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Abstract: The stochastic characteristic of the radiation field of a mono-static microwave staring
correlated imaging (MSCI) radar degenerates with the increase of the imaging distance, which results
in degradation of the image quality. To address this issue, a novel MSCI method based on bi-static
radar is proposed from two perspectives: site-deploying and waveform design. On the one hand,
a new bi-static MSCI site-deploying scheme is proposed which adopts two transmitting stations with
their azimuth angles relative to the center of the imaging region differing by 90 degrees. On the other
hand, by using two transmitting arrays synchronously transmitting inner-and-inter pulse frequency
hopping (IAIP-FH) signals, the radiation field of each station includes a few “frequency stripes”
perpendicular to the radiation direction, and as a consequence, the “frequency stripes” of each
radiation field are perpendicular to each other. As a result, the radiation field of the bi-static MSCI
is the superposition of the two striped radiation fields, thus a latticed radiation field is constructed.
Therefore, the targets in different latticed grids scatter independent fields, then, the images can be
reconstructed using correlation process (CP) algorithms. The grid size of the latticed radiation field
is determined by the inner-pulse frequency hopping (FH) interval of the IAIP-FH signals and the
imaging geometry. Moreover, it is shown that the 3 dB beam width of the space correlation function
of the radiation field does not change with the imaging distance, thus the stochastic characteristic
of the radiation field is partly preserved when the imaging distance increases. Simulation results
validate the analysis and show that the proposed method can obtain higher resolution images than
the common mono-static MSCI method.

Keywords: microwave staring correlated radar; bi-static Radar; inner-and-inter pulse frequency
hopping signal

1. Introduction

The radar imaging technique has the ability of working all-day and in all weathers [1,2], thus it
has attracted increasing attentions and extensive researches, among which earth observation is an
important application field [3].

The conventional high-resolution radars for earth observation commonly employ the
Range-Doppler (RD) principle [4] or tomography theory [5] to acquire two-dimensional high-resolution
images, e.g., synthetic aperture radar (SAR) [6–8], etc. For either the RD principle or tomography theory,
the azimuth resolution is determined by the aspect-angle variation range during the target observation,
thus the radar platforms have to observe the imaging area from multiple observation angles. Therefore,
the high-resolution radars based on the two theories all aim to increase the aspect-angle variation
range, e.g., spotlight SAR [9,10] and wide-angle SAR [11], and so on. For earth observation, the radar
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platforms take a long time to obtain multiple sets of observation data from different viewing angles,
which greatly increases the time cost and the system complexity.

In many applications, it is necessary to observe a fixed important region continuously using
radar systems carried on stationary platforms, for example in important area observations and
disaster monitoring. This is called radar staring imaging. In these applications, there is no relative
movement between the radar platform and the imaging area, thus the SAR technique cannot be applied.
Furthermore, the azimuth resolution of the conventional staring imaging radar, e.g., real aperture
radar (RAR), is limited by the aperture size of the antenna array. When the imaging distance increases,
the resolution becomes lower. Hence, it is necessary for RAR to use a large-scale antenna array or a
sufficient number of stations to form a larger aperture, though this is not always achievable in practice.
Therefore, seeking a high-resolution radar imaging method in staring imaging geometry is a hot and
difficult problem [12,13].

Recently, microwave staring correlated imaging (MSCI) was proposed as a new microwave staring
imaging method, and since then has attracted increasing attentions [14–16] due to its ability to acquire
high-resolution images in staring imaging geometry.

The detailed imaging process of mono-static MSCI is illustrated in Figure 1. The crucial purpose
of MSCI is to construct a temporal–spatial stochastic radiation field (TSSRF) which is realized by
random radiation source (RRS), thus the MSCI system commonly consists of multiple transmitters
and one or more receivers [14,15,17]. Multiple antennas of the transmitters constitute an array of RRS.
First, by using the RRS to transmit predesigned waveforms, the TSSRF is formed at the imaging plane.
Then, the receive antenna receives the scattered echo, and after the down-conversion and sampling
procedure, the sampled signal is obtained. Finally, the TSSRF matrix is computed according to the
parameters of the RRS and the images are reconstructed by correlation process (CP) of the sampled
signal and the TSSRF matrix.

Figure 1. The imaging geometry and procedure of mono-static microwave staring correlated imaging
(MSCI).

The TSSRF in a different spatial position is independent, thus the targets in different locations
within the beam coverage scatter independent time-varying fields. Therefore, the MSCI can achieve
super-resolution images of the targets. As a consequence, MSCI is superior to RAR and can be used in
stationary/quasi-stationary platforms.

The key to MSCI is to construct the TSSRF [14], and the image resolution of MSCI is determined
by the stochastic characteristics of the TSSRF, which is heavily dependent on the RRS [14–16] design.
Therefore, many researchers have studied the RRS design from different aspects. These studies
mainly focus on two aspects: (1) multi-channel waveform design, (2) element and layout design of the
radiation array.
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In waveform design, several commonly used radar waveforms are studied in
references [14,15,17,18]. References [14,15] both proposed employing a white Gaussian noise
(WGN) signal as the transmitting signal and analyzed its resolution capability. Reference [18] analyzed
the usage of the WGN signal in MSCI from a compressive sensing aspect, and pointed out that the
column correlation of the sensing matrix of MSCI decreases as the array aperture size increases when
the imaging geometry and the size of spatial grids are fixed. However, an ideal WGN signal cannot
be easily achieved in engineering due to the bandwidth limitation. In consequence, Reference [17]
proposed using inner-pulse frequency hopping (FH) signals which can be easily realized in radar
systems and an outfield experiment was performed. However the frequency code design of the
FH signal is still an open problem. Reference [19] considered minimizing the condition number of
the radiation field matrix and a stochastic optimization algorithm was adopted to acquire a good
frequency code design of the FH signal. Contrarily, Reference [20] proposed a method to acquire an
ideal orthogonal radiation field by elaborately choosing the waveform parameters. As a consequence,
for each pulse, an inverse radiation problem has to be solved to obtain the waveform parameters of
each channel. The number of ideal orthogonal radiation fields is finite as a result of the limitation of
the bandwidth and the aperture size.

