
sensors

Article

An In-Networking Double-Layered Data Reduction
for Internet of Things (IoT)

Waleed M. Ismael 1, Mingsheng Gao 1,∗, Asma A. Al-Shargabi 2 and Ammar Zahary 3

1 College of Internet of Things (IoT) Engineering, Hohai University, Changzhou Campus, Changzhou 213022,
China; waleed.m@hhu.edu.cn

2 Faculty of Computer Science, University of Science and Technology, Sana’a 31220, Yemen;
a.alshargabi@gmail.com

3 Faculty of Computing and IT, Sana’a University, Sana’a 31220, Yemen; aalzahary@gmail.com
* Correspondence: gaoms@hhu.edu.cn

Received: 5 January 2019; Accepted: 11 February 2019; Published: 15 February 2019
����������
�������

Abstract: Due to the ever-increasing number and diversity of data sources, and the continuous flow
of data that are inevitably redundant and unused to the cloud, the Internet of Things (IoT) brings
several problems including network bandwidth, the consumption of network energy, cloud storage,
especially for paid volume, and I/O throughput as well as handling huge amount of stored data in
the cloud. These call for data pre-processing at the network edge before data transmission over the
network takes place. Data reduction is a method for mitigating such problems. Most state-of-the-art
data reduction approaches employ a single tier, such as gateways, or two tiers, such gateways and the
cloud data center or sensor nodes and base station. In this paper, an approach for IoT data reduction
is proposed using in-networking data filtering and fusion. The proposed approach consists of two
layers that can be adapted at either a single tier or two tiers. The first layer of the proposed approach
is the data filtering layer that is based on two techniques, namely data change detection and the
deviation of real observations from their estimated values. The second layer is the data fusion layer.
It is based on a minimum square error criterion and fuses the data of the same time domain for
specific sensors deployed in a specific area. The proposed approach was implemented using Python
and the evaluation of the approach was conducted based on a real-world dataset. The obtained
results demonstrate that the proposed approach is efficient in terms of data reduction in comparison
with Least Mean Squares filter and Papageorgiou’s (CLONE) method.

Keywords: data fusion; data filtering; Kalman filter; data reduction

1. Introduction

Over the last few decades, the world has witnessed a dramatic increase in the number of people
who utilize Internet services. Accordingly, many propositions are made to use the Internet to connect
the items of our daily life for communication purposes [1]. In conjunction with the remarkable
advances in wireless sensor technologies and the introduction of small, inexpensive sensors, the items
of our daily [2] life have become able to interconnect with each other for data exchange or connect
to the Internet to make data available for access. An ever-increasing number of Internet-enabled
devices form what is called the Internet of Things (IoT) [3]. These devices facilitate for applications the
processing of a massive volume of heterogeneous data, including scalar data (e.g., temperature) and
multi-media data (e.g., images), with high speed. This has given rise to many considerable network
and cloud challenges [4].

In fact, Internet-enabled devices send continuously flowing data through network-edge gateways
and routers that propagate the received data through networks to the backend systems such as cloud

Sensors 2019, 19, 795; doi:10.3390/s19040795 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19040795
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/19/4/795?type=check_update&version=2

Sensors 2019, 19, 795 2 of 19

databases [5]. However, the ever-growing number of devices produce and send many redundant [6,7]
and unused data. For instance, temperature degree does not change frequently [8]. Suppose that
temperature and relative humidity data are collected from four sensors deployed in an office and
each sensor generates 2 bytes every second. In 1 h, 28.125 Kb would be reported and, in one day,
675 Kb would be reported. This total would escalate exponentially as sensors increase in number and
type. Accordingly, the current network infrastructure might not be able to handle such overwhelming
data [9], which may result in a high burden on network bandwidth, and I/O throughput [5,10] as well
as the difficulty of handling a huge amount of data on the backend systems [7,11,12].

Moreover, network energy consumption gets highly stressed by the transmission of a huge
amount of redundant and unnecessary IoT data. This issue is aggravated as the number of IoT devices
is increased, especially if there are many network-edge devices dedicated to handling heavy traffic [5].
Cloud storage space is another issue for storing redundant and unnecessary data, especially for
pre-paid volume. Therefore, these problems have given rise to data reduction [13] and pre-processing
directly close to data sources. Network-edge-based data reduction not only leads to saving storage
space, but also reduces the burden on network energy consumption, network bandwidth and I/O
throughput, and makes the usage of available resources more efficient [4].

