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Abstract: Autonomously following a man-made trail in the wild is a challenging problem for robotic
systems. Recently, deep learning-based approaches have cast the trail following problem as an image
classification task and have achieved great success in the vision-based trail-following problem.
However, the existing research only focuses on the trail-following task with a single-robot system.
In contrast, many robotic tasks in reality, such as search and rescue, are conducted by a group
of robots. While these robots are grouped to move in the wild, they can cooperate to lead to
a more robust performance and perform the trail-following task in a better manner. Concretely,
each robot can periodically exchange the vision data with other robots and make decisions based
both on its local view and the information from others. This paper proposes a sensor fusion-based
cooperative trail-following method, which enables a group of robots to implement the trail-following
task by fusing the sensor data of each robot. Our method allows each robot to face the same
direction from different altitudes to fuse the vision data feature on the collective level and then
take action respectively. Besides, considering the quality of service requirement of the robotic
software, our method limits the condition to implementing the sensor data fusion process by using
the “threshold” mechanism. Qualitative and quantitative experiments on the real-world dataset have
shown that our method can significantly promote the recognition accuracy and lead to a more robust
performance compared with the single-robot system.

Keywords: trail following; cooperative perception; multi-robot system; feature fusion

1. Introduction

Autonomously following trails (such as those normally traversed by hikers or mountain-bikers) in
the forest is a challenging problem for robotic systems. Trail following is an efficient and safe way for
a Micro Aerial Vehicle (MAV) to travel medium and long distances in different environments for various
tasks such as search and rescue, environmental mapping, personal videography, and wilderness
monitoring. Recently, deep learning technologies have emerged as a powerful tool for various
computer vision tasks [1–4]. DNN and TrailNet [5,6] cast the trail perception problem as an image
classification task and enable the system to navigate forest trails more robustly than previous
techniques. The trail-following task could be solved by using deep learning models to learn a control

Sensors 2019, 19, 823; doi:10.3390/s19040823 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-7239-1819
http://www.mdpi.com/1424-8220/19/4/823?type=check_update&version=1
http://dx.doi.org/10.3390/s19040823
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 823 2 of 20

strategy that mimics the choice of an expert driver based on the vision data. Unlike the previous
works [7,8], which solved trail perception as a segmentation problem (i.e., determining which areas of
the input image correspond to the image of the trail), deep learning techniques bypass this need by
directly operating on the raw RGB frames and provide high-level information. The accuracy of deep
learning technology [5] is comparable to the performance of humans, reaching 85.2%, much higher
than that of the traditional method using image saliency (52.3%) [9].

However, existing studies on the trail-following task only concern a single robot [5–8], which may
not lead to a robust performance in some extreme situations. For example, if the robot is currently
looking sideways, then the trail is not visible (shown in Figure 1a), which will confuse the robot and
impede making decisions. The DNN-based (Deep Neural Network-based) method [5] deals with this
problem by performing a two-class classification problem, which could only enable the robot not to
go straight without adjustment instructions. Here, we call the situation in Figure 1a “limited view”,
which is a great challenge that needs to be solved to enable a robust trail-following performance.
Concretely, when there is no trail in the view of the robot, adjustment instructions from other vision
data (i.e., move right, shown in Figure 1b) should be given to guide the robot out of the dilemma.

Figure 1. In the single-robot system, when the robot is currently looking sideways (a), the trail will not
be visible, and the robot cannot deal with this situation. However, from an adjustment instruction of
the higher altitude view facing the same direction (b), the robot would know it should move right to
remain on the trail.

In reality, many robotic tasks, such as search and patrolling, are conducted by a multi-robot
system, which can introduce the benefit of robustness from data fusion and information sharing
among the robots [10–12]. For the trail-following task, the multi-robot system could effectively solve
the “limited view” problem by providing the vision data from other robots to help the confused
robot. For an illustrative perspective, considering a scene of search-and-rescue after earthquakes,
two drones facing the same direction from different altitudes need to climb over the mountain to
reach the destination and help to perform the rescue task. The drones could exchange the vision data
to complement the vision capability and improve the efficiency for completing the task. Concretely,
the high-altitude drone can benefit from the broader view and focus more on global information such
as the extension direction of the trail. The low-altitude drone can pay more attention to the details
of the trail such as appearance contrast. However, fully exploiting the valuable information from the
multi-robot system and deriving a robust fused representation is an extremely challenging task due to
the information gap between the high-altitude and low-altitude vision inputs.

Recently, feature fusion technologies have attracted increasing attention in the video categorization
domain [13–15]. In order to achieve outstanding performance, a great number of works have focused
on combining multiple video features and utilizing the inter-class semantic relationships [16–18].
The fusion process of multiple features is usually expected to extract the features complementary to
each other and derive a robust fused representation. Naturally, motivated by the idea of feature fusion
in the video categorization domain, could we apply a similar technology to enable the multi-robot
system to share the vision data from different altitudes and perform the trail-following task in a better
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manner? Concretely, to meet the basic requirements of feature fusion, we simplify the coordination
problem by forcing the robots to face towards the same direction and to keep a certain pitching angle.
The condition will guarantee that the ground robot is just at the bottom center of the view from the
aerial robot, and the decisions for the robots to make are the same. In other words, from the perspective
of image recognition, the high-altitude vision input and the low-altitude one have the same label.