In addition to the waveform design, optimizing the element design and the layout of the array
elements can also improve the stochastic characteristic of the TSSRF. Reference [21] proposed the
temporal–spatial distribution entropy (TSDE) as the optimization target to optimize the elements’
layout. It is shown that the effective rank of the TSSRF matrix increases as the TSDE increases.
Nevertheless, all of the aforementioned researches only utilize the antenna as the basic element
of the RSS. Recently, Reference [22] introduced metamaterial apertures [23–26] into the MSCI,
and proposed employing the secondary scattering of a meta-surface to achieve a better radiation
field. The meta-surface consists of many evenly spaced complementary-electric-inductor-capacitor
(cELC) elements and the scattering property of each cELC element differs from each other. By randomly
adjusting the parameters of each cELC, the random radiation field can be achieved. However, using
secondary scattering will lead to energy loss and the resolution is still limited by the size of the
metamaterial aperture.

The aforementioned researches all focus on the mono-static MSCI system, that is, the transmitting
array and the receiver are in the same area. For the mono-static MSCI method, the stochastic
characteristic of the TSSRF can be improved using the above methods. However, these methods
cannot overcome the problem that the stochastic characteristic of TSSRF degenerates as the imaging
distance increases, which lead to the degradation of the imaging results.

Multi-static radars observe the targets from more and larger aspect angles, thus have the potential
to form TSSRF with a better stochastic characteristic. Nevertheless, the resolution of MSCI is not
determined by the aperture size but by the stochastic characteristic of the TSSRF, and multi-static radar
systems greatly increase the system cost and complexity. Therefore, a bi-static radar system rather than
a multi-static radar system is considered in this paper. As far as we know, there are no researches on
bi-static or multi-static MSCI.

A novel MSCI method based on bi-static radar is proposed which considers both site-deploying
and waveform design. First, for site-deploying, the proposed bi-static imaging geometry requires
that the azimuth angles of the two transmitting station differ by 90 degrees relative to the imaging
area center. Second, every transmitter transmits a IAIP-FH signal to form a “frequency stripe” field
with the stripes perpendicular to the radiation direction at the imaging plane. Summing up the above,
the radiation field at the imaging plane is the superposition of the two “frequency stripe” fields, thus a
latticed radiation is achieved; and so the field in the different lattices is independent and the targets in
different lattices scatter independent fields . Finally, high-resolution images can be obtained using the
CP algorithms. The grid size of the latticed field is determined by the inner-pulse FH interval of the
IAIP-FH signals and the imaging geometry, and is not influenced by the imaging distance.
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The remainder of this paper is outlined as follows. The imaging model of the proposed imaging
geometry and the waveform design are given in Section 2. In Section 3, the space correlation function
of the TSSRF of the proposed method is analyzed. In Section 4, simulations are taken to verify the
effectiveness of the proposed method and analyze the space correlation function of the TSSRF and
the resolution capability with the distance and the number of transmitters. Conclusions are drawn in
Section 5.

2. The Proposed Bi-Static MSCI Method

The proposed method is expected to be applied for continuous observation of important areas
in staring imaging geometry, which means that the radar is carried on a stationary/quasi-stationary
platform. The bi-static MSCI system considered in this paper consists of two transmitting stations
with two RRSs. By employing the bi-static radar system, it is anticipated to obtain a better TSSRF.
In addition, both site-deploying and waveform design are considered in this paper.

Firstly, a new site-deploying scheme for bi-static MSCI is proposed, and its key point is that the
two transmitting arrays observe the imaging area from two azimuth angles which differ by 90 degrees.
The detailed imaging geometry is illustrated in Figure 2.

Figure 2. The proposed imaging geometry of bi-static MSCI.

Let (x, y, z) be Cartesian coordinates with the origin O located at the center of the imaging area
which is labeled G, and (r, ϕ, φ) denotes the according spherical coordinates, where azimuth angle
ϕ denotes the angle between the orthogonal projection of the location vector on the XOY plane and
the Y axis, and elevation angle φ denotes the angle between the location vector and the XOY plane.
The plane XOY denotes the imaging plane and the Z axis is perpendicular to the ground.
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The bi-static radar system is located in two stationary platforms above the ground, whose squint
angles are both α, as shown in Figure 2. Each RRS is composed of a multiple antenna array labeled D1

andD2, respectively, and D1 consists of I1 antennas while D2 consists of I2 antennas. Meanwhile,
the centers of the two transmit arrays are (0,−H1 tan α, H1) and (−H2 tan α, 0, H2), respectively.
Furthermore, the location vector of the i-th antenna is~ri. In addition, the receive antenna is located at
the center of D1 with its location vector denoted as~r0=(0,−H1 tan α, H1). The viewing angle between
the two stations to the imaging area is θ.

In practice, reflector geometry, shadowing, and the scattering characteristic caused by coherent
scintillation can be strongly dependent on viewing angle, for this reason, θ is chosen to be less than
15◦ [11].

Secondly, for waveform design, this paper proposes to employ inner-and-inter pulse frequency
hopping (IAIP-FH) signals and the waveform is illustrated in Figure 3. The transmitted signal of the
i-th transmitter is

Si(t) =
L

∑
l=1

Q

∑
q=1

u(t− q∆t− lT)ej2π fi,l,q(t−lT) (1)

where T denotes the pulse period and ∆t is the inner-pulse FH interval, Q is the number of FH code
per pulse. Thus, the width of each pulse is Q∆t, and u(t) is

u(t) ∆
=

{
1 0 < t < ∆t

0 otherwise
.

