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Abstract: Clustering analysis of massive data in wireless multimedia sensor networks (WMSN) has
become a hot topic. However, most data clustering algorithms have difficulty in obtaining latent
nonlinear correlations of data features, resulting in a low clustering accuracy. In addition, it is
difficult to extract features from missing or corrupted data, so incomplete data are widely used in
practical work. In this paper, the optimally designed variational autoencoder networks is proposed
for extracting features of incomplete data and using high-order fuzzy c-means algorithm (HOFCM)
to improve cluster performance of incomplete data. Specifically, the feature extraction model is
improved by using variational autoencoder to learn the feature of incomplete data. To capture
nonlinear correlations in different heterogeneous data patterns, tensor based fuzzy c-means algorithm
is used to cluster low-dimensional features. The tensor distance is used as the distance measure
to capture the unknown correlations of data as much as possible. Finally, in the case that the
clustering results are obtained, the missing data can be restored by using the low-dimensional
features. Experiments on real datasets show that the proposed algorithm not only can improve the
clustering performance of incomplete data effectively, but also can fill in missing features and get
better data reconstruction results.

Keywords: feature learning; incomplete multimedia data; fuzzy c-means; variational autoencoder

1. Introduction

The rapid development of communication technologies and sensor networks leads to the increase
of heterogeneous data. The proliferation of these technologies in communication networks also
has facilitated the development of the wireless multimedia sensor network (WMSN) [1]. Currently,
multimedia data on WMSNs are successfully used in many applications, such as industrial control [2],
target recognition [3] and intelligent traffic monitoring [4].

Nowadays, multimedia sensors produce a great deal of heterogeneous data, which require
new models and technologies to process, particularly neural computing [5], to further promote the
design and application of WMSNs [6,7]. However, heterogeneous networks and data are often very
complex [8,9], which consist of structured data and unstructured data such as picture, voice, text,
and video. Because heterogeneous data come from many input channels in the real world, these data
are typical multimodal data, and there is a nonlinear relationship between them [10]. Different modes
usually convey different information [11]. For example, images have many details, such as shadows,
rich colors and complex scenes, and use titles to display invisible things like the names of objects in the
image [12]. Moreover, different forms have complex relationships. In the real world, most multimedia
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data suffer from a lot of missing values due to sensor failures, measurement inaccuracy and network
data transmission problems [13,14]. These features, especially incompleteness, lead to the widespread
use of incomplete data in practical applications [15,16]. Lack of data values will affect the decision
process of the application servers for specific tasks [17]. The resulting errors can be important for
subsequent steps in data processing. Therefore, the recovery of data missing values is essential for
processing big data in WMSNs.

As a fundamental technology of big data analysis, clustering divides objects into different clusters
based on different similarity measures, making objects in the same cluster more similar to other objects
in different groups [18,19]. They are commonly used to organize, analyze, communicate, and retrieve
tasks [20]. Traditional data clustering algorithms focus on complete data processing, such as image
clustering [21], audio clustering [22] and text clustering [23]. Recently, heterogeneous data clustering
methods have been widely concerned by researchers [24–26]. In addition, many algorithms have been
proposed—for example, Meng et al. optimized the unified objective function by an iterative process,
and a spectral clustering algorithm is developed for clustering heterogeneous data based on graph
theory [27]. Li et al. [28] proposed a high-order fuzzy c-means algorithm to extend the conventional
fuzzy c-means algorithm from vector space to tensor space. A high-order possibilistic c-means
algorithm based on tensor decompositions was proposed for data clustering in Internet of Things (IoT)
systems [29]. These algorithms are effective to improve clustering performance for heterogeneous
data. However, they can only obtain clustering results and lack further analysis of incomplete data
low-dimensional features. Therefore, their performance is limited with the heterogeneous data in the
WMSNs’ big data environment. More importantly, other existing feature clustering algorithms do not
consider data reconstruction and missing data. WMSN systems require different modern data analysis
methods, and deep learning (DL) has been actively applied in many applications due to its strong
data feature extraction ability [30]. Deep embedded clustering (DEC) learns to map from data space to
low-dimensional feature space, where it optimizes the clustering objectives [31]. Ref. [32] shows the
feature representation ability of variational autoencoder (VAE). VAE learns the multi-faceted structure
of data and achieves high clustering performance [33]. In addition, VAE has a strong ability in feature
extraction and reconstruction, and it can be a good tool for handling incomplete data.