In this paper, we apply the feature fusion mechanism to the multi-robot system with the aim
of achieving a robust performance on the vision-based trail-following task. We propose the Sensor
Fusion-based Cooperative method (SF-Cooper), which contains three feature fusion methods, including
SVM (support vector machine), SOFTMAX, and four-layer DNNs (Deep Neural Networks), to generate
a discriminative integrated representation effectively from the vision inputs of the robots. The robots
are enabled to fuse the features of the vision data from different altitudes on the collective level.
By sharing the vision data from different altitudes, the robots could augment their vision and
acquire robust adaptability to deal with the “limited view” situations. Besides, considering the
Quality of Service (QoS) requirement of the robotic applications, we incorporate the “threshold”
mechanism in the system to minimize the latency for the robots to make new decisions and remain
coordinated. Concretely, SF-Cooper processes the feature of each robot separately, and the fusion
process is implemented only when the maximum probability among the decisions of a certain robot
is less than the specified threshold. Qualitative and quantitative experiments are conducted to
demonstrate that SF-Cooper can significantly improve the recognition accuracy and lead to a more
robust performance compared with the single robot system, especially in the “limited view” situations.
Besides, by incorporating the “threshold” mechanism, SF-Cooper can decrease the time latency to
a large degree while maintaining the recognition accuracy of the system.

The remainder of this paper is organized as follows. In Section 2, the related work is presented
with emphasis on the novelty of our work. Section 3 introduces the problem formulation. Section 4
shows the detailed architecture of SF-Cooper. Section 5 presents the experiments carried out on the
testing set and the real-world environment, as well as the analysis of the results. Section 6 provides the
link for acquiring our dataset. The discussions of our approach are presented in Section 7.

2. Related Work

SF-Cooper covers two research areas, including trail following and feature fusion technologies.

2.1. Trail Following

Trail following means making the robots autonomously follow a man-made trail. Especially,
for the Micro Aerial Vehicle (MAV) system, the commercial MAVs are mostly teleoperated and do not
maintain the ability to follow trails and avoid obstacles autonomously. Nevertheless, sustainable
efforts have been made to introduce visual-based approaches to facilitate obstacle avoidance.
The technologies can mainly be divided into two kinds: segmentation technologies [7,8] and deep
learning approaches [5,6,19]. The segmentation technologies aim to use image saliency [9], based on
the assumption that the features of the trail will “stand out” from the other parts of the visual
input. The features could be color appearance or intensity [7] contrast with the left and right
neighboring regions or the cross-influence between the perception of appearance and the perception of
shape [8]. The segmentation-based method is challenging because it needs to find the approximate
characteristics first and then highlight [20] them by a series of operations (symmetric, triangular
shape [7], or spatial-temporal integration based on virtual ants [8]) to get a satisfying performance.

The trail-following problem could also be cast as an image classification task and solved by deep
learning technologies. The earliest one is the DNN research of [5], which defines three kinds of labels
(“turn right”, “turn left”, and “go straight”) corresponding to the actions for the robot to remain on
the trail. The DNN-based method could bypass the need to choose or design features from the vision
data and achieve a better performance than the traditional segmentation-based methods. TrailNet [6]
improves upon the DNN-based method by incorporating three additional categories via transfer



Sensors 2019, 19, 823 4 of 20

learning to enable the estimation of both lateral offset and view orientation with respect to the trail.
TrailNet also enables a low-level obstacle detection by incorporating an object detection module and
a visual odometry component.

However, all the methods mentioned above focus on the trail-following problem for the single-robot
system. For the multi-robot system, our previous work [19] accomplished the trail-following task by
fusing the decisions of each robot on the collective level. Concretely, we integrate the probabilities
(three-dimensional vector) produced by the ground and the aerial robots in order and use the fused
representation to perform a final classification. The training process is not end-to-end because we
separate the decision extraction process and the decision fusion process. In SF-Cooper, we extract the
mid-level features (4096-dimensional vector) from the fully-connected layer of the neural network,
which contain more abundant information than the decision, and add a four-layer DNNs feature fusion
method to exploit the features fully and derive a more discriminative representation.

2.2. Feature Fusion

The feature fusion mechanism is a powerful tool adopted for video classification [21,22].
For example, the visual features, trajectory features, and the audio features can be fused to incorporate
more valuable semantic information and achieve a higher classification score [23]. The main feature
fusion strategies could be divided into two categories: the early fusion methods and the late fusion
methods. Early fusion methods assume that multiple features are explicitly complementary to each
other. However, different features may carry task-relevant information at different times; fusing
them by naive concatenation may limit the model’s ability to adapt to other situations. Late fusion
methods train the models separately and then combine the prediction scores. However, late fusion
methods will ignore the feature relationships in the categorization process because the features are
processed separately.

Recently, with the development of deep neural networks, a few studies focused on fusing
multiple features in neural networks. Concretely, a deep denoised auto-encoder was utilized in [24] to
learn a shared representation based on multi-model inputs. Besides, a deep Boltzmann machine
was employed in [25] to combine visual and textual features. Similarly, an approach that was
based on minimizing the variation of information was proposed to optimize the shared feature
learning process. This method can effectively predict the missing input modality according to the
available information. In order to achieve dynamic weight adjustments across different models,
an attention-based multi-model fusion network [26] was proposed.

In this paper, we apply the feature fusion approaches to the multi-robot system and enable the
robots to share the visual inputs for achieving a robust trail-following performance. By forcing the
robots to face the same direction and maintain a pitching angle, the feature fusion mechanism can
extract valuable information from the vision data of each robot and derive a robust fused representation
to perform the classification task. To the best of our knowledge, this is the first paper that applies the
feature fusion mechanism to the trail-following task.