Figure 3. Waveform of the inner-and-inter pulse frequency hopping signals.

By employing IAIP–FH signals, the radiation field of each RRS is a striped field with different
distance stripes of the imaging area covered by different frequency stripes in one pulse. That is,
the radiation field of D1 forms Q frequency stripes perpendicular to the Y axis at the plane XOY and
the radiation field of D2 forms Q frequency stripes perpendicular to the X axis at the plane XOY,
as illustrated in Figure 4.
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Figure 4. The superposition of the radiation field of bi-static MSCI.

The radiation field at the imaging plane is the superposition of the two “frequency stripe” fields
and thus it forms the latticed radiation field and the field in the different lattice is independent, which
is illustrated in Figure 4. Moreover, the grid size of the lattice is c∆t sin α× c∆t sin α, where c is the
speed of light, ∆t is the inner-pulse FH interval.

The radiation field at the location~r can be expressed as [18,20]

E(~r, t) =Erad1(~r, t) + Erad2(~r, t)

=
I1

∑
i=1

Ai(~̂Ri,~r)

4π|~r−~ri|
L

∑
l=1

Q

∑
q=1

Si(t− q∆t− lT − τi(~r))

+
I1+I2

∑
i=I1+1

Ai(~̂Ri,~r)

4π|~r−~ri|
L

∑
l=1

Q

∑
q=1

Si(t− q∆t− lT − τi(~r))

(2)

where ~̂Ri,~r = (~r−~ri)/ |~r−~ri|, Ai(·) denotes the radiation pattern of the i-th antenna, τi(~r) = |~r−~ri| /c,
c is the speed of light, Si(t) is the transmitted signal of the i-th transmitter.

The radiation field interacts with the targets and the received echo signal can be expressed
as [18,20]

Secho(t) =
∫
G

I1+I2

∑
i=1

Ai(~̂Ri,~r)A0(~̂R0,~r)

(4π)2|~r−~ri||~r−~r0|
Si(t− τi,0(~r))σ(~r)d~r + n(t) (3)

where τi,0(~r) = (|~r−~ri|+ |~r−~r0|)/c, n(t) denotes the additive noise.
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The modified radiation field is defined as [18]:

Esca(~r, t) =
I1

∑
i=1

Ai(~̂Ri,~r)A0(~̂R0,~r)

(4π)2|~r−~ri||~r−~r0|
L

∑
l=1

Q

∑
q=1

Si(t− q∆t− lT − τi,0(~r))

+
I1+I2

∑
i=I1+1

Ai(~̂Ri,~r)A0(~̂R0,~r)

(4π)2|~r−~ri||~r−~r0|
L

∑
l=1

Q

∑
q=1

Si(t− q∆t− lT − τi,0(~r))

. (4)

Therefore, the imaging equation of the integral form can be expressed as follows:

Secho(t) =
∫

G
Esca(~r, t)σ(~r)d~r + n(t). (5)

In order to solve the imaging equation numerically, the imaging plane is discretized into
N = U × K grid cells, with its size g× g,~rj denoting the center of the j-th grid cell. Let σj = σ(~rj)

denotes the backscattering coefficient of the j-th grid cell. In addition, the echo signal is also sampled,
thus the final imaging equation is

Secho = Esca · σ + n (6)

where Secho = [Secho(t1), Secho(t2), · · · , Secho(tM)]T ∈ CM×1, σ = [σ1, σ2, · · · , σN ]
T ∈ CN×1, n ∈ CM×1

is the additive noise vector, Esca ∈ CM×N is the radiation field matrix with [Esca]kj = Esca(~rj, tk).
The reconstruction for σ using Esca and Secho can be expressed as

σ = ℘[Secho, Esca]

where, ℘ denotes the operator of the correlated process (CP) algorithms. The common CP algorithms
include, for example, the first order CP algorithm [18], the Tikhonov regularization method [17,18],
and some sparse recovery methods, such as orthogonal matching pursuit (OMP) [27,28], sparse
Bayes learning (SBL) [29,30] algorithm, and so on. Recently, some structured compressive recovery
algorithms [31] have been applied into MSCI due to their ability of exploiting the elaborate
structure information of the targets [32–34]. In radar imaging applications, the targets typically
have cluster structures, thus the cluster prior of the targets is considered to develop the algorithms in
References [32–34].

The detailed procedure of the proposed method is shown in Figure 5.
To sum up, the detailed imaging procedure of the proposed method is as follows: (1) perform

site-deploying to satisfy the requirements of the proposed imaging geometry; (2) the two RRSs
synchronously transmit the IAIP-FH signals to construct a latticed field at the imaging plane; (3) sample
the received signal and compute the modified radiation field matrix based on the waveform parameters;
(4) correlation process (CP) of the sampled signal and the matrix to obtain the image. The imaging
procedure flow of the proposed method is illustrated in Figure 6.

In addition, the transmitters at the two stations should be accurately synchronized in our proposed
method. Typically, the world wide accessible GPS signals and the microwave link established between
the two stations can realize high-precision time synchronization [35]. Nevertheless, synchronization
errors cannot be fully eliminated. Readers who are interested in calibration methods related to
synchronization errors in MSCI can refer to Reference [36].
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Figure 5. Imaging geometry and procedure of the proposed method.

Figure 6. Flow chart of the proposed bi-static MSCI method.