Aiming at this research object, the variational autoencoder based high-order fuzzy c-means
(VAE-HOFCM) algorithm is presented to cluster and reconstruction incomplete data in WMSNs in this
paper. It can effectively cluster complete data and incomplete data and get better reconstruction results.
VAE-HOFCM is mainly composed of three steps: feature learning and extraction, high-order clustering,
and data reconstruction. First, the feature learning network is improved by using a variational
autoencoder to learn the feature of incomplete data. To capture nonlinear correlations of different
heterogeneous data, tensors are applied to form a feature representation of heterogeneous data. Then,
the tensor distance is used as the distance measure to capture the unknown distribution of data as
much as possible in the clustering process. The results of feature clustering and VAE output both affect
the final clustering results. Finally, in the case of clustering results, the missing data can be restored by
the low-dimensional features.

The rest of the paper is organized as follows: Section 2 presents related work to this paper.
The proposed algorithm is illustrated in Section 3, and experimental results and analysis are described
in Section 4. Finally, the whole paper is concluded in the last section.

2. Preliminaries

This section describes the variational autoencoder (VAE) and the fuzzy c-means (FCM), which will
be useful in the sequel.

2.1. Variational Autoencoder

The variational autoencoder, which is a new method for nonlinear dimensionality reduction,
is a great case of combining probability plots with deep learning [34,35]. Consider a dataset
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X = {x1, x2, ..., xN}which consists of N independent and identically distributed samples of continuous
or discrete variables x. To generate target data x from hidden variable z, two blocks are used: encoder
block and decoder block. Suppose that z is generated by some prior normal distribution pθ = N

(
µ, σ2).

The true posterior density pθ (z |x ) is intractable. Approximate recognition model qφ (z |x ) as
a probabilistic encoder. Similarly, refer to pθ (x |z ) as a probability decoder because, given the code
z, it produces a distribution over the possible corresponding value x. The parameters θ and φ are
used to represent the structure and weight of the neural network used. These parameters are adjusted
as part of the VAE training process and are considered constant later. Minimize the true posterior
approximation of the KL divergence (Kullback–Leibler Divergence). When the divergence of KL is
zero, pθ (z |x ) = qφ (z |x ). Then, the true posterior distribution can be obtained. The KL divergence of
approximation from the true posterior DKL

(
qφ (z |x ) ‖pθ (z |x )

)
can be formulated as:

(
qφ (z |x ) ‖pθ (z |x )

)
=
∫ ∞
−∞ qφ (z |x ) log qφ(z|x )

pθ(z|x )
dz

= log pθ (x) + DKL
(
qφ (z |x ) ‖pθ (z)

)
− Eqφ(z|x ) [log pθ (x |z )]

≥ 0,

(1)

which can also be written as:

log pθ (x) ≥ −DKL
(
qφ (z |x ) ‖pθ (z)

)
+ Eqφ(z|x ) [log pθ (x |z )] . (2)

The right half of the inequality is called the variational lower bound on the marginal likelihood of
data x, and can be written as:

L (θ, φ; x) ≥ −DKL
(
qφ (z |x ) ‖pθ (z)

)
+ Eqφ(z|x ) [log pθ (x |z )] . (3)

The second term Eqφ(z|x ) [log pθ (x |z )] requires estimation by sampling. A differentiable
transformation gφ (x, ε) of an auxiliary noise variable ε is used to reparameterize the approximation
qφ (z |x ). Then, form a Monte Carlo estimates of Eqφ(z|x ) [log pθ (x |z )]:

Eqφ(z|x ) [log pθ (x |z )] = 1
M

M

∑
m=1

log pθ (x |zm ) , (4)

where zm = gφ (x, εm) = µ + εm � σ, εm ∼ N (0, I) and m denotes the number of samples.