3. Problem Formulation

The problem we focus on is to make an aerial robot and a ground robot autonomously follow the
trails without colliding with obstacles based on the vision inputs only. The trails here are continuous,
with no termination, but can be branching to a crossing, which may mislead the group and delay
the time to reach the rescue destination. In order to apply the feature fusion mechanism to the
coordination process, the two robots are forced to face the same direction and keep a pitching angle of
60◦. This condition can guarantee that the ground robot is just at the bottom center of the view from
the aerial robot. In other words, from the perspective of image classification, the vision inputs from
the two robots should obtain the same label. With the aim of deriving a robust fused representation,
the ground and aerial classifiers may focus on different parts to make the extracted information
contemplative. Concretely, the aerial classifier should focus more on the global part of the visual input,
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i.e., the extension direction of the trail. The ground classifier should focus more on the details of the
trail, i.e., the appearance comparison.

In order to complete the trail-following task for the multi-robot system effectively, we need to
define decisions that the robots need to make when confronted with a specific situation. From the
perspective of image classification, the decision here can be thought of as the label of the corresponding
image. As shown in Figure 2, the decisions can be divided into three classes: “move left”, “move right”,
and “go straight”. The three classes are “basic” classes that indicate that the robots should move
a certain distance towards the given direction. Notably, if the ground robot is faced with the
“limited view” problem, the “move left” and “move right” labels are “adjustment” instructions,
which can help the ground robot get out of the local dilemma and see the trail again (shown in Figure 1).

Figure 2. The three labels defined in the problem formulation. The first row represents the aerial
vision inputs, and the second row represents the ground visual inputs: (a) “Go Straight” label from the
high-altitude view; (b) “Move Left” label from the high-altitude view; (c) “Move Right” label from the
high-altitude view; (d) “Go Straight” label from the low-altitude view; (e) “Move Left” label from the
low-altitude view; (f) “Move Right” label from the low-altitude view.

The label of a certain vision input is defined as follows. Consider a general scene with a single
trail in the wild; our vision input from the ground/aerial robot is an image captured by a camera
situated above the ground. Denote −→v as the direction of the camera’s optical axis. We assume that −→v
lies on the horizontal plane. Besides, denote

−→
t as the dominant direction of the trail: we define

−→
t

as the horizontal direction towards which a hiker would start an obstacle-free walk if standing at the
position of the robot. Denote α as the signed angle between −→v and

−→
t ; the three classes defined above

stand for three different situations that the carrier of the camera should implement assuming that the
camera is heading in the direction of motion. The details are shown in Figure 3.

• Move Left (ML): if −90◦ ≤ α < −β; i.e., the trail is heading towards the left part of the image.
• Move Right (MR): if +β ≤ α < +90◦; i.e., the trail is heading towards the right part of the image.
• Go Straight (GS): if −β ≤ α ≤ +β; i.e., the trail is heading straight ahead, at least in a close range.

In our experiments, we follow the definition of [5] and consider β = 15◦. Here, β stands for
the boundary which distinguishes the “go straight” label and the “move left/right” label. In order
to derive a robust fused representation of the high-altitude and low-altitude vision inputs, several
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challenges need to be solved. Firstly, the relevant information has to be extracted from the vision data
of each robot in order to express the corresponding responsibility correctly. Then, the feature fusion
mechanism needs to make up the drawbacks of the features and make full use of the advantages
brought by each robot.

Figure 3. The illustration of the problem formulation. The trail direction represents the direction a hiker
would walk with the aim of following the trail. MR, Move Right; GS, Go Straight; ML, Move Left.

4. Method

In this section, we describe the details of our framework SF-Cooper and the three feature
fusion methods SVM, SOFTMAX, and four-layer DNNs. SF-Cooper makes a group of mobile robots
cooperatively follow the trails autonomously using the sensor data based on the feature fusion
mechanism. We will introduce the framework of SF-Cooper, the details of feature fusion algorithms
for the multi-robot system, and the theoretical analysis of the performance benefits.

4.1. Framework of SF-Cooper

SF-Cooper aims to fuse the sensor data of the robots and derive a robustly-integrated
representation for a better classification. The idea behind SF-Cooper is to fuse the extracted features of
each vision input and then make the final decision based on the fused representation.

The architecture of SF-Cooper is shown in Figure 4. There are two drones in the architecture:
the higher one stands for the aerial robot, and the lower one stands for the ground robot. Each drone
can capture the images from the corresponding altitude and train the classifier, which will make each
robot maintain the ability to extract the features from the visual input and make decisions alone.
There are three main responsibilities for the classifiers: extracting features, measuring the time of
implementing the feature fusion process, and predicting decisions. The classifier in the upper right
corner is the feature fusion module, which is implemented to get a final decision for the two robots
based on the integrated representation. The ground and aerial robots first extract the features from the
vision inputs. Then, the decision-making process is influenced by the maximum probability among
the decisions of the ground robot. The details are illustrated in the next subsection.
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Figure 4. The architecture of the Sensor Fusion-based Cooperative method (SF-Cooper), which is
composed of three parts: the input module, the feature extraction module, and the feature fusion module.

