, IBF had the lowest mean and the narrowest
95% CI. The IBF algorithm outperformed the BF and LPT algorithms in terms of statistical
performance.

(a) (b)

Figure 9. Comparison of LIST, LPT, and IBF algorithms in (a) boxplot and (b) 95%
confidence interval (CI) plot.

Test 4 compared the performance of LIST, LPT, BF, and IBF algorithms (Table 2). The test
parameter settings were m = 4, k = 4, d = 1000, and the average of 100 runs was taken. The LIST
algorithm had the worst performance, which affected the display of the figures. In order to clearly

Figure 8. Comparison of LPT, BF, and IBF in terms of missed deadline rate (MDR) with (a) k (the ratio
of the number of tasks n and the number of fine-delay modules m) and (b) variable number of fine
delay modules m.

Sensors 2019, 19, 906 10 of 13

Sensors 2019, 19 FOR PEER REVIEW 10

scheduling problem was generated randomly 100 times. Figure 8a shows that all curves had a peak
value at k = 3, and then gradually decreased with increasing k. The reason is similar to test 1. Note
that in Figure 8b, IBF had the smallest makespan, but when m > 9, the values of BF and IBF were
basically the same. IBF was still the best in MDR performance, and with the increase in k, the
scheduling performance improved as well. When k > 8, IBF was not significantly superior to BF.

(a) (b)

Figure 8. Comparison of LPT, BF, and IBF in terms of missed deadline rate (MDR) with (a)
k (the ratio of the number of tasks n and the number of fine-delay modules m) and (b)
variable number of fine delay modules m.

Test 3 compared LPT, BF, and IBF using statistical plots. Parameter settings were m = 4, k = 4,
and calculation was run 100 times to obtain the makespan. Figure 9a shows the box plot. Note that
the IBF algorithm had the lowest median and upper limits and the narrowest interquartile range
(IQR). This shows that IBF scheduling had the best overall performance and the most centralized
data. In the 95% confidence interval (CI) plot in Figure 9b, IBF had the lowest mean and the narrowest
95% CI. The IBF algorithm outperformed the BF and LPT algorithms in terms of statistical
performance.

(a) (b)

Figure 9. Comparison of LIST, LPT, and IBF algorithms in (a) boxplot and (b) 95%
confidence interval (CI) plot.

Test 4 compared the performance of LIST, LPT, BF, and IBF algorithms (Table 2). The test
parameter settings were m = 4, k = 4, d = 1000, and the average of 100 runs was taken. The LIST
algorithm had the worst performance, which affected the display of the figures. In order to clearly

Figure 9. Comparison of LIST, LPT, and IBF algorithms in (a) boxplot and (b) 95% confidence interval
(CI) plot.

Test 4 compared the performance of LIST, LPT, BF, and IBF algorithms (Table 2). The test parameter
settings were m = 4, k = 4, d = 1000, and the average of 100 runs was taken. The LIST algorithm had the
worst performance, which affected the display of the figures. In order to clearly compare BF and IBF,
which was not mentioned in the previous experiments, RIBF/LIST was defined as follows:

RIBF/LIST =
CLIST

max − CIBF
max

CLIST
max

× 100% (11)

where CLIST
max , CLPT

max, CBF
max, and CIBF

max represent the average makespans of LIST, LPT, BF, and IBF obtained
from 100 runs, respectively. In addition, KBF and KIBF represent the average number of iterations for
BF and IBF. As shown in Table 2, IBF had the lowest average makespan, but its average number of
iterations was slightly greater than that of the BF algorithm. This was also reflected in the elapsed time.
In the worst case of our experiment, the average elapsed times at m = 10, k = 4 for LIST, LPT, BF, and
IBF algorithms were 2.70, 2.63, 40.61, and 55.21 ms, respectively. The elapsed time of IBF was greater
than BF by about 35.95%. However, as shown in the last column of Table 2, IBF improved performance
by 8.76–21.48% compared to the LIST algorithm.