IoT data are typically time series data [14] that can lead to the problems mentioned above [5].
Many state-of-the-art network-edge-based data reduction approaches have been proposed to address
such problems, as described in the literature review below, but they are limited. Therefore, this
paper proposes a network-edge-based approach that is based on data filtering and fusion techniques
to relieve the aforementioned problems. The data filtering of the proposed approach is based on
data change detection for the avoidance of redundant data transmission and based on the deviation
(>emax) of real observations from their estimated values calculated by Kalman filter. Therefore, the
real observations that have small deviation (≤lemax) from their estimated ones can be recovered by
estimation. We also propose a data fusion method that is based on a minimum mean square error
criterion. It employs a simple strategy to fuse data of the same time domain for certain a area.

According to Anastasi et al. [15], data reduction techniques fall into three categories: data
compression, data forecasting and in-network processing. In data compression techniques, different
data encoding techniques are applied to reduce the size of data and then data are sent in reduced
form. In forecasting techniques, the method is maintained on two sides, such as sensor and sink nodes
or gateways and the cloud data center. The method forecasts the value and calculates the difference
from the actual value. If the difference is within the predetermined error range, there is no need for
sending the actual value to the other side. In network processing techniques, the data are processed
by an intermediate device, such as gateway/router, and then the intermediate device sends only the
processed data instead of raw data [16]. The last type of data reduction techniques is the concern of
this paper.

The rest of the paper is organized as follows. Firstly, we review some state-of-the-art data
reduction techniques. Then, we provide a background about Kalman filter and describe the architecture
of the proposed approach. Next, we present the evaluation of the proposed approach and discuss the
obtained results. Finally, we sum up with conclusion, along with future work.

2. Related Work

Ever-growing IoT devices that produce and send a massive volume of unnecessary and useless
data to the cloud lead to the problems of network bottleneck and to the difficulty of handling such
voluminous data at the cloud. Network-edge-based data reduction is an option to address such
problems. Many state-of-the-art methods employ network edge for reducing data before transmitting
it to the cloud to address such problems. In Reference [5], the authors proposed a real data reduction
approach to solve the problems of network bandwidth, I/O throughput, network energy consumption
and cloud storage. They proposed NECtar that is able to automatically switch between different data
reduction algorithms, including sampling, selective forwarding, piecewise approximation, perceptually

Sensors 2019, 19, 795 3 of 19

important points (PIP) algorithm and data change detection, based on the data type. In addition,
Feng et al. [4] proposed an approach to solve the energy consumption issues of IoT devices and the
depletion of cloud storage. Their approach is based on multi-tier data reduction mechanism that
functions on two tiers, gateway and network edge tier. Their approach applies the PIP algorithm
on time series data. Moreover, they integrated the PIP algorithm with several techniques, including
interval restriction, dynamic caching and weight sequence selection. At the second tier, they introduce
data fusion method based on optimal dataset selection to fuse the same-time domain data for a specific
location. Other authors introduced an approach that takes advantage of edge redundant hardware
to increase the performance of data reduction and to deal with failure of IoT gateways (e.g., see
Reference [9]). The authors employed PIP algorithm in their approach for increasing the performance
of data reduction and utilized primary and secondary IoT gateway without coordination between
them and without sending redundant data. The idea is that the dataset is split into odd and even
datasets and processed by primary and secondary IoT gateways, respectively. Although PIP algorithm
considers the necessary points for keeping the overall shape of data, it suffers from computational
complexity as it needs longer run time to identify the important points that contribute in the overall
shape of time series data in each iteration [17] and has a worst case complexity than the method in
Reference [18].