4.2. Feature Fusion Algorithms for the Multi-Robot System

After the ground robot obtains a visual input, the ground robot will decide whether it is the
time to implement the feature fusion process. The ground robot first needs to calculate the maximum
probability ψ among the decisions predicted by the ground classifier. Concretely, ψ stands for the
maximum value of [PGstraight, PGle f t, PGright],which are predicted by the SOFTMAX layer of the
ground classifier. Through a comparison between ψ and the specified “threshold”, the ground robot
will know whether the feature fusion process is needed now. If the feature fusion requirement is
satisfied, the ground robot will first send a classification request signal to the aerial robot to obtain
the features from the higher altitude. Then, the aerial robot will implement a recognition process and
send the extracted features to the ground robot. Finally, the ground robot will send the low-altitude
and high-altitude features to the trained SVM/SOFTMAX/four-layer DNNs modules to get the final
decision. If the feature fusion requirement is not satisfied, the ground robot will follow the decision
predicted by its own classifier. After the ground robot confirms the decision, the ground robot will
send the confirmed decision to the aerial robot to keep coordinated. Algorithm 1 gives the pseudocode
of the whole implemented process. Here, “CF” stands for the Classifier.

The feature fusion process aims to integrate the low-altitude and high-altitude features and
learn a discriminative shared representation, which can lead to a more robust performance in
the vision-based trail-following task. In general, the integrated features output by the feature
fusion algorithms should be more discriminative than both the low-altitude features and the
high-altitude features. Three feature fusion algorithms are used in SF-Cooper. We first extract the
low-altitude and the high-altitude features from the trained ground and aerial classifiers, respectively.
Then, the extracted features will be sent to the feature fusion modules. For the SVM/SOFTMAX
classifier, we integrate the low-altitude and the high-altitude features in order. Then, the integrated
vector after splicing and the corresponding label are used as the input for training.



Sensors 2019, 19, 823 8 of 20

Algorithm 1 The feature fusion algorithm using SVM/SOFTMAX/four-layer DNNs.

Input: Image Xground acquired by the ground robot, image Xaerial obtained by the aerial robot, the trained

ground and aerial classifiers to extract the features from the vision input, and the trained feature

fusion modules SVM/SOFTMAX/four-layer DNNs to complete the feature fusion process.
Output: Class label C defined in the problem formulation, which is then transferred as the flight

command of the robot.
1: Initialize and take off from the ground and aerial drones (robots).
2: The ground robot gets the vision input.
3: Cground = CFground(Xground)
4: The ground robot gets the list (PGstraight, PGle f t, PGright) from the SOFTMAX layer of the trained

ground classifier.
5: ψ = max(PGstraight, PGle f t, PGright)
6: if ψ < Threshold then
7: The ground robot extracts the low-altitude features fground using the trained ground classifier

from the low-altitude vision input and sends a classification request signal to the aerial robot.
8: The aerial robot extracts the high-altitude feature faerial using the trained aerial classifier from

the high-altitude vision input and sends the features to the ground robot.
9: The ground robot sends the low-altitude and the high-altitude features to the

SVM/SOFTMAX/four-layer DNNs modules to implement the feature fusion process.
10: The ground robot gets the final decision based on the integrated representation from the feature

fusion modules. C = CSVM/SOFTMAX/4−layerDNNs
11: else
12: C = Cground
13: end if
14: Both the aerial robot and the ground robot take the C command.

For the four-layer DNNs, as demonstrated in Figure 4, the model contains four layers: the input
layer, transformation layer, fusion layer, and output layer. Both the low-altitude and the high-altitude
features are used as the input of the first layer. The inputs are then transformed using a hidden layer
with 256 neurons for each kind of feature, respectively. The transformed features are then fused with
a fusion layer containing 256 neurons. Finally, the fused features are converted to classification scores
through the last layer. Notably, experiments [23] have shown that four layers are empirically found to
be suitable for the feature fusion process. From an illustrative perspective, the transition equation for
the fusion layer can be written as follows:

ZF = σ(W l
EZl

E + Wh
EZh

E + bE) (1)

Here, E represents the index of the last layer of feature transformation, and F represents the
index of the fusion layer (i.e., F = E + 1). Therefore, Zl

E and Zh
E represent the extracted mid-level

representation for the low-altitude and high-altitude features respectively. As demonstrated in
Equation (1), the mid-level representation is firstly linearly transformed by the weight matrix W l

E/Wh
E

and then non-linearly mapped to generate the integrated representation ZF using a sigmoid function σ.
In order to perform the feature fusion process by exploring correlations and diversities simultaneously,
we can minimize the following cost function to learn the optimal weights for each layer in the
four-layer DNNs,

minW

N

∑
i=1

l(y
′
i, yi) +

λ

2
(

E

∑
p=1

(‖W l
p‖2

F + ‖Wh
p‖2

F) +
P−1

∑
p=F
‖Wp‖2

F), (2)
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where the function ∑N
i=1 l(y

′
i, yi) is the empirical loss on the training data, which summarizes the

discrepancy between the outputs of the network y‘
i and the ground-truth labels yi. N denotes the

number of classes. The remaining part is a regularization term preventing overfitting. P stands for the
total number of layers in the four-layer DNNs, and λ balances the contribution of the regularization
term for the whole loss function.

4.3. Performance Benefits of SF-Cooper

The benefits of introducing the feature fusion mechanism into the trail following problem can be
analyzed theoretically from two aspects.