3. Analysis of the Space Correlation Function of the Proposed Method

According to the foregoing, the proposed method constructs a latticed radiation field, thus the
stochastic characteristic of the radiation field is greatly improved. Commonly, the space correlation
function is used to measure the stochastic characteristic of the radiation field [15,16], which has been
pointed out to be related with the imaging system’s point spread function (PSF) in Reference [37].
In this subsection, the space correlation function is analyzed.
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The space correlation function of E(~r, t) at two different locations~rj and~rj + ∆~r is defined as
follows [15,16]:

R(~rj, ∆~r) =
〈

Esca(~rj, t), Esca(~rj + ∆~r, t)
〉

=
1
M

M

∑
k=1

Esca(~rj, tk), Esca(~rj + ∆~r, tk)
(7)

where~rj = (xj, yj, 0) and ∆~r = (∆x, ∆y, 0).
By substituting (4) into (7), R(~rj, ∆~r) can be expressed in (8).

R(~rj, ∆~r) = C0

I

∑
i=1

Ai(~̂Ri,~rj
)A0(~̂R0,~rj

)Ai(~̂Ri,~rj+∆~r)A0(~̂R0,~rj+∆~r)

|~rj −~ri||~rj − ~r0||~rj + ∆~r−~ri||~rj + ∆~r− ~r0|
Si(tk − τi,0(~rj))Si(tk − τi,0(~rj + ∆~r))

+ C0

I

∑
i1 6=i2

Ai1(
~̂Ri1,~rj

)A0(~̂R0,~rj
)Ai2(

~̂Ri2,~rj+∆~r)A0(~̂R0,~rj+∆~r)

|~rj − ~ri1 ||~rj − ~r0||~rj + ∆~r− ~ri2 ||~rj + ∆~r− ~r0|
M

∑
k=1

Si1(tk − τi1,0(~rj))Si2(tk − τi2,0(~rj + ∆~r))

≈ C
I

∑
i=1

M

∑
k=1

Si(tk − τi,0(~rj))Si(tk − τi,0(~rj + ∆~r)) + C
I

∑
i1 6=i2

M

∑
k=1

Si1(tk − τi1,0(~rj))Si2(tk − τi2,0(~rj + ∆~r))

(8)

where C0 = 1
(4π)4 M .

In (8), the heights of the two stations are supposed to be the same, so the imaging distances
between the imaging region and the two station are the same. Under far field condition |~rj| �
|∆~r|, we can make approximations that 1

|~rj−~r0|
≈ 1
|~rj−~ri ||

≈ 1
|~rj+∆~r−~r0|

≈ 1
|~rj+∆~r−~ri |

≈ 1
z , where z is

the imaging distance. Moreover, ~rj and~rj + ∆~r are close to each other within the beam coverage.
In addition, the radiation patterns of all the antennas are supposed to have the same characteristics.

Thus, Ai(~̂Ri,~rj
) ≈ Ai(~̂Ri,~rj+∆~r), A0(~̂Ri,~rj

) ≈ A0(~̂Ri,~rj+∆~r),
1

(4π)4 M

Ai(~̂Ri,~rj
)A0(~̂R0,~rj

)Ai(~̂Ri,~rj+∆~r)A0(~̂R0,~rj+∆~r)

|~rj−~ri ||~rj−~r0||~rj+∆~r−~ri ||~rj+∆~r−~r0|
≈ C

is almost a constant. The first term on the right of (8) is the cross-correlation of the different transmitters’
signals and the second term is the self-correlation. Since the frequency codes of each transmitter are
randomly and independently selected, thus the cross-correlation of the different transmitters is much
less than the self-correlation, thus the first term is neglected hereinafter:

R(~rj, ∆~r) ≈
L

∑
l=1

I

∑
i=1

u(t− q∆t− lT − τi,0(~rj + ∆~r))
M

∑
k=1

ej2π fi,j,q(τi,0(~rj+∆~r)−τi,0(~rj))

=
L

∑
l=1

I

∑
i=1

M

∑
k=1

ej2π fi,j,q(τi,0(~rj+∆~r)−τi,0(~rj)).

(9)

Notice that the constant C is omitted here. Furthermore, fi,j,q ∈ [ fL, fH ], where fL, fH are the
lower and upper bound of the transmitted frequency band. In the proposed IAIP-FH signals, fi,j,q is
uniformly and randomly selected in [ fL, fH ], so

〈ej2π fi,j,q(τi,0(~rj+∆~r)−τi,0(~rj))〉 ≈ B
I

∑
i

ej2π fc(τi,0(~rj+∆~r)−τi,0(~rj)) × sinc(B(τi,0(~rj + ∆~r)− τi,0(~rj))) (10)

where 〈·〉 denotes expectation and sinc(x) = sin(πx)
πx , fc = ( fL + fH)/2.

Therefore, the space correlation function R(~rj, ∆~r) can be expressed as

R(~rj, ∆~r) ≈ R1(~rj, ∆~r) + R2(~rj, ∆~r) (11)
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where

R1(~rj, ∆~r) =B
I1

∑
i=1

ej2π fc(τi,0(~rj+∆~r)−τi,0(~rj))sinc(B(τi,0(~rj + ∆~r)− τi,0(~rj)))

R2(~rj, ∆~r) =B
I1+I2

∑
i=I1+1

ej2π fc(τi,0(~rj+∆~r)−τi,0(~rj))sinc(B(τi,0(~rj + ∆~r)− τi,0(~rj))).