Other solutions employ dual filter to perform data reduction at network edge. In Reference [19],
the authors proposed an approach that exploits the fog computing for data reduction. The approach is
based on two phases. In the first phase, the data are modeled based on multivariate normal distribution.
In the second phase, a Kalman filter with the same parameters is deployed in both fog and cloud
platform. The estimated values of measured data by end devices are calculated on both sides, cloud
and fog platform, based on historical data and internal data correlation. If the predicted values exceed
the prediction range, the observations are forwarded to the cloud. In contrast, the authors of [20]
proposed adaptive approach for data reduction that is based on least mean square (LMS). Their
approach is based on dual LMS filter, one deployed at the source (sensor nodes) and another in the
sink node. The sources have to send their measured values that deviate (>user input value) from their
predicted values. Both approaches [19,20] rely on caching historical data, which causes computing
overhead. However, the proposed approach caches only one measured value for each data source
when a change in the data takes place. Our proposed approach employs Kalman filter for data filtering,
as described below.

2.1. Kalman Filter

Kalman filter is known as a recursive algorithm for optimal estimating future states of dynamic
systems [21]. It is commonly used as an estimation algorithm [22] and it is also known as an adaptive
filter [23] to combine previously estimated values with current measurements. One of its advantages
is its fast error convergence and better estimation through changing the measurement covariance by
controlling fundamental parameters [21]. Consider the sensor readings at time series:

zt = [zt,zt−1,...,zt−N−1]

that is composed from the previous reading from time, and forms the input measured data to the
Kalman Filter algorithm with measurement noise according to Equation (1) [20].

zt = Hxt + vt (1)

where H represents an identity matrix, vt is the uncertainty in the observation and zt represents
the observation vector at time t. Kalman filter is based on two phases: prediction and update.

Sensors 2019, 19, 795 4 of 19

In the prediction phase, the estimated value xt and covariance matrix P−t are estimated according to
Equations (2) and (3), respectively.

xt = Axt−1 + But−1+wt (2)

The corresponding covariance matrix is calculated as:

P−t = APt−1 At + Q (3)

where xt is the posteriori state, xt−1 is the a priori state, At is the state transition model matrix, B is
input control matrix, ut−1 is the control vector and Q is the white Gaussian noise covariance matrix [24].
In the update phase, Kalman Filter gain is calculated based on Equation (4), the estimated state xt is
updated according to Equation (5) and the observation noise covariance according to Equation (6)

Kt = P−t HT
(

HP−k HT + R
)−1

(4)

where R and HT are the covariance of observation noise and the observation model, respectively.
Accordingly, the estimated state x̂t and covariance matrix Pt are updated based on Kalman gain as:

x̂t = x̂t−1+Kt
(
zt−Hx̂t−1

)
(5)

Pt = (I − KtH) P− (6)

Altogether, both the observation covariance matrix Pt and estimation x̂t are predicted based on the
values of pervious time instance and updated after getting new measured data [21].

3. Proposed Approach

In this paper, an in-networking data filtering and fusion mechanism for reducing IoT sensor
data is proposed. Our approach employs a network edge for filtering and fusing data before data
transmission to the cloud occurs, as shown in Figure 1.

Consider N number of sensors deployed in a specific area to monitor their surroundings such as
monitoring the changes of temperature degree, humidity, wind speed, etc. At each time instance t > 0,
each sensor node Si (i = 1, 2, 3, ..., N) produces data streams z(t) about its surrounding and sends it to
an intermediate node such as a base station or router/gateway, to propagate such data to the cloud.
Data streams are a sequence of data packets in consecutive order [20].

In this paper, we are interested in reducing the amount of IoT data transmitted over the network
to mitigate the network bottleneck problems prior to data transmission. Firstly, the proposed approach
reduces the sensor reading through removing redundant data. When there is no change in sensor
readings detected, there is no need to send the sensor actual reading to the cloud. For instance,
in temperature monitoring application, temperature degree does not change frequently. The sensor
keeps producing temperature readings that are not changing over a short period of time. Even if
there is a change in sensor readings detected, not all data are important. Therefore, by calculating
the deviation between the actual reading and its estimated value calculated by Kalman filter, the
data are discard or forwarded to the data fusion layer. In other words, the actual sensor reading doe
not need to be forwarded to the data fusion layer unless the deviation between the sensor actual
reading and its estimated value (>predefined Maximum Absolute Error). According to Figure 1, each
sensor reading is passed through filtering component, which is responsible for checking for redundant
data and calculating the deviation of the actual sensor reading and its estimated value, and then
decides to either forward it to the data fusion layer or discard it. More details are explained in the
next sections. As IoT data are typically data series, the data filtering layer receives simultaneous
actual readings of sensors. Such data are filtered before passing them to the data fusion layer. In this

Sensors 2019, 19, 795 5 of 19

case, not all data received by the data filtering layer will be passed. Therefore, the data fusion layer
aggregates the received data from the data filtering layer to construct an accurate representation of the
phenomenon that is under observation. The output of the data fusion layer will be propagated to the
cloud. This proposed approach can be applied by both critical and not critical applications through
customizing the deviation value.