4.3.1. Compared with the Single-Robot Method

We demonstrate the superiority of the accuracy benefits of feature fusion mechanism compared
with the single ground robot system. By introducing the feature fusion mechanism into the
trail-following task, the cognitive capability of the ground robot can be improved. Generally, the final
recognition accuracy of all unrecognized samples can be increased from 0 to (1− p)F, where F is
the recognition accuracy of the SVM/SOFTMAX/four-layer DNNs feature fusion modules, and p
is the false positive rate of the measurement mechanism on feature fusion time (i.e., the ground
classifier recognizes the image incorrectly, but the feature fusion requirement is not satisfied). However,
the promotion of recognition accuracy is not evident for all types of samples. The instability of the
measurement mechanism on feature fusion time should be considered. For example, a sample that
has already been correctly recognized by the ground robot may be mistakenly sent to implement the
feature fusion process. Therefore, we will provide detailed analyses of the accuracy benefits.

Considering the impact of the measurement mechanism on feature fusion time, the accuracy
promotion of SF-Cooper can be calculated in the following method. We denote G as the recognition
accuracy of the ground classifier. Then, the total accuracy H can be calculated as follows:

H = G(1− p) + GpF + (1− G)(1− p)F. (3)

The explanation of the symbols in Equation (3) is shown in Table 1. Here, G(1− p) refers to
the samples that are classified correctly by the ground robot and directly taken as the final decision
(the feature fusion requirement is not satisfied). GpF stands for the samples that are already classified
by the ground robot, but mistakenly sent to deal with further and finally classified correctly by the
feature fusion algorithms. (1− G)(1− p)F refers to the samples that are wrongly classified by the
ground robot, but finally rectified, attributed to the correctness of the measurement mechanism on
feature fusion time and the feature fusion algorithms. Through a simple deformation, we could obtain
the following theorem:

Theorem 1. Recognition accuracy H ≥ G if and only if F ≥ Gp
Gp+(1−G)(1−p) .

With the help of the aerial classifier and the feature fusion algorithms, a large proportion of
unrecognized samples can be corrected from a statistical point of view, and the accuracy promotion would
be greater with more uncertainty in the environment, i.e., the samples in the “limited view” situations.

Table 1. Illustration of the symbols in Equation (3).

Symbol Description

G the recognition accuracy of the ground classifier
p the false positive rate of the feature fusion time measurement mechanism
F the recognition accuracy of the feature fusion module
H the total accuracy of SF-Cooper
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4.3.2. Comparison without the Measurement Mechanism on Feature Fusion Time

The objective of introducing the measurement mechanism on feature fusion time is to satisfy the
QoS requirement of the robotic applications, particularly the latency on the samples where the feature
fusion process is not necessary. The total latency of SF-Cooper ls can be calculated by:

ls = lg + µl f , (4)

where lg is the average latency of the ground classifier, l f is the latency of the feature fusion modules,
and µ is the probability that the feature fusion time measurement mechanism believes it is time to
implement the feature fusion process. The explanation of the symbols in Equation (4) is shown in
Table 2. Compared with the method that the feature fusion process is implemented all the time, we can
obtain the following theorem:

Theorem 2. If µ ≤ 1− lg
l f

, then ls ≤ l f .

lg is significantly less than l f in practice because the transmission of the aerial features costs

much time. As a reference, lg
l f

in the experiments presented in the next section is frequently below 0.1.

Consequently, 1− lg
l f

is usually a number near one, and the final average latency for the classification
is certainly less than the method without the measurement mechanism on feature fusion time.

Table 2. Illustration of the symbols in Equation (4).

Symbol Description

ls the recognition latency of SF-Cooper
lg the recognition latency of the ground classifier
µ the probability to implement the feature fusion process
l f the recognition latency of the feature fusion module

5. Experiments

In this section, we will introduce our experiments from the following three aspects: the datasets,
the details of feature extraction and fusion, the experimental results, and discussions.

5.1. Datasets

The dataset is composed of two parts: the “basic” set and the “limited view” set. The “basic” set
is acquired as follows: we make two Parrot Bebop Drones [27] coordinated to follow the trail using the
“move left”, “move right”, and “go straight” commands. Concretely, the low-altitude drone flies at
an altitude of 1.7 m, which stands for the view of a medium ground robot. The high-altitude drone
flies at an altitude between 3.2 and 4.7 m (affected by the realistic conditions such as branches) to
guarantee that the aerial robot just has a global view near the ground robot. We make the two drones
face the same direction and follow each trail three times (one pointing 30◦ to the left, one pointing
straight ahead, and one pointing 30◦ to the right) to collect the dataset. Images and commands are
exchanged via a WiFi connection between our telephones and the Bebop drones. From the Bebop’s
stream connection, we receive an image of a resolution of 1920× 1080 pixels. The dataset covers
approximately 5 km of hiking trails acquired at altitudes ranging from 300–900 m for different times
of the day and weather. Meanwhile, many different trail types and surroundings are represented,
ranging from sloped narrow alpine paths to wider forest roads.

Each pair of images is labeled by an expert driver, associated with its ground truth class. We also
augment the training dataset by synthesizing left/right mirrored versions of each training image.
In detail, a mirrored training image of class “move right/left” yields a new training sample for class
“move left/right”. A mirrored “go straight” training sample yields another “go straight” training
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sample. Additionally, mild affine distortions (±10% translation, ±15% rotation, ±10% scaling) are
applied to the training set with the aim of increasing the number of samples further. To train a classifier
that is robust to noise, we generate additional images and augment our dataset size by adding Gaussian
white noise of mean 0 and variance 0.01 to our dataset. We also collect the “limited view” samples
by adjusting the facing direction of the ground robot from 50 locations (35 for train and 15 for test)
and 80 pairs on each. The two “adjustment” instructions for the aerial dataset are represented as
averages. Notably, the labels of the “limited view” samples for the ground robot are given by the
corresponding instruction of the aerial robot. Besides, all the samples have been split into disjoint
training (15,120 pairs) and testing (4808 pairs) sets. The split is implemented by carefully avoiding
that the same scene appears in both the training and testing set, and the classes are evenly represented
within each set.