2.2. Fuzzy C-Means Algorithm (FCM)

The fuzzy c-means algorithm (FCM) is a typical soft clustering technique [36,37]. Given a
dataset X = {x1, x2, ..., xN} with N objects and m observations, fuzzy partition of set X into
predefined cluster number c and the number of clustering centers denoted by V = {v1, v2, ..., vc}.
Their membership functions are defined as uik = uvi (xk), in which uik denotes the membership of
xk towards the i th clustering center and c denotes. FCM is defined by a c×m membership matrix
U = {uik |1 ≤ i ≤ c; 1 ≤ k ≤ m}. FCM minimizes the following objective function [38,39] to calculate
the membership matrix U and the clustering centers V:

Jm (U, V) =
n

∑
k=1

c

∑
i=1

(uik)d2 (xk, vi) , (5)

where every uik belongs to the interval (0,1), the summary of all the uik belonging to the same point is
one (∑c

i=1 uik = 1). In addition, none of the fuzzy clusters is empty, neither do any contain all the data
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0 < ∑m
k=1 uik < m, 1 ≤ i ≤ c. Update the membership matrix and clustering centers by minimizing

Equation (5) via the Lagrange multipliers method:

uik =
1

c
∑

j=1

(
dik/djk

)1/(m−1)
, (6)

vi =
∑n

k=1 um
ik xk

∑n
k=1 um

ik
. (7)

In the traditional FCM algorithm, dik denotes the Euclidean distance between xi and vk, and djk
denotes the Euclidean distance between xj and vk.

3. Problem Formulation and Proposed Method

Consider a dataset X = {x1, x2, . . . xN} with N objects. Each object is represented by m
observations, in the form of Y = {y1, y2, . . . , ym}. The purpose of data clustering is to divide datasets
into several similar classes based on similarity measure, so that objects in the same cluster have
great similarity and are easy to be analyzed. Multimedia data cluster tasks bring many problems
and challenges, especially for missing or damaged data. Key challenges are discussed in three areas
as below.

1. Learning the features of incomplete data: feature extraction and analysis are the basic steps of
clustering. In general, many feature extraction methods, such as machine learning and deep
learning, have been successfully applied to image, text, and audio feature learning. However,
the current algorithm focuses on feature learning and extraction of high quality data. In other
words, they can not effectively extract the features of lossy data. Therefore, feature learning of
incomplete data is the primary problem of heterogeneous data clustering.

2. Clustering in feature space: an important feature of large-scale multimedia data is its diversity,
which means that large-scale data sources are diverse, including structured, unstructured data
and semi-structured data from a large number of sources. In particular, a large number of objects
in large data sets are multi-model. For example, web pages usually contain both images and text.
Each mode of multimodal object has its own characteristics, which leads to the complexity of data.
Therefore, the feature representation of multimedia data is significant in cluster tasks.

3. Filling missing values to reconstruct data: in wireless multimedia sensor networks, reliable
data transmission is critical to provide the ideal quality of network-based services. However,
multimedia data transmission may not be successful due to different reasons such as sensory
errors, connection errors, or external attacks. These problems can result in incomplete data and
degrade the performance of WMSNS applications. After feature extraction and cluster analysis,
it is very important to recover missing data from the sensor network.

3.1. Description of the Proposed Method

The variational autoencoder based high-order fuzzy c-means (VAE-HOFCM) algorithm is divided
into three stages: unsupervised feature learning, high-order feature clustering, and data reconstruction.
Architecture of the proposed method is shown in Figure 1.

To learn the features of incomplete multimedia data, the original data set is divided into two
different subsets Xc and Xinc. Samples in subset Xc have no missing values while each sample contains
some missing values in subset Xinc.
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Figure 1. Architecture of the proposed method.