Table 2. Comparison of LIST, LPT, BF, and IBF performance.

m
LIST LPT BF IBF

RIBF/LIST
CLIST

max CLPT
max CBF

max KBF CIBF
max KIBF

2 1092.39 996.67 995.96 3.02 991.17 2.64 8.76%
4 1174.41 1005.26 999.65 4.01 996.65 5.49 14.40%
6 1264.74 1007.05 997.98 5.28 996.91 8.11 20.37%
8 1258.18 1008.45 997.63 6.86 997.16 10.1 19.85%

10 1282.96 1007.41 996.22 8.01 996.06 11.61 21.48%

Test 5 was used to examine the relationship of IBF with the number of iterations. In Figure 10a,
all curves had a peak value at k = 3–5, and then slowly declined. This occurred because when k = 35,
the generated tasks had large granularity, which facilitated iteration without satisfying the conditions,
so the number of iterations was greater. The number of iterations with larger m was greater than that
with smaller m, because a large m leads to more permutations and combinations. When k > 8, the
number of iterations decreased gradually and tended to be the same. Due to the small size of the task,
the initial LPT algorithm was more effective, so the number of iterations decreased. In Figure 10b,
except for the case of k = 2, the other curves increased gradually, and the larger the value of k, the
smaller the number of iterations. Therefore, the greater the task granularity, the greater the value of m
and the greater the number of iterations.

Sensors 2019, 19, 906 11 of 13

Sensors 2019, 19 FOR PEER REVIEW 12

(a) (b)

Figure 10. IBF number of iterations for: (a) k = 2–10 and (b) m = 2–10.

4.2. Resource Consumption

In the experiment, an Altera Cyclone VI EP4CE115F29C8 and Quartus II 13.0 (Intel Corporation,
Santa Clara, CA, USA) were used to compare all parallel and 1/2 scheduling for 32-channel and 64-
channel architectures. Then, the TimeQuest Timing Analyzer in Quartus II was used to determine
the maximal clock frequency for the listed architectures. The clock frequency was set to 100 MHz.
The obtained resource consumption and maximal frequencies of all architectures are presented in
Table 3, wherein “number of groups” represents the number of scan groups in the multi-group UPA
system; “number of modules” represents the number of fine delay modules in the system; “Total
LUT” (LUT: look up table), “Total Reg.”, and “Total 9-bit Mult.” refer to the consumption of total
logic unit, total register, and total 9-bit multiplier, respectively; and Fmax represents the maximum
clock frequency. Percentages with brackets in the Total LUT and Total 9-bit Mult. columns represent
their share of all the same resources in the entire FPGA.

Table 3. Resource consumption and max frequency of all parallel and 1/2 scheduling for
32-channel and 64-channel architectures.

Number

of
Groups

Number
of

Modules

Total
LUT

Total
Reg.

Total 9-bit
Mult.

Fmax
(MHz)

All-par. 32 ch. 4 4 5086 (4.44%) 3977 320 (60%) 137.74

1/2 Sch. 32 ch. 4 2 2902 (2.53%) 2445 160 (30%) 146.99

All-par. 64 ch. 8 8 14,340 (12.53%) 8569 532 (100%)1 113.77

1/2 Sch. 64 ch. 8 4 5902 (5.16%) 4857 320 (60%) 126.53
1 Due to resource limitations, the total 9-bit multiplier in the FPGA was 532.

Table 3 shows that all parallel architectures demand more resources and have lower maximal
frequencies than 1/2 scheduling architectures. The 1/2 scheduling architecture could save about
57.06–58.84% in LUT and 30–40% in 9-bit multipliers. Table 3 also demonstrates that maximum
frequency decreased as the number of channels increased. The bold text in column Fmax are the best
Fmax in same number of channels, respectively. Therefore, based on the premise of guaranteeing
real-time performance, the proposed architecture and IBF algorithm can reduce resource
consumption, shorten timing, and increase the maximum clock frequency.

Figure 10. IBF number of iterations for: (a) k = 2–10 and (b) m = 2–10.