5.2. Feature Extraction and Fusion

For the feature extraction modules, we train the ground and aerial classifiers to extract the
represented features using the low-altitude and the high-altitude datasets. We start with the AlexNet
model, which is composed of five convolutional layers and three fully-connected layers. Due to the
reason that the dataset contains three labels, we replace the last fully-connected layer FC8 with a layer
composed of three nodes. In the feature extraction process, the images in all three datasets are first
re-scaled to 224× 224-pixel images, and the network is trained with back-propagation for 90 epochs,
which requires 60 h on a workstation equipped with the Nvidia Tesla K80 GPU and Nvidia Cudnn
(DELL, Shenzhen, China) [28]. The learning rate of the ground and aerial classifiers is initially set to
0.005, then scaled by a factor of 0.95 per epoch. We extract a 4096-dimensional feature representation
from FC7, which is the output of the seventh fully-connected layer. We disable the “mirror” operation
of the data augmentation process during the process of training and testing because this operation does
not suit our experiment: an image with the “move right” command will become an image for which
a robot should move to the left by mirroring, but the flipped image still has the label of “move right”.

The feature fusion module and the feature extracting modules are not trained end-to-end. For the
four-layer DNNs feature fusion module, we follow the experimental settings in [23] by setting the
learning rate to 0.7 and fixing λ1 to a small value of 3× 10−5 with the aim of preventing overfitting.
The training for the feature fusion module will stop if it reaches the maximal epochs (we set 300 here)
or the training error stops to decrease (with difference less than 1× 10−5) in the last ten epochs.

5.3. Results and Discussion

In this subsection, we test the performance of SF-Cooper for two methods. The first one is to
use the testing dataset with the aim of showing the accuracy benefits compared with the single-robot
system, particularly on the “limited view” testing set. The second one is to implement SF-Cooper on
a real platform with the aim of showing the effectiveness of our approach.

5.3.1. Experiments on the Testing Dataset

We divide the testing set into two parts: the “basic” set and the “limited view” set. Firstly,
we tested the ground and aerial classifiers and the feature fusion algorithms on the “basic” testing
set. The threshold here was set to one. In order to measure the advantages of the three feature fusion
algorithms, we also made a comparison with our previous work [19] by implementing a series of
experiments, which fused the decisions of the aerial and ground robots. Notably, the decision here refers
to the tuple [Pstraight, Ple f t, Pright], which was predicted by the SOFTMAX layer of the aerial/ground
classifier. The difference between the three-dimensional decision and the 4096-dimensional feature
was that the feature contained more information than the decision, but needed more time to transmit.

As shown in Table 3, the accuracy of the aerial classifier (78.4%) was a little better than that of the
ground classifier (77.5%), which can be attributed to the broader view (a clear view of the extension
direction) of the aerial robot. For the feature fusion algorithms, the four-layer DNNs method achieved
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the highest accuracy of 95.2%, which validates the superiority of the integrated representation learned
by the fusion layer. Additionally, the SVM and SOFTMAX feature fusion algorithms also obtained
satisfying accuracies, of 89.5% and 88.7%, respectively. For the decision fusion methods, the SVM
method achieved the best performance of 92.6%, which was 2.2% better than the accuracy of the
four-layer DNNs. Therefore, we conclude that the four-layer DNNs method is more suitable for feature
fusion, and the SVM method is more suitable for decision fusion. The reason is that the four-layer
DNNs model needs higher dimensional features to extract valuable information, while the SVM
classifier may be capable of generating an accurate hyper-plane for classifying the low-dimensional
features (six-dimensional fused decision). Besides, we can see that all the feature fusion algorithms
outperformed the single-robot system (the ground robot only and the aerial robot only), which indicates
that the feature fusion modules managed to extract valuable information and make the integrated
representation more discriminative.

Furthermore, we link back to Theorem 1 to show how the theorem is with respect to the
experimentally-obtained results. For Theorem 1, experiments have shown that the accuracy of the
ground classifier G was 0.775, and the accuracy of the feature fusion module F was 0.952 (when the
threshold was set to one). Therefore, Theorem 1 can be transformed as: H ≥ G if and only if p ≤ 0.852.
This means that in order to make SF-Cooper outperform the ground classifier, the false positive rate
of the measurement mechanism on feature fusion time only needs to be less than 0.852, which is
an extremely elementary standard to satisfy and indicates the effectiveness of SF-Cooper.

Table 3. The results on the “basic” testing set averaged over 5 runs (%).

Fusion Method Ground Aerial SVM SOFTMAX 4-Layer DNNs

decision 77.5± 0.93 78.4± 1.46 92.6± 0.48 91.2± 0.73 90.4± 1.33
feature – – 89.5± 0.67 88.7± 0.98 95.2± 1.05