3.2. Feature Learning Network Architecture

For trained variational autoencoder, qφ (z |x ) will be very close to pθ (z |x ), so the encode
network can reduce the dimensionality of the real dataset X = {x1, x2, ..., xN} and obtain
low-dimensional distribution. In this case, the potential variables may get better results than
the traditional dimensionality reduction methods. When the improved VAE model is obtained,
the encode network is used to learn the potential feature vectors of missing value sample
z = Encoder (x) ∼ qφ (z |x ). The decode network is then used to decode the vector z to generate
the original sample x̄ = Decoder (z) ∼ pθ (x |z ).

According to the original VAE and to build a better generation model, convolution kernels are
added to the encoder. There is a variational constraint on the latent variable z, that is, z obeys the
Gauss distribution. Here, each xi (1 ≤ i ≤ N) is fitted with an exclusive normal distribution. Sample z
is then extracted from the exclusive distribution, since zi is sampled from the exclusive xi distribution,
the original sample xi can be generated through a decoder network. The improved VAE model is
shown in Figure 2.
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Figure 2. The improved VAE model.



Sensors 2019, 19, 809 6 of 15

In general, assume that qφ (z) is the standard normal distribution, qφ (z |x ), pθ (x |z ) are the
conditional normal distribution, and then plug in the calculation to get the normal loss of VAE, where z
is a continuous variable representing the coding vector, and y is a discrete variable that represents a
category. If z is directly replaced in the formula with (z, y), the loss of the clustered VAE is obtained:

DKL
(
qφ (z, y |x ) ‖pθ (z, y |x )

)
=
∫ ∞

−∞
qφ (z, y |x ) log

qφ (z, y |x )
pθ (z, y |x )dz. (8)

Set the scheme as: qφ (z, y |x ) = qφ (y |z ) qφ (z |x ), pθ (x |z, y ) = pθ (x |z ), pθ (z, y) = pθ (z |y ) pθ (y).
Substituting them into Equation (8) and it can be simplified as follows:

Eqφ(x)

[
− log pθ (x |z ) + ∑

y
qφ (y |z )DKL

(
qφ (z |x ) ‖pθ (z |y )

)
+ DKL

(
qφ (y |z ) ‖pθ (y)

)]
, (9)

where the first term − log pθ (x |z ) wants the reconstruction error to be as small as possible, that is,
z keeps as much information as possible. ∑

y
qφ (y |z )DKL

(
qφ (z |x ) ‖pθ (z |y )

)
plays the role of

clustering. In addition, DKL
(
qφ (y |z ) ‖pθ (y)

)
makes the distribution of each class as balanced as

possible; there will not be two nearly overlapping situations. The above equation describes the coding
and generation process:

• Sampling to x from the original data, coding feature z can then be obtained by qφ (z |x ). Then,
the coding feature is classified by classifier qφ (y |z ) to obtain the classification.

• Select a category y from distribution pθ (y), select a random hidden variable z from distribution
pθ (z |y ), and then decode the original sample through generator pθ (x |z ).

The VAE is outlined in Algorithm 1.

Algorithm 1 Variational Autoencoder Optimization.

Input: Training set X = {xt}N
t=1, corresponding labels Y = {yt}N

t=1, loss weight λ1, λ2, λ3.

Output: VAE parameters θ,φ.

1: Initialization: random initialized θ0, φ0.

2: Repeat: Sample xt in the minibatch.

3: µzt = Encoder (xt) ∼ qφ (z |x )

4: Sample: zt ← µzt + ε� σz, ε ∼ N (0, I)

5: µxt = Decoder (zt) ∼ pθ (x |z )

6: Compute reconstruction loss: Lrec = − log pθ (xt |zt ).

7: Compute regularization loss: Lreg = DKL
(
qφ (yt |zt ) ‖pθ (yt)

)
.

8: Compute clustering loss: Lcls = ∑
y

qφ (yt |zt )DKL
(
qφ (zt |xt ) ‖pθ (zt |yt )

)
.

9: Fuse the three loss: L (θ, φ) = λ1Lrec (θ, φ) + λ2Lreg (θ, φ) + λ3Lcls (θ, φ).

10: Back-propagate the gradients.