4.2. Resource Consumption

In the experiment, an Altera Cyclone VI EP4CE115F29C8 and Quartus II 13.0 (Intel Corporation,
Santa Clara, CA, USA) were used to compare all parallel and 1/2 scheduling for 32-channel and
64-channel architectures. Then, the TimeQuest Timing Analyzer in Quartus II was used to determine
the maximal clock frequency for the listed architectures. The clock frequency was set to 100 MHz.
The obtained resource consumption and maximal frequencies of all architectures are presented in
Table 3, wherein “number of groups” represents the number of scan groups in the multi-group UPA
system; “number of modules” represents the number of fine delay modules in the system; “Total
LUT” (LUT: look up table), “Total Reg.”, and “Total 9-bit Mult.” refer to the consumption of total logic
unit, total register, and total 9-bit multiplier, respectively; and Fmax represents the maximum clock
frequency. Percentages with brackets in the Total LUT and Total 9-bit Mult. columns represent their
share of all the same resources in the entire FPGA.

Table 3. Resource consumption and max frequency of all parallel and 1/2 scheduling for 32-channel
and 64-channel architectures.

Number of
Groups

Number of
Modules

Total
LUT

Total
Reg.

Total 9-bit
Mult.

Fmax
(MHz)

All-par. 32 ch. 4 4 5086 (4.44%) 3977 320 (60%) 137.74
1/2 Sch. 32 ch. 4 2 2902 (2.53%) 2445 160 (30%) 146.99
All-par. 64 ch. 8 8 14,340 (12.53%) 8569 532 (100%) 1 113.77
1/2 Sch. 64 ch. 8 4 5902 (5.16%) 4857 320 (60%) 126.53

1 Due to resource limitations, the total 9-bit multiplier in the FPGA was 532.

Table 3 shows that all parallel architectures demand more resources and have lower maximal
frequencies than 1/2 scheduling architectures. The 1/2 scheduling architecture could save about
57.06–58.84% in LUT and 30–40% in 9-bit multipliers. Table 3 also demonstrates that maximum
frequency decreased as the number of channels increased. The bold text in column Fmax are the best
Fmax in same number of channels, respectively. Therefore, based on the premise of guaranteeing
real-time performance, the proposed architecture and IBF algorithm can reduce resource consumption,
shorten timing, and increase the maximum clock frequency.

4.3. Real-Time Verification

Figure 11 displays the results of the pre-synthesis simulation in four groups of two fine
delay modules, using ModelSim 10.2 SE electronics design automation tools (Mentor Co., Ltd.,
Wilsonville, OR, USA). The other experimental conditions are described in the previous section,
and the experimental parameters are shown in Table 4. The delay caused by fine-delay filters with

Sensors 2019, 19, 906 12 of 13

eight clock-cycles has been taken into account and combined into time of read parameter. Units are
clock cycles of the FPGA in Table 4 columns 2–4.

Sensors 2019, 19 FOR PEER REVIEW 13

4.3. Real-Time Verification

Figure 11 displays the results of the pre-synthesis simulation in four groups of two fine delay
modules, using ModelSim 10.2 SE electronics design automation tools (Mentor Co., Ltd., Wilsonville,
OR, USA). The other experimental conditions are described in the previous section, and the
experimental parameters are shown in Table 4. The delay caused by fine-delay filters with eight clock-
cycles has been taken into account and combined into time of read parameter. Units are clock cycles
of the FPGA in Table 4 columns 2–4.

Table 4. Four groups of two fine delay modules simulation parameters.

Group

Number of
Focal laws

(FocalLaw
iN)

Sample Depth

(Sample
iD)

Processing Time1
(pi)

0 64 2048 196,608
1 64 2048 196,608
2 128 4096 655,360
3 128 8192 1,179,648

1 Time of read parameters RP
iT = 1024.

In Figure 11, the tasks were T0–T3, corresponding to frame tasks of Group 0–3, and FD0 and FD1
are fine delay modules. The upper FD0 and FD1 were scheduled by LIST, and the lower FD0 and FD1
were scheduled by IBF. In the case of maximum 8 K sampling depth, 128 focal laws (Group 3), the
makespan of LIST was 13.86 ms, whereas the makespan of IBF was 11.82 ms, so IBF is superior to
LIST. At a waiting time of more than 1 ms between frames, the frame periods of LIST and IBF were
14.86 and 12.82 ms, respectively, which correspond to frame rates of 67 and 78 fps, respectively.
Therefore, the IBF algorithm generally reduced the makespan of the frame tasks, increased the frame
rate, and improved real-time performance of the multi-group scan UPA instrument.