Considering the problem of the “limited view”, we used the “limited view” testing set and
added the corresponding samples from 15 untrained locations to the “basic” testing set gradually.
The threshold here was set to one, and Figure 5 illustrates the performance comparison between
the decision fusion methods. As shown in Figure 5, as more samples from the locations of limited
view were added, the performance of the aerial classifier was relatively more stable than the ground
classifier, which can be attributed to the broader view. The accuracy of the ground classifier declined
drastically (from 79.2% without limited view locations to 65.3% with 15 locations). The performance
of SF-Cooper using the “SVM” method did the best job. It was considerably more stable (accuracy is
92.6% without limited view locations and 92.8% with 15 locations tested). Therefore, compared with
the ground robot system, we gain an accuracy promotion of 27.5% at a maximum, and this accuracy
promotion is expected to become larger when more limited view samples are added into the system.
The performance of the “SOFTMAX” method was also optimistic, just a little lower than that of “SVM”.
The outperforming of the “SVM” method over the “SOFTMAX” method can be explained due to the
fact that the SVM classifier can extract more valuable information from the integrated features. It is
interesting to find that the feature fusion modules can even recognize and rectify the situations where
both the aerial and ground classifiers predict wrong decisions. This will help to explain why the feature
fusion algorithms show a more stable performance than the aerial classifier. Therefore, the features
extracted by the ground and aerial classifiers maintain their diversities and can be supplemented with
each other.

We further implemented the comparison experiments by exploring the feature fusion methods
of SVM/SOFTMAX/four-layer DNNs. As shown in Figure 6, the four-layer DNNs method with
feature fusion did not have a stable performance, and declined from 95.2% without limited view
locations to 90.7% with 15 locations. The reason for the instability may because the low-altitude
features contained much useless information and misled the final decision of the feature fusion module.
Instead, the SVM method with decision fusion successfully balanced the useless low-altitude decision
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and the valuable high-altitude decision and showed a more stable performance. Tables 4 and 5 record
the confusion matrix of the SVM method with the decision fusion on the “basic” set and “limited view”
set. Tables 6 and 7 record the confusion matrix of the four-layer DNNs method with feature fusion on
the “basic” set and “limited view” set. We can see that the accuracy of the feature fusion method on
the “basic” test set was higher than that of the decision fusion method. However, on the “limited view”
set, the feature fusion method did not perform better than the decision fusion method. Therefore,
we conclude that the feature fusion method is more suitable for the “basic” set and that the decision
fusion method is more suitable for the “limited view” problem.

Table 4. Confusion matrix of SVM on the “basic” set using the decision fusion method averaged over
5 runs.

Label ML MR GS Total

ML 1114 21 63 1198
MR 10 1086 92 1188
GS 45 38 1139 1222

Total 1169 1145 1294 3608

Table 5. Confusion matrix of SVM on the “limited view” set using the decision fusion method averaged
over 5 runs.

Label ML MR GS Total

ML 555 37 8 600
MR 20 569 11 600
GS – – – –

Total 575 606 19 1200

Table 6. Confusion matrix of 4-layer DNNs on the “basic” set using the feature fusion method averaged
over 5 runs.

Label ML MR GS Total

ML 1179 13 6 1198
MR 22 1113 53 1188
GS 43 36 1143 1222

Total 1244 1162 1202 3608

Table 7. Confusion matrix of 4-layer DNNs on the “limited view” set using the feature fusion method
averaged over 5 runs.

Label ML MR GS Total

ML 457 58 85 600
MR 78 471 51 600
GS – – – –

Total 605 569 26 1200

Considering the effect of the measurement mechanism on feature fusion time, we also
implemented a series of experiments using the SVM method with decision fusion whose independent
variables are related to SF-Cooper: the number of limited view locations in the testing set and the
threshold. Figure 7 presents the recognition accuracy with different combinations of the two variables.
Regardless of the number of limited view locations, the increase in accuracy was minimal as the
threshold increased from 0.70–0.85, but the accuracy increased sharply when the threshold changed
from 0.85–0.90. Therefore, we can conclude that the maximum probability among the decisions of the
ground classifier was always larger than 0.85 when it gave a wrongly-classified result. More limited
view locations correspond to higher accuracy promotion when the threshold was changed from
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0.90–1 because the accuracy declined at a lower speed. Therefore, the inter-regional [0.90, 1] was
approximate for the value of threshold, which can be further dealt with based on the requirement of
the realistic system.

Figure 5. The performance of decision fusion methods with the “limited view” samples introduced to
the system.

Figure 6. The comparison between the feature fusion methods and the decision fusion methods with
the “limited view” samples introduced to the system.

Figure 7. Results of SVM classifier with different combinations of variables.
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We further report the cases in which the ground robot and the aerial robot have disagreements on
the decision. Figure 8 illustrates three “limited view” samples, which were finally correctly recognized
by the feature fusion modules. We observe that the instances were caused by an inappropriate
facing direction of the ground robot. After the ground robot takes the correct command predicted
by SF-Cooper, the ground robot will see the trail again and continue to perform the task. Figure 9
illustrates the samples, in which the aerial robot predicted the wrong decision, but which was finally
rectified by SF-Cooper. We observe that the aerial robot was often misled by the extension direction
of the trail, i.e., in Figure 9b,e, the trail extended to the right part of the image, but from the current
view, the robot needed to go straight to remain on the trail. Figure 10 shows the samples, in which the
ground robot predicted the wrong decision, but finally rectified by SF-Cooper. We observe that the
ground robot easily made mistakes when there were some confusing surroundings like shadows and
slight slopes. For example, in Figure 10c,f, the ground robot was confused by the shadow of the trees
and predicted a decision of “go straight”; however, there was a corner in front, and the robot needed
to “move right” to get out of the dilemma.