11: Until maximum iteration reached.
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3.3. Variational Autoencoder Based High-Order Fuzzy C-Means Algorithm

Variational autoencoder gets the low-dimensional features and initial clustering results of data
by feature learning. Then, the final clustering results will be optimized by the FCM algorithm
clustering results. Traditional FCM work in vector space. It is better to use higher-order tensor to
represent the feature of data because the tensor distance can capture the correlation in the high-order
tensor space and measures the similarity between two higher-order complex data samples. Given an
N-order tensor X ∈ RI1×I2×...×IN , x is denoted as the vector form representation of X, and the element
Xi1i2...iN(1≤ij≤Ij ,1≤j≤N) in X is corresponding to xl . That is, the N element in X is l = i1 + ∑N

j=2 ∏
j−1
t=1 It.

Then, the tensor distance between two N-order tensors is defined as:

dtd =

√√√√I1×I2×...×IN

∑
l,m=1

glm (xl − yl) (xm − ym) =

√
(x− y)TG (x− y), (10)

where glm is the metric coefficient and used to capture the correlations between different coordinates
in the tensor space, which can be calculated by:

glm =
1

2πδ2 exp

{
−‖pl − pm‖2

2
2δ2

}
, (11)

where ‖pl − pm‖2 is defined as:

‖pl − pm‖2 =

√(
i1 − i1′

)2
+ · · ·+

(
iN − iN

′)2. (12)

Minimizing the objective function of high-order fuzzy c-means algorithm:

Jm (U, V) =
n

∑
k=1

c

∑
i=1

(uik)d2
td. (13)

To update the membership value uik, we differentiate with respect to uik, as follows:

∂Jm(U,V)
∂uij

=
∂((uik)

md2
td(xk ,vi))

∂uij

= m ·
(
uij
)m−1d2

td
(

xj, vi
)

.
(14)

Setting Equation (14) to 0, uik is calculated:

uik =
1

c
∑

j=1

( d(td)ik
d(td)jk

)1/(m−1)
. (15)

Then, the equation for updating vi is obtained:

vi =
∑n

j=1 um
ij xj

∑n
j=1 um

ij
. (16)

For each iteration, this operation requires O (c× n), so the total computational complexity of k
iterations is O (kc× n). From the above, the VAE-HOFCM algorithm can be described as Algorithm 2:
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Algorithm 2 The VAE-HOFCM algorithm.
Input: X = {x1, x2, ..., xn}

Output: U =
(
uij
)

and V = (vi).

1: Initialize X = {x1, x2, ..., xn} randomly.

2: Perform Algorithm 1 to calculate low dimensional representation of dataset X: x = Encoder (xn)

3: for iteration = 1, 2, . . . , max iter

4: for: i = 1, 2, . . . , c

5: vi =
∑n

j=1 um
ij xj

∑n
j=1 um

ij

6: for: i = 1, 2, . . . , c

7: for: j = 1, 2, . . . , c

8: uij =
1

c
∑

j=1

(
d(td)ik
d(td)jk

)1/(m−1)

9: (x, y) = Decoder (zt).

10: Obtain the modified clustering results using the uij.

By comparing the steps of the HOFCM algorithm, VAE-HOFCM can restore incomplete data
simultaneously in the clustering process. Equally, the VAE-HOFCM algorithm has a total time
complexity of O (kc× n). However, before that, it needs to train the variational autoencoder network.

4. Experiments

This section evaluates the performance of the proposed VAE-HOFCM algorithm on three
representative datasets. To show the effectiveness of VAE-HOFCM, the unsupervised clustering
accuracy (ACC) and adjusted rand index (ARI) for verification are adopted. ACC is calculated by:

ACC = max
m

∑n
i=1 1 {li = m (ci)}

n
, (17)

where li and ci indicate the ground-truth label and the cluster assignment produced by the algorithm,
respectively. m ranges overall possible one-to-one mappings between clusters and labels. ARI is used
to measure the agreement between two possibilistic partitions of a set of objects, where U denotes
the true labels of the objects in datasets, and U′ denotes a cluster generated by a specific algorithm.
A higher value of ARI (U, U′) represents that the algorithm has more accurate clustering results.