Figure 11. Four groups scheduled in two fine delay modules’ simulation by ModelSim.

5. Conclusions

In this paper, a fine delay scheduling architecture in the multi-group scanning of a UPA system
was presented. The diversity of echo data in multi-group scanning and the number of focal laws were
considered, and the multi-group scan problem was modelled by a linear equation. The IBF algorithm
was proposed, and its time complexity and absolute performance were analyzed. The experimental
results showed that compared to LIST, LPT, and BF algorithms, the IBF algorithm decreased the
makespan by 8.76–21.48%, while the frame rate reached 78 fps, and the architecture reduced FPGA
resources by 30–40%. The IBF algorithm was superior to BF in terms of its small task-to-module ratio.
The proposed algorithm and mathematical model was applied to a UPA. uUsing the proposed
architectures effectively improved integration, increased maximum frequency, improved real-time

Figure 11. Four groups scheduled in two fine delay modules’ simulation by ModelSim.

Table 4. Four groups of two fine delay modules simulation parameters.

Group Number of Focal Laws
(Ni

FocalLaw)

Sample Depth
(Di

Sample)
Processing Time 1

(pi)

0 64 2048 196,608
1 64 2048 196,608
2 128 4096 655,360
3 128 8192 1,179,648

1 Time of read parameters Ti
RP = 1024.

In Figure 11, the tasks were T0–T3, corresponding to frame tasks of Group 0–3, and FD0 and FD1
are fine delay modules. The upper FD0 and FD1 were scheduled by LIST, and the lower FD0 and
FD1 were scheduled by IBF. In the case of maximum 8 K sampling depth, 128 focal laws (Group 3),
the makespan of LIST was 13.86 ms, whereas the makespan of IBF was 11.82 ms, so IBF is superior
to LIST. At a waiting time of more than 1 ms between frames, the frame periods of LIST and IBF
were 14.86 and 12.82 ms, respectively, which correspond to frame rates of 67 and 78 fps, respectively.
Therefore, the IBF algorithm generally reduced the makespan of the frame tasks, increased the frame
rate, and improved real-time performance of the multi-group scan UPA instrument.

5. Conclusions

In this paper, a fine delay scheduling architecture in the multi-group scanning of a UPA system
was presented. The diversity of echo data in multi-group scanning and the number of focal laws were
considered, and the multi-group scan problem was modelled by a linear equation. The IBF algorithm
was proposed, and its time complexity and absolute performance were analyzed. The experimental
results showed that compared to LIST, LPT, and BF algorithms, the IBF algorithm decreased the
makespan by 8.76–21.48%, while the frame rate reached 78 fps, and the architecture reduced FPGA
resources by 30–40%. The IBF algorithm was superior to BF in terms of its small task-to-module
ratio. The proposed algorithm and mathematical model was applied to a UPA. uUsing the proposed
architectures effectively improved integration, increased maximum frequency, improved real-time
performance, and finally, decreased resource consumption. Therefore, the instrument’s flexibility and
performance was improved. The next step is to study another processing module scheduling and
multi-FPGA situation, integrated in a distributed environment.

Author Contributions: Y.L., W.T. and G.L. conceived the idea of the paper; Y.L. performed the experiments, and
Y.L. and W.T. carried out the system model; Y.L. wrote the paper.

Funding: This work was financially supported by the National Key Foundation for Exploring Scientific Instrument
(2013YQ230575) and Guangzhou Science and Technology Plan Project (201509010008).

Sensors 2019, 19, 906 13 of 13

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Holmes, C.; Drinkwater, B.W.; Wilcox, P.D. Post-processing of the full matrix of ultrasonic transmit–receive
array data for non-destructive evaluation. Ndt E Int. 2005, 38, 701–711. [CrossRef]

2. Njiki, M.; Bouaziz, S.; Elouardi, A.; Casula, O.; Roy, O. A multi-FPGA implementation of real-time
reconstruction using Total Focusing Method. In Proceedings of the 2013 IEEE International Conference
on Cyber Technology in Automation, Control and Intelligent Systems, Nanjing, China, 26–29 May 2013;
pp. 468–473.