Figure 8. Three “limited view" samples of the ground robot facing an inappropriate direction.
The final decisions were successfully recognized by the feature fusion modules with the help of
the high-altitude features: (a) the high-altitude “Move Left” labeled sample; (b) the high-altitude
“Move Right” labeled sample; (c) the high-altitude “Move Right” labeled sample; (d) the low-altitude
“limited view” sample corresponding to (a); (e) the low-altitude “limited view” sample corresponding
to (b); (f) the low-altitude “limited view” sample corresponding to (c).
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Figure 9. The samples for which the aerial robot predicted the wrong decision, but which was finally
rectified by SF-Cooper: (a) the high-altitude “Move Right” labeled sample; (b) the high-altitude
“Go Straight” labeled sample; (c) the high-altitude “Move Right” labeled sample; (d) the low-altitude
“Move Right” labeled sample corresponding to (a); (e) the low-altitude “Go Straight” labeled sample
corresponding to (b); (f) the low-altitude “Move Right” labeled sample corresponding to (c).

Figure 10. The samples for which the ground robot predicted the wrong decision, but was finally
rectified by SF-Cooper: (a) the high-altitude “Go Straight” labeled sample; (b) the high-altitude
“Go Straight” labeled sample; (c) the high-altitude “Move Right” labeled sample; (d) the low-altitude
“Go Straight” labeled sample corresponding to (a); (e) the low-altitude “Go Straight” labeled sample
corresponding to (b); (f) the low-altitude “Move Right” labeled sample corresponding to (c).
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5.3.2. Implementation on a Real Platform

We implemented the whole architecture on a real platform using the classifiers that were trained
by the low-altitude and the high-altitude datasets. Inexpensive components were chosen by us with
the aim of ensuring a robust and flexible platform for forest flight experiments. The quadcopter we
chose is the Parrot Bebop Drone, which contains an ultrasound sensor for measuring ground altitude,
an onboard computer, and a single forward-facing camera. For each Bebop, commands and images are
exchanged via a WiFi connection between the corresponding host machine. The WiFi connection covers
a signal range of 250 m. The image captured by each Bebop was 1920× 1080 pixels. Each classifier was
run on the corresponding host machine 2015 Alienware 15 (NVIDIA GeForce GTX 970M, Intel Core i5,
16 GB memory, (DELL, Kunshan, China)), running Ubuntu 16.04.

The testing scenario was the same as that where we collected the dataset. The only difference
was that the two parrot bebop drones were not controlled by humans, but directly connected to
a DELL R430 server via WiFi. We implemented a simple reactive controller, which translated the
output of SF-Cooper (using the SOFTMAX method) to control signals as follows. Yaw (i.e., steering) is
proportional to P(MR)− P(ML); a positive value steers the robot to the right, and a negative value
steers the robot to the left. Speed is proportional to P(GS). The two drones take the control signals
from the corresponding output.

We tested SF-Cooper by autonomously navigating in several different environments, including
a 300-m zigzag forest trail with four turns, a 100-m straight trail, and a 500-m zigzag trail over
hilly terrain. The trail over hilly terrain was extremely difficult to detect due to the difficulty of
defining features contrasted with the surrounding grass. The two drones were able to follow the
trails successfully in the above environments. Some scenes in our experiments are illustrated
in Figure 11. In order to show our optimization of the time delay compared with the method
without the measurement mechanism on feature fusion time, we repeated the experiments with
the threshold of one and recorded the recognition latency among the four methods: feature fusion
without threshold, decision fusion without threshold, feature fusion with threshold, decision fusion
with threshold. The variable here is meters, and one meter means one decision-making process.
From Figure 12, we can see that the feature fusion methods required longer latency than the decision
fusion methods. Additionally, the response time of the methods without the “threshold” mechanism
maintained a satisfying QoS, which will guarantee that the two drones can deal with the emergencies
without colliding with obstacles and successfully follow the trails for a few hundred meters. Besides,
we found that the latency of the ground classifier lg was about 0.18 and that the latency of the

feature fusion module was about 1.92. Therefore, for Theorem 2, lg
l f

was frequently below 0.1, and the

probability to implement the feature fusion process µ was certainly less than 1− lg
l f

(a value near one).
This further demonstrates that the latency of SF-Cooper was definitely less than the method without
the measurement mechanism on feature fusion time.

Figure 11. Four scenes in our real-world experiments: (a) experiments in scenario 1; (b) experiments in
scenario 2; (c) experiments in scenario 3; (d) experiments in scenario 4.
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Meters (m)

Figure 12. Recognition latency comparison between the decision/feature fusion methods with and
without the “threshold” mechanism.

6. Materials and Methods

This can refer to the data set in Data 1 (Supplementary Material).

7. Conclusions

This paper presented an approach that applied feature fusion technologies to the multi-robot
system with the aim of realizing autonomous trail following. The proposed architecture SF-Cooper
provided a convenient way to transfer and update in the future. By fusing the visual features of the
ground robot and the aerial robot, the trail-following task was accomplished effectively. The test results
in the real-world environment showed that our method could achieve great accuracy improvement
with a satisfying latency and had successfully dealt with the “limited view” problem produced by the
single-robot system. Concretely, the SVM classifier with the decision fusion module was more suitable
for the “limited view” situations. The four-layer DNNs classifier with the feature fusion module could
better solve the “basic” situations.

However, several accessible aspects should be considered in the future to improve it. More robots
should be introduced into our system in order to realize the accuracy optimization from multiple
altitude views. The whole framework could be implemented to train end-to-end, which means that
there should be no separated classifiers. Furthermore, we will extend the target space from discrete
space to continuous space.

Supplementary Materials: Data 1 is available online at https://pan.baidu.com/s/1o-bkke3XVIpyrR9yYgUXaA.
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