Figure 1 gives an illustrative representation of the proposed approach. There are three main layers:
the data source (a set of N sensor nodes), the data filtering layer dedicating a filtering component for
each sensor node and the data fusion layer. The two following sections provide the details of the data
filtering layer and the data fusion layer.

Sensor 1 Sensor 2 Sensor 3 Sensor n

Filtering

component

Filtering

component

Filtering

component

Filtering

component

D
a
ta

 F
il

te
ri

n
g
 L

a
y
er

U
n

fi
lt

er
ed

D
a
ta

Fusser

D
a
ta

 F
u

si
o
n

 L
a
y
er

Fused Data

Filtered Data Filtered Data Filtered Data Filtered Data

…

 …

 …

Figure 1. Architecture of the proposed approach.

3.1. Data Filtering Layer

The data filtering layer relies on two techniques. The first technique is called data change
detection. According to Coppin and Bauer [25], change detection is defined as “the process of
identifying differences in the state of an object or phenomenon by observing it in different times”.
In our case, change detection is the process of identifying the difference between the previous and
current observation. The second technique is the deviation of the real observations from their estimated
values by identifying the maximum absolute error. The idea behind these techniques is to check the
current observation z(t) at time t with its previously cached observation cached_z in order to detect a
data change. This layer receives the first observation z(t) at the first time. Then, it caches it for later
use. Afterwards, it compares the next received observation with the cashed value (cached_z). If there is
no data change detected, the data are discarded. However, if a data change is detected between the
cached value cached_z and z(t) at time t, the cached value is updated with current observation z(t)
and z(t) is passed through Kalman filter in order to find its estimate x(t). The observed value is passed
to the data fusion layer, if there is a significant deviation (e(t) > emax) from its obtained estimated
value x(t) at time t, where emax is the maximum absolute deviation from the real observation set up by
the user and e(t) is calculated according to Equation (7). The output of this layer is filtered data f d(i)
(i = 1, 2, 3, ..., N). The filtered data f d(i) are the input of the data fusion layer:

Sensors 2019, 19, 795 6 of 19

e(t) = |z(t)− x(t)| (7)

where zt is the current observed value and x(t) is its estimated value at time t.
Using maximum absolute deviation helps determine and then compare the real observation with

its estimated value to find whether the difference between them exceeds the emax and thus whether to
pass the reading to the next step for fusion.

The data filtering layer receives the actual readings of sensor nodes simultaneously at time
instance t and processes the actual readings of each sensor independently, as shown in Figure 1, through
applying the two techniques mentioned above. Some actual readings of sensor nodes received at time
instance t might be filtered out. Therefore, the data fusion layer is suggested to aggregate the readings
that are not filtered out to build an observation that represents the phenomenon under observation.

Another case taken into consideration is faulty sensor reading detection. The proposed approach
considers the correlation between sensor readings to find faulty sensor readings. The proposed
approach is designed for the purpose of data reduction of sensors deployed in a specific location for a
specific time domain. Therefore, if a faulty reading is detected, the faulty reading is replaced by its
estimated value calculated by Kalman filter.

The summary of the data filtering algorithm is shown in Algorithm 1, the parameters used are
shown in Table 1, and the data flow is represented in Figure 2.

Algorithm 1 Data filtering operation
INPUT: sensor reading z(t)

e_max = user input

while true do
if z(t) is the first reading then

cached_z(i)← zt(i)

Send z(t) to the fuser
else

if cashed_z(i) ! = z(t) then
cached_z(i)← z(t)

Call kalman filter to calculate estimated value

e(t)← z(t)− x(t)

if |e(t)| > emax then
f d(i)← z(t)

Send f d(i), R(i) and H(i) to the data fusion layer
else

Discard x(t) and z(t) values

end if
end if

end if
end while

Table 1. The summery of parameters of Algorithm 1.