3. Shao, Z. Research on a GPU-based Real-Time Ultrasound Imaging System. Ph.D. Thesis, Nanjing University,
Nanjing, China, 2014.

4. Guo, J.Q.; Li, X.; Gao, X.; Wang, Z.; Zhao, Q. Implementation of total focusing method for phased array
ultrasonic imaging on FPGA. In Proceedings of the International Symposium on Precision Engineering
Measurement & Instrumentation, Changsha, China, 8–11 August 2014.

5. Zhang, X.; Guo, J.; Luo, X.; Gao, X.; Wang, Z.; Zhao, Q.; Zheng, B. Defect detection study on total focus
method of sound field imaging based on parallel processing. In Proceedings of the 2014 IEEE Far East Forum
on Nondestructive Evaluation/Testing (FENDT), Chengdu, China, 20–23 June 2014; pp. 112–116.

6. Tang, W.; Liu, G.; Li, Y.; Tan, D. An improved scheduling algorithm for data transmission in ultrasonic
phased arrays with multi-group ultrasonic sensors. Sensors 2017, 17, 2355. [CrossRef] [PubMed]

7. Liu, P.; Li, X.; Li, H.; Su, Z.; Zhang, H. Implementation of high time delay accuracy of ultrasonic phased
array based on interpolation CIC filter. Sensors 2017, 17, 2322. [CrossRef] [PubMed]

8. Su, T.; Yao, D.J.; Li, D.Y.; Zhang, S. Ultrasound parallel delay multiply and sum beamforming algorithm
based on GPU. In Proceedings of the 2nd IET International Conference on Biomedical Image and Signal
Processing (ICBISP 2017), Wuhan, China, 13–14 May 2017.

9. Asano, S.; Maruyama, T.; Yamaguchi, Y. Performance comparison of FPGA, GPU and CPU in image
processing. In Proceedings of the International Conference on Field Programmable Logic & Applications,
Prague, Czech Republic, 31 August–2 September 2009.

10. Ullman, S.D. Complexity of Sequencing Problems. Computers and Job-Shop Scheduling; John Wiley: New York,
NY, USA, 1976.

11. Graham, R.L. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 1969, 17, 416–429. [CrossRef]
12. Coffman, F.G., Jr.; Garey, M.R.; Johnson, D.S. An application of bin-packing to multiprocessor scheduling.

SIAM J. Compt. 1978, 7, 1–17. [CrossRef]
13. Friesen, D.K. Tighter bounds for the multifit processor scheduling algorithm. SIAM J. Comput. 1984, 13, 170–181.

[CrossRef]
14. Lee, C.Y.; Massey, J.D. Multiprocessor scheduling: Combining LPT and MULTIFIT. Discret. Appl. Math. 1988,

20, 233–242. [CrossRef]
15. Kang, Y.; Zheng, Y. Independent tasks scheduling on identical parallel processors. Acta Autom. Sin. 1997,

23, 81–84.
16. Li, X.P.; Xu, X.F.; Zhan, D.C. A Quick Algorithm for Independent Tasks Scheduling on Identical Parallel

Processors. J. Softw. 2002, 13, 812–814.
17. Liu, G.; Tang, W.; Tan, D. Focusing time delay of ultrasonic phased array based on multistage half-band filter.

Opt. Precis. Eng. 2014, 22, 1571–1576.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ndteint.2005.04.002
http://dx.doi.org/10.3390/s17102355
http://www.ncbi.nlm.nih.gov/pubmed/29035345
http://dx.doi.org/10.3390/s17102322
http://www.ncbi.nlm.nih.gov/pubmed/29023385
http://dx.doi.org/10.1137/0117039
http://dx.doi.org/10.1137/0207001
http://dx.doi.org/10.1137/0213013
http://dx.doi.org/10.1016/0166-218X(88)90079-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Fine Delay Module for Multi-Group Scanning of UPAs
	Fine Delay Scheduling Principle
	Fine Delay Scheduling Problem in Multi-Group Scanning

	IBF Algorithm
	Experimental Results
	Time Performance
	Resource Consumption
	Real-Time Verification

	Conclusions
	References