To study the performance and generality of different algorithms, experiments are performed on
three datasets:

• MNIST: The MNIST dataset consists of 70,000 hand-written digits of 28-by-28 pixel size. The digits
are centered and and the size is standardized.

• STL-10: A dataset consists of 96-by-96 color images. It contains 13,000 labeled images and 100,000
unlabeled images.

• NUS-WIDE: The NUS-WIDE dataset consists of 269,648 images and can be downloaded from
Flickr.com, a famous photo-sharing website.

Flickr.com
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4.1. Experimental Results on Complete Datasets

This section evaluates the performance of variational autoencoder based high-order fuzzy c-means
algorithm (VAE-HOFCM) in clustering compared to other algorithms. The input dimensions of these
three datasets are 784, 3072 and 500, respectively. The dimension of VAE hidden layer is set as 25,
and the number of training iterations of the training set as 50. After obtaining the low-dimensional
features, start clustering, and the membership factor is set as 2.5. Then, the required clustering center
is calculated and the final normalized membership matrix U is returned to obtain the clustering result.

The clustering results are shown in Tables 1 and 2. Table 1 displays the optimal performance of
unsupervised clustering accuracy of each algorithm. For MNIST data clustering class, the proposed
VAE-HOFCM algorithm has achieved the highest accuracy of 85.54%. Compared with VAE clustering,
the VAE-HOFCM encoder training time and cluster running time sum is slightly more than the former,
but the clustering accuracy is improved. Then, the clustering performance and running time of
VAE-HOFCM algorithm are generally better than traditional clustering algorithms, such as k-means
and fuzzy c-means. Since the dimension of STL-10 dataset is higher and the information content is
larger, the operation time of extracting features and clustering is relatively long. However, the proposed
algorithm still gets the best running results. Visual features and text features are extracted from the
NUS-WIDE dataset, and then these features are connected to form feature vectors. Finally, the feature
vectors are clustered. The clustering results show the performance of the proposed algorithm.

Table 1. Clustering accuracy of ACC.

Algorithm/Dataset MNIST STL-10 NUS-WIDE

k-means 53.49% 28.40% 81.51%
HOPCM 80.34% 33.12% 92.75%

VAE 84.20% 35.48% 93.32%
DEC 84.31% 35.90% 93.75%

VAE-HOFCM 85.54% 36.44% 95.14%

Table 2 shows the clustering results in terms of ARI (U, U′), VAE-HOFCM produces high value
than other algorithms in most cases. K-means usually has the worst performance and the longest
running time, whereas VAE and DEC achieve the better result than HOPCM. ARI is not used as an
indicator in the STL-10 dataset because the value may be negative in the case of clustering accuracy.

Table 2. Clustering accuracy of ARI.

Algorithm/Dataset MNIST STL-10 NUS-WIDE

k-means 0.41 - 0.74
HOPCM 0.69 - 0.89

VAE 0.75 - 0.90
DEC 0.76 - 0.90

VAE-HOFCM 0.78 - 0.92

There are two reasons for the results of these results in terms of ACC and ARI. On the one hand,
HOFCM integrates the learning characteristics of different modes, uses the cross product to model
the nonlinear correlation under various modes, and uses the tensor distance as a measure to capture
the high-dimensional distribution of multimedia data. On the other hand, VAE successfully learns
low-dimensional features and achieves the best performance in feature dimension reduction and
clustering accuracy.

VAE has good data clustering and data generation performance. Feature extraction is carried
out by the VAE to reduce the dimension to two dimensions. These categories have clear boundaries
as shown in Figure 3, indicating that the VAE has effectively extracted low-dimensional features.
This proves that the VAE has strong data feature expression ability.
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Figure 3. Visual analysis of MNIST datasets.

To obtain better performance in the three constraints of data feature dimension, clustering
performance and reconstruction quality, the quality of data reconstruction in different dimensions is
compared. Figure 4 shows the reproduction performance of learning generation models for different
dimensions. When the latent space is set at 25, this method can obtain a good reconstruction quality.