(12)

In (12), τi,0(~rj) =
∣∣~rj −~ri

∣∣ ∣∣~rj −~r0
∣∣ /c, by substituting location vector~ri = (|~ri|, ϕi, φi) of the i-th

antenna and the location vector~r0 = (|~r0|, ϕ0, φ0) = (H1/ tan α, π, π
2 − α) of the receive antenna into

τi,0(~rj), and applying far field approximation:

cτi,0(~rj) ≈|~ri|+ |~r0| − xj(cos φi sin ϕi + cos φ0 sin ϕ0)− yj(cos φi cos ϕi + cos φ0 cos ϕ0)

=|~ri|+ |~r0| − xj cos φi sin ϕi − yj(cos φi cos ϕi − cos φ0).
(13)

Substitute (13) into c(τi(~rj + ∆~r)− τi(~rj)):

c(τi,0(~rj + ∆~r)− τi,0(~rj)) = −∆x cos φi sin ϕi − ∆y(cos φi cos ϕi − cos φ0). (14)

The receive antenna is at the center of D1 as illustrated in Figure 1, its azimuth angle ϕ0 is
π . Additionally, the azimuth angle of the other antennas in D1 is approximately equal to π,
and their elevation angle φi is approximately equal to φ0. Thus, we can make an approximation
that sin ϕi = − sin(ϕ0 − π) ≈ π − φi, cos ϕi ≈ −1 and substitute these into R1(~rj, ∆~r):

R1(~rj, ∆~r) = B
I1

∑
i=1

ej2π fc(τi,0(~rj+∆~r)−τi,0(~rj))sinc(
B
c
(∆x cos φi(π − φi)− ∆y(cos φi + cos φ0)))

≈ B
I1

∑
i=1

ej2π fc(τi,0(~rj+∆~r)−τi,0(~rj))sinc(
B
c
(∆x(π − φi) cos φi − 2∆y cos φ0)).

(15)

On the basis of (15), the two-dimensional function sinc( B
c (∆x cos ϕi sin φi − 2∆y cos φ0))

determines the envelop of R1(~rj, ∆~r) and its contour map is illustrated in Figure 7a. In addition, its 3 dB
beam width along X axis and Y axis can be easily computed, Beam1X

3dB = 0.882c/B cos φ0|π − ϕi|,
Beam1Y

3dB = 0.441c/B cos φ0. Since Beam1X
3dB/Beam1Y

3dB ≈
2

|π−ϕi |
� 1, thus the 3 dB beam width

along X axis of R1(~rj, ∆~r) is far wider than that along Y axis.
For the antennas of D2, their azimuth angles ϕi are approximately equal to 3π

2 , thus |ϕi − 3π
2 | � 1,

so sin ϕi ≈ −1, cos ϕi ≈ 0. Their elevation angle is approximately equal to φ0.
Thus, R2(~rj, ∆~r) is

R2(~rj, ∆~r) = B
I1+I2

∑
i=I1+1

ej2π fc(τi,0(~rj+∆~r)−τi,0(~rj)) × sinc(
B
c
(∆x cos φi sin ϕi + ∆y(cos φi cos ϕi − cos φ0)))

≈ B
I1+I2

∑
i=I1+1

ej2π fc(τi,0(~rj+∆~r)−τi,0(~rj)) × sinc(
B
c
((∆x + ∆y) cos φ0)).

(16)

The contour map of the function sinc( B
c ((∆x + ∆y) cos φ0)) is illustrated in Figure 7b. It can be

easily seen that when ∆x = −∆y, that is, ∆~r moves along vector (1,−1, 0), the value of R2(~rj, ∆~r)
stays the same, so the 3 dB beam width of R2(~rj, ∆~r) along vector (1,−1, 0) is wide. On the contrary,
when ∆~r moves along vector (1, 1, 0), the value of R2(~rj, ∆~r) decreases fast, so the 3 dB beam width of
R2(~rj, ∆~r) along vector (1, 1, 0) is sharp and its 3 dB beam width is 0.882c/B

√
2 cos ϕ0.

By Substituting (15) and (16) into (11), R(~rj, ∆~r) can be expressed as
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R(~rj, ∆~r) =B
I1

∑
i=1

ej2π fc(τi,0(~rj+∆~r)−τi,0(~rj))sinc(
B
c
(∆x(π − φi) cos ϕi + 2∆y cos φ0))

+ B
I1+I2

∑
i=I1+1

ej2π fc(τi,0(~rj+∆~r)−τi,0(~rj))sinc(
B
c
((∆x + ∆y) cos φ0)).

(17)

(a) sinc(B(∆x(π − φi) cos ϕi + 2∆y cos φ0)/c) (b) sinc(B((∆x + ∆y) cos φ0)/c)

Figure 7. The contour map of two-dimensional sinc function.

Thus, ∣∣∣ R(~rj ,∆~r)
R(~rj ,0)

∣∣∣ = ∑
I1+I2
i=I1+1 sinc( B

c ((∆x+∆y) cos φ0))

I1+I2
+

∑
I1
i=1 sinc( B

c (∆x(π−φi) cos ϕi+2∆y cos φ0))
I1+I2

. (18)

On the basis of (18), for each location~rj in the imaging area, ∆~r moves along any direction for

|∆x| ≥ c
B cos φ0

or |∆y| ≥ c
B cos φ0

, one can get that | R(~rj ,∆~r)
R(~rj ,0)

| ≤ 0.6 <
√

2
2 . That means the 3 dB beam

width of R(~rj, ∆~r) along any direction is less than c
B cos φ0

, which does not change with the imaging
distance. On the other hand, the side lobe of the R1(~rj, ∆~r) and R2(~rj, ∆~r) are superposed, thus along
the X axis and the vector (1,−1, 0), R(~rj, ∆~r) has high side lobes. For example, when ∆~r = (∆x, 0, 0),

and c
B cos φ0

≤ |∆x| ≤ c
10(π−φi)B cos φ0

, it is always found that | R(~rj ,∆~r)
R(~rj ,0)

| ≥ ∑
I1
i=1 sinc(−∆x(π−φi)πB/c)

I1+I2
≥

0.98 I1
I2
= 0.49, which means the side lobe is high.

For the mono-static MSCI, the space correlation function is the same as when all the transmitters
are placed in D1, so it can be expressed as

R(~rj, ∆~r) = B
I1+I2

∑
i=1

ej2π fc(τi,0(~rj+∆~r)−τi,0(~rj))sinc(
B
c
(∆x(π − φi) cos ϕi + 2∆y cos φ0)). (19)

Therefore, the 3 dB beam width along the X axis of the space correlation function R(~rj, ∆~r) of
mono-static radar is far wider than that along the Y axis.