Parameter Definition

cached_z cache for Sensor reading when data change detected
emax Maximum absolute deviation of observation from its estimated value
z(t) Data stream produced by a sensor at time
x(t) state value at time
e(t) error between the observation and the estimated value
f d(t) filtered data at time t
t Time index = 1,2,. . . ,t

Sensors 2019, 19, 795 7 of 19

Start

Z(t) is first
reading

Set cached_z(i)=0

Set emax=user input

Get reading z(t) from sensor

Cached_z(i)=z(t)

Fd(i)=z(t)

Send fd(i) to the data fusion layer

1

2

Cached_z(i)
=z(t)

Cached_z(i)=z(t)

Call Kalman filter to calculate x(t)

of z(t)

Calculate deviation

e(t)=z(t)-x(t)

|e(t)|>emax

Fd(i)=z(t)

Send fd, R(i) and H(i) to the data

fusion layer

yesNo

YES
NO

YES

Discard z(t) and

x(t)

NO

Figure 2. Data flowchart of the data filtering layer.

3.2. Data Fusion Layer

The incoming filtered data from the data filtering layer flow continuously to the data fusion layer.
Some data from the data filtering layer are missing (filtered out data). Therefore, the purpose of this
layer, prior to transmitting data to the cloud, is to fuse data of the same domain for certain location
to improve data reliability, remove data redundancy and complement the missing data [4]. A good
example of the data fusion is a set of sensors deployed in a data center room in order to monitor the
overall temperature.

According to Yukun et al. [21], there are two common Kalman-filter-based methods for the fusion
of multi-sensor data. The first method is simple, in which multi-sensor data are simply fused based on
the observation vector of Kalman filter. The other method uses a minimum mean square error (MMSE)
criterion for the fusion of multi-sensor data [21,24]. The second method is adopted in our proposed
approach because it requires low computational load. In this method, the dimension of the observation
vector is unchanged and the fused observation is obtained by weighted observation [21].

The main point of this layer is a set of sensors to observe the same phenomenon, such as
temperature, humidity, etc. Therefore, the incoming data from the data filtering layer of the same
source is fused at the first level, data fusion. The reader is referred to [26] for more information.
Suppose that filtered data of n sensors FD = f d1, f d2, f d3, ..., f dn coming from the data filtering layer
at time instance t with the covariance matrix Ri of each sensor calculated by Kalman filter in the data
filtering layer. After receiving the filtered data from the data filtering layer, as shown in Figure 3,
the total covariance matrix is calculated based on Equation (9). Then, the received filtered data are
fused and used to obtain the state vector z(t) that will be sent to the cloud. The Kalman filter will be
applied on the total state vector z(t) if there are missing data resulting from the data filtering layer and
the estimated value will be sent to the cloud instead of z(t). The measurement noise is independent

Sensors 2019, 19, 795 8 of 19

for each sensor. The equation for fusing the measurement vectors f di(i = 1, 2, ..., N) at time instance t
is given by Equation (8) to obtain the fused measurement vector z(t) [21].

z(t) =

[
N

∑
i=1

R−1
i (t)

]−1 N

∑
i=1

R−1
i (t) f d(i) (8)

where Ri represents the covariance matrix of measurement vector zi. The identity matrix of the fused
measurement is given by Equation (9).

H(t) =

[
N

∑
i=1

R−1
i (t)

]−1 N

∑
i=1

R−1
i (t)Hi(t) (9)

where H(t) represent the identity matrix of fused measurement vector z(t) and Hi(t) is the identity
matrix of sensor (i) at time t. In addition, the covariance matrix of the fused measurement vector is
calculated according to Equation (10).

R(t) =

[
N

∑
i=1

R−1
i (t)

]−1

(10)

where N represents the number of sensors. The estimates can be obtained using Kalman Filter as
described above.

The summary of the data fusion algorithm is shown in Algorithm 2, the parameters used are
shown in Table 2 and the data flow is represented in Figure 3.