(a) Input image. (b) 10-D latent space. (c) 25-D latent space.

Figure 4. Reconstruction quality for different dimensionalities.

Figure 5 shows the generated images of two clustering results categories 1 and 6 of MNIST.

Figure 5. Cluster category sampling.
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4.2. Experimental Results on Incomplete Data Sets

To estimate the robustness of the proposed algorithm, each dataset is divided into complete
datasets and incomplete datasets. Now, incomplete datasets are used for simulation analysis.
Since clustering performance depends on the number of missing values, six miss rates are set, which are
5%, 10%, 15%, 20%, 25% and 30%, respectively.

Figure 6 shows the clustering results accuracy of ACC with the increase of the missing ratio on the
MNIST dataset and NUS-WIDE dataset. Figure 7 shows the average values of ARI with the increase of
the missing ratio on the MNIST dataset and NUS-WIDE dataset. The results show that the increase of
missing rate will lead to the decrease of clustering accuracy. However, the proposed algorithm still has
a high accuracy because VAE successfully extracts incomplete data features and reduces the difference
with the incomplete data features.
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Figure 6. Clustering accuracy of ACC.
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(b) Clustering accuracy of ARI on the NUS-WIDE dataset.

Figure 7. Clustering accuracy of ARI.

According to Figures 6 and 7, with the increase of missing rate, the average value of ACC and
ARI would decrease, which indicates that the missing rate destroys the original data content, leading
to the decrease of clustering accuracy. The average ACC and ARI values based on the VAE-HOFCM
algorithm are significantly higher than those of the other three methods at the six missing rates.
Therefore, VAE-HOFCM clustering has the best performance, indicating that VAE-HOFCM is also
effective for clustering incomplete data.

Then, data with different missing rates are reconstructed, as shown in Figure 8. Inputs
are incomplete data with different missing rates, and the output are recovered data using VAE.
The reconstruction results show that the proposed algorithm not only improves the clustering accuracy,
but also ensures that the data can be reconstructed with high quality.
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(a) Input image of 5% missing ratio. (b) Input image of 10% missing ratio. (c) Input image of 15% missing ratio.

(d) Output image of 5% missing ratio. (e) Output image of 10% missing ratio. (f) Output image of 15% missing ratio.

(g) Input image of 20% missing ratio. (h) Input image of 25% missing ratio. (i) Input image of 30% missing ratio.

(j) Output image of 20% missing ratio. (k) Output image of 25% missing ratio. (l) Output image of 30% missing ratio.

Figure 8. Reconstruction quality for different dimensionalities.

The variational auto-coder also has the function of de-noising. As shown in Figure 9, noise is
added into the input data to enable VAE to effectively de-noise and restore the original input image.
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(a) Original input image. (b) Input image with noise. (c) Restored image via VAE.

Figure 9. Reconstruction quality for noise data.

5. Conclusions

In this paper, a VAE-HOFCM algorithm, which can improve the performance of multimedia
data clustering, has been proposed. Unlike many existing technologies, the VAE-HOFCM algorithm
learns the data features by designing an improved VAE network, and uses a tensor based FCM
algorithm to cluster the data features in the feature space. In addition, VAE-HOFCM captures as many
features of high quality multimedia data and incomplete multimedia data as possible. In experiments,
the performance of the proposed scheme has been evaluated on three heterogeneous datasets, MNIST,
STL-10 and NUS-WIDE. Compared with traditional clustering algorithms, the results show that
VAE can achieve a high compression rate of data samples, save memory space significantly without
reducing clustering accuracy, and enable low-end devices in wireless multimedia sensor networks to
achieve clustering of large data. In addition, VAE can effectively fill the missing data and generate
the specified data at the terminal, so that the incomplete data can be better utilized and analyzed.
Although VAE needs to be trained well, the sum time of training and clustering is still less than
most clustering algorithms. Therefore, when performing clustering tasks on low-end equipment with
limited computing power and memory space, trained VAE-HOFCM can be adopted.
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