In the following paragraphs, the choice of different azimuth angles of the two stations that differ
by 90 degrees is discussed. Suppose the location of Station 1 stays the same, while the location of the
center of Station 2 is changed to (H tan α sin ϕ2, H tan α cos ϕ2, H). Therefore, after similar derivations,
R(~rj, ∆~r) can be expressed as
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∣∣∣∣∣R(~rj, ∆~r)
R(~rj, 0)

∣∣∣∣∣ = ∑I1
i=1 sinc( B

c (∆x(π − φi) cos ϕi + 2∆y cos φ0))

I1 + I2

+
∑I1+I2

i=I1+1 sinc( B
c (∆x cos φ0(sin ϕ2 + (ϕi − ϕ2) cos ϕ2) + ∆y cos φ0(cos ϕ2 − (ϕi − ϕ2) sin ϕ2 − 1)))

I1 + I2

. (20)

Since ϕi − ϕ2 � 1, the 3 dB width of R(~rj, ∆~r) along the Y axis and the vector
(cos φ0 sin ϕ2, cos φ0(cos ϕ2 − 1), 0) is sharp and the values of these 3 dB width are 0.441c/B cos φ0

and 0.882c/B cos φ0
√

2(1− cos ϕ2), respectively. In addition, as mentioned in Section 2, θ is limited
and there is a condition based on the imaging geometry such that sin α = 1−cos θ

1+cos ϕ2
. Since cos φ0 =

sin α, one gets that 0.441c/B cos φ0 = 0.441c/B sin α and 0.882c/B cos φ0
√

2(1− cos ϕ2) =
0.441

√
2c

B
√

(1−cos θ)

√
1+cos ϕ2
1−cos ϕ2

.

To sum up, on the one hand, the 3 dB beam width of R(~rj, ∆~r) along the vector
(cos φ0 sin ϕ2, cos φ0(cos ϕ2 − 1), 0) and the Y axis are anticipated to be sharp, on the other hand,
the angle between the side lobes is anticipated to be as large as possible. Therefore, the choice of ϕ2 is
a compromise of the 3 dB width of R(~rj, ∆~r) and the side lobes’ directions.

In conclusion, choosing different azimuth angles of the two stations that differ by 90 degrees is a
reasonable and comprehensive consideration.

4. Simulations

The 3 dB beam width of the space correlation function of the proposed method does not change
with the imaging distance, and the stochastic characteristic of the radiation field is greatly improved.
To verify the effectiveness of the proposed method and analyze its resolution capabilities, five groups
of numerical simulations are presented in this section. First, simulations are presented to compare the
imaging results of mono-static and bi-static MSCI. Then, the space correlation functions of mono-static
MSCI and the proposed method are compared and the space correlation functions of different distances
are illustrated to verify the derivation of Section 3. Finally, the resolution capability with the number
of transmitters and the imaging distance is analyzed using simulations.

The radar system used in the simulations in this section works at X band frequency. In addition,
the antennas of the bi-static and mono-static MSCI are all equally placed in the transmitting array.
Furthermore, the mono-static MSCI system adopts a 1.6 m × 3.2 m array, while the bi-static MSCI
system adopts two 1.6 m × 1.6 m arrays. Some parameters are given in Table 1. The parameters
related to the imaging distance, pulse width, and inner-pulse FH interval are different in each
different simulation.

Table 1. The simulation parameters of mono-static and bi-static MSCI.

Parameters Mono-Static MSCI Bi-Static MSCI

The aperture size 1.6 m × 3.2 m each array 1.6 m × 1.6 m
The number of receiver 1 1
The carrier frequency 9.2 GHz 9.2 GHz

Bandwidth 500 MHz 500 MHz
The squint angle 10◦ 10◦

The pulse period 10 ms 10 ms
The number of pulse 3000 3000

4.1. Imaging Simulations for Mono-Static and Bi-Static MSCI

In this subsection, simulations are presented to compare the imaging results of mono-static
and bi-static MSCI with different imaging distance. To clearly describe the imaging performance,
the normalized mean square error (NMSE) is used to quantify the reconstruction effect of the target
imaging; the definition of which is NMSEdB = 20 lg [‖σ̂ − σ‖2/‖σ‖2], where σ denotes the target
image and σ̂ denotes the reconstruction image.
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The system parameters, including the pulse width, number of transmitters, and inner-pulse FH
interval, are given in Table 2, and the other parameters are the same as those in Table 1. The height
of the radar platform varies from 500 m to 10 km, and the according imaging region size varies from
20 m × 20 m to 160 m × 160 m . The signal to noise ratio (SNR) is set to 25 dB in the five simulations.
The PC-SBL algorithm exploits the cluster structure prior to the targets, thus it has a better and more
stable performance than other CP algorithms in mostly situations [31,34]. Besides, the target images
in the simulations indeed have cluster structures. Therefore, the PC-SBL algorithm is adopted in the
following simulations.

Table 2. Parameters of the inner-and-inter pulse frequency hopping (IAIP-FH) signal in this subsection.

Parameters Mono-Static MSCI Bi-Static MSCI

Pulse width 400 ns 400 ns
The inner-pulse frequency hopping (FH) interval 10 ns 10 ns

Code number of inner-pulse FH 40 40

The imaging results of mono-static MSCI and the proposed bi-static MSCI with different imaging
distances are illustrated in Figure 8. It can be seen that the target images (a3, b3, c3, d3, e3) reconstructed
by bi-static MSCI have clear outlines and are easily identified, while the outlines of the target images
(a2, b2, c2, d2, e2) reconstructed by mono-static MSCI are distorted and the targets cannot even be
identified. The NMSEs of the reconstructed images given in Table 3 are averaged by five Monte Carlo
trials for each imaging distance. It can be seen that the NMSEs of bi-static MSCI are lower which
means better results. In brief, the bi-static MSCI can acquire clearer images and better results than the
mono-static MSCI, which shows the effectiveness of the proposed method.

imaging
area 20 m × 20 m 40 m × 40 m 80 m × 80 m 120 m × 120 m 160 m × 160 m

Target
images

(a1) (b1) (c1) (d1) (e1)

mono-static
MSCI

(a2) (b2) (c2) (d2) (e2)

bi-static
MSCI

(a3) (b3) (c3) (d3) (e3)

Figure 8. The imaging results of mono-static and bi-static MSCI. (a1–e1) the target images when
the heights of the radar platform are 500 m, 1 km, 2 km, 5 km, and 10 km, respectively; (a2–e2) the
reconstructed images using mono-static MSCI when the heights of the radar platform are 500 m, 1 km,
2 km, 5 km, and 10 km, respectively; (a3–e3) the reconstructed images by bi-static MSCI when the
heights of the radar platform are 500 m, 1 km, 2 km, 5 km, and 10 km, respectively.
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Table 3. The normalized mean square error (NSME) of the reconstructed images.

Grid Cells Size The Height of the Radar Platform Mono-Static MSCI Bi-Static MSCI

0.5 m × 0.5 m 500 m −2.87 dB −2.95 dB
1 m × 1 m 1 km −3.14 dB −7.09 dB
2 m × 2 m 2 km −4.03 dB −18.03 dB
3 m × 3 m 5 km −3.39 dB −15.86 dB
4 m × 4 m 10 km −2.32 dB −9.68 dB

4.2. The Space Correlation Functions of Mono-Static and Bi-Static MSCI

In Section 3, the space correlation functions of mono-static and bi-static MSCI are analyzed.
To verify the formula derivation, the following simulation is presented.

Some parameters are given in Table 4, while the other parameters are the same as those in Table 1.
The space correlation functions are computed using (4) and (7); R(~rj, ∆~r) of mono-static and bi-static
MSCI are illustrated in Figure 9; Figure 9b1,b2,c1,c2 are the X-axis and Y-axis profiles, respectively.

Table 4. Simulation parameters in this subsection.

Parameters Mono-Static MSCI Bi-Static MSCI

Pulse width 200 ns 200 ns
The inner-pulse FH interval 5 ns 5 ns
The height of radar platform 1 km 1 km

It can be seen from Figure 9 that the space correlation function of mono-static MSCI is sharp in
the Y-axis and wide in the X-axis and has high side lobe along the X-axis, while the space correlation
function of bi-static MSCI is sharp in both the X-axis and Y-axis. However, it has high side lobes
along the X-axis and the vector (1,−1, 0). Additionally, the above results coincide with the analysis in
Section 3, that is, the 3 dB beam width of bi-static MSCI is sharper than that of the mono-static MSCI.
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Figure 9. The correlation function of mono-static and bi-static MSCI. (a1,a2) The space correlation
function of mono-static and bi-static MSCI; (b1,b2) the X-axis profile of the space correlation function
of mono-static and bi-static MSCI; (c1,c2) the Y-axis profile of the space correlation function.
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4.3. The Space Correlation Function in Different Imaging Distances

It can be derived from (18) that the 3 dB beam width of the space correlation function of bi-static
MSCI has no relations with the imaging distance, so the following simulation is taken to verify this.

The size of imaging area is given in Table 5 and the other parameters are the same as those in
Table 1. The heights of the radar are set as 2 km and 10 km. The space correlation function of bi-static
MSCI is illustrated in Figure 10. It can be seen from Figure 10b1,c1 and the partial enlarged drawing
of Figure 10b2,c2 that the 3 dB beam width of the space correlation function does not change with
the imaging distance, while the width of side lobe becomes wider with the increase in the imaging
distance, which is in agreement with (18).

Table 5. Parameters of imaging distance and imaging region in this subsection.

Parameters Imaging Distance 1 Imaging Distance 2

Imaging distacne 2.03 km 10.1 km
The size of the imaging region 80 m × 80 m 200 m× 200 m

-400

-40 -20
-20

y

0

x

0
2020

0.5

4040

1

(a1)

-40 -30 -20 -10 0 10 20 30 40

x

0

0.2

0.4

0.6

0.8

1

(b1)

-40 -30 -20 -10 0 10 20 30 40

y

0

0.2

0.4

0.6

0.8

1

(c1)

(a2)

-100 -75 -50 -25 0 25 50 75 100

x

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5

0.5

0.6

0.7

0.8

0.9

(b2)

-100 -75 -50 -25 0 25 50 75 100

y

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5

0.2

0.4

0.6

0.8

1

(c2)

Figure 10. Space correlation function of bi-static MSCI under different imaging distance. (a1,a2) The
space correlation function of bi-static MSCI under different imaging distance 2.03 km and 10.1 km;
(b1,b2) the X-axis profile of the space correlation function of bi-static MSCI under different imaging
distance 2.03 km and 10.1 km; (c1,c2) the Y-axis profile of the space correlation function of bi-static
MSCI under different imaging distance 2.03 km and 10.1 km.

4.4. The Imaging Capacity with the Number of the Transmitters

The key point of TSSRF is to make the field within the beam independent from each other, thus to
acquire super resolution. In practice, the TSSRF is achieved using multi-transmitters transmitting
independent radiation field, and the number of transmitters is strongly related with the stochastic
characteristic of the radiation field. Reference [13] proved by simulation that the imaging errors
decrease with the increase in the number of transmitters when the array aperture and the bandwidth
are fixed. However, it can be seen from (18) that the beam width of the space correlation function of
the proposed method has a weak relationship with the number of transmitters. Thus, it is necessary
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to study whether the method can maintain the imaging quality while decreasing the number of
transmitters.

Therefore, the below simulation is presented. The NMSE of the imaging results of mono-static and
bi-static MSCI is compared by changing the number of transmitters under different imaging distances.
The parameters of the imaging area are the same as those in Table 3. The imaging distances vary from
0.5 km to 10 km and 10 individual experiments are taken at each distances.

The NMSE of different number of transmitters of mono-static and bi-static MSCI is illustrated in
Figure 11. It can be seen that the NMSE of bi-static MSCI is much better than mono-static MSCI when
there are 48 transmitters. When the number of transmitters decreases while being still greater than 12
(each station has 6 transmitters), the NMSE of bi-static MSCI changes slightly. When the number of
transmitters decreases and amount to less than eight, the NMSE of bi-static MSCI decreases greatly
while still being better than that of mono-static MSCI.

0.5m 0.5m,H=0.5km 1.0m 1.0m,H=1.0km 2.0m 2.0m,H=2.0km 3.0m 3.0m,H=5.0km 5.0m 5.0m,H=10.km

Grid cell size (m
2
) and The Height of Radar system (km)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

N
M

S
E

(d
B

)

Mono-static with 48 transmitters

Bi-static with 4 transmitters

Bi-static with 8 transmitters

Bi-static with 12 transmitters

Bi-static with 24 transmitters

Bi-static with 48 transmitters

Figure 11. NMSEs of the imaging results by mono-static and bi-static MSCI at different imaging
distances and different grid sizes.

In brief, decreasing the number of the transmitters will degrade the image quality, which is due
to the degeneration of the stochastic characteristic of the radiation field. However, as a result of the
superiority of the proposed bi-static imaging geometry, when the number of transmitters decreases,
the stochastic characteristic of the radiation field decreases slowly, thus the image quality is maintained.
In a practical system, the system complexity needs to be taken into comprehensive consideration.
On the premise of ensuring image quality, fewer transmitters can be used to effectively reduce the
system complexity.

4.5. The Resolution Capability with the Imaging Distance

The 3 dB beam width of the space correlation function of bi-static MSCI does not change with the
increase in the imaging distance, while the side lobe becomes wider. Therefore, the resolution capacity
of bi-static MSCI cannot be directly concluded. Thus, the following simulations are presented.

In order to measure the resolution capacity, the following definition is given:
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Definition 1. The images are evaluated as accurate recovery under noiseless condition when the NMSE of the
imaging results satisfies:

NMSEdB = 10 lg
[
‖σ̂ − σ‖2/‖σ‖2

2

]
< −40dB. (21)

Definition 2. The images are evaluated as basic recovery under noiseless condition when the NMSE of the
imaging results satisfies:

NMSEdB = 10 lg
[
‖σ̂ − σ‖2/‖σ‖2

2

]
< −10dB. (22)

The radar parameters are given in Table 6 and other parameters are the same as those in Table 1.
The algorithm is still the PC-SBL algorithm.

Table 6. Parameters of the transmitted signals in this subsection.

Parameters Mono-Static MSCI Bi-Static MSCI

Pulse width 500 ns 500 ns
The inner-pulse FH interval 10 ns 10 ns

The least grid size that satisfies the basic recovery and accurate recovery of mono-static and
bi-static MSCI under different imaging distances is obtained by increasing the size of the imaging grid
step by step in the simulations, the curves are drawn in Figure 12. The curve of the real aperture radar
is calculated by RRAR = λ

D L, where D is the array aperture and L is the imaging distance and λ is the
wavelength of the signals, which is not obtained using simulations.
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Figure 12. (a) The least grid size that satisfies the basic recovery of mono-static and bi-static MSCI under
different imaging distances. (b) The least grid size that satisfies the accurate recovery of mono-static
and bi-static MSCI under different imaging distances.

As the height of the radar platform increases, that is to say, the imaging distance increases,
the resolution of the real aperture radar increases linearly, while the least grid size that satisfies the
basic recovery and accurate recovery of bi-static MSCI grows much less than the RAR. Under noiseless
conditions, the bi-static MSCI can reserve the accurate recovery capacity of 2.9 m and the basic recovery
capacity of 1 m while the imaging distance is 50 km. Thus, this proves the effectiveness and superiority
of the proposed method.

5. Conclusions

In this paper, a novel MSCI method based on a bi-static radar system is proposed, considering
both waveform design and bi-static site-deploying. The proposed method adopts two radar stations
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observing the imaging region from different azimuth angles which differ by 90 degrees. At the same
time, the IAIP-FH signals are transmitted to form a latticed radiation field, therefore the stochastic
characteristic of the radiation field is partially preserved as the imaging distance increases. The 3 dB
beam width of the space correlation function of the radiation field of the bi-static MSCI does not change
with the imaging distance. Simulations prove that the proposed method can obtain better imaging
results and has a greatly improved resolution capability.
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Abbreviations

The following abbreviations are used in this manuscript:

CP correlation process
cELC complementary-electric-inductor-capacitor
FH frequency hopping
IAIP-FH inner-and-inter pulse frequency hopping
MSCI microwave staring correlated imaging
RAR real aperture radar
RD Range-Doppler
RRS random radiation source
SAR synthetic aperture radar
TSSRF temporal—spatial stochastic radiation field
TSDE temporal—spatial distribution entropy
WGN white Gaussian noise
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