Algorithm 2 Data fusion operation

INPUT: The output data stream of algorithm_1 FD = (f d1, f d2, ..., f dn)
Covariance matrix calculated by Kalman filter in data filtering layer R = (R1, R2, ..., Rn)
Identity Matrix Calculated by Kalman filter in data filtering layer H =
(H1, H2, ..., Hn)

if f d1 = NONEAND f d2 = NONEAND...AND f dn = NONE then
2: Exit

else

4: R(t)←
[

N
∑

i=1
R−1

i (t)
]−1

5: z(t)←
[

N
∑

i=1
R−1

i (t)
]−1 N

∑
i=1

R−1
i (t) f d(i)

6: H(t)←
[

N
∑

i=1
R−1

i (t)
]−1 N

∑
i=1

R−1
i (t)Hi(t)

Calculate total estimated value using Kalman filter based on total z(t), R(t) and H(t)
send z(t) to cloud.

7: if there is a missing data then
8: send the estimated value calculated by Kalman filter is sent the cloud.

9: end if
end if

Sensors 2019, 19, 795 9 of 19

 fd(i) is none

Calculate total R(t) according

equation 10

2

1

YESNO

Receive fd(i), R(i) and

H(i) from the data

filtering layer

stop

Calculate total z(t) according

equation 8

Calculate total H(t)

according equation 9

Call Kalman filter to

calculate x(t) of total z(t)

Send z(t) to the cloud.

 If there is a missing data

send x(t) as well

Figure 3. Data flowchart of the data fusion layer.

Table 2. The summery of parameters of Algorithm 2.

Parameter Definition

f d1, f d2, ..., f dn The data stream of sensors passed from the data filtering layer at time t
R1, R2, ..., Rn Covariance matrices of each sensor calculated by Kalman filter at time t
H1, H2, ..., Hn Identity matrices of each sensor calculated by Kalman filter at time t
R(t) The total covariance matrix at time t
z(t) The total measurement vector at time t
H(t) identity matrix of fused measurement vector z(t) at time t

4. Implementation and Evaluation of the Proposed Approach

This section presents the implementation and evaluation of our approach. The approach was
implemented and executed using Python. As mentioned in Section 3, the proposed approach for IoT
data reduction consists of two layers. The first layer is to filter data of each sensor based on data
change detection and the deviation of observed value from its Kalman-filter-based estimated value.
The second layer is to fuse sensor data of the same resources after filtering to enhance the accuracy
of the data since some missing data result from filtering process of the first layer. The performance
evaluation of our approach in the first layer and second layer is presented below.

4.1. Datasets

In the simulation, real-world datasets from Intel lab were used, as shown in Figure 4. The
offered datasets were obtained from 54 Mica2Dot sensors. Each sensor provides data for weather,

Sensors 2019, 19, 795 10 of 19

such as temperature, humidity, light, and voltage, as well as the time at which a sensor reading is
acquired. For experiments, we selected datasets (temperature) reported by Sensor 1 (Mote 1), Sensor 2
(Mote 2), and Sensor 3 (Mote 3) between 6 March 2014 and 8 March 2014, resulting in a dataset with
5897 readings, to ensure the efficiency of the proposed approach.

Figure 4. A view for sensors along with weather boards at Intel Berkeley Research lab [27].

4.2. Simulation Environment

A simulation code was written in Python to evaluate our proposed approach. The datasets were
from the Intel Lab, and include typical time stamped data of weather such as temperature. The weather
data are a time series data for IoT application [4]. We conducted the experiment with the temperature
data for Sensors 1–3. Since Kalman filter requires prior information to work properly, we set the first
value of sensor reading to obtain the Kalman filter initial state x(0), as shown in Table 3.

Table 3. the initial estimated values for Sensors 1–3.

Sensor Initial Value of x

Sensor 1 20.5078
Sensor 2 20.7724
Sensor 3 20.5666

To carry out simulation on datasets (temperature), Kalman filter parameters were determined in
the first layer (the data filtering layer). We selected the parameter values as follows:

A =

[
1 0
0 1

]

H =
[

1 0
]

where Q is considered as white Gaussian noise and the target noise is P. Q and P were initialized
as follows:

Q =

[
2.25e−6 4.50e−6

4.50e−6 9.00e−6

]

Sensors 2019, 19, 795 11 of 19

P =

[
0.000001 0

0 0

]
In addition, the maximum absolute deviation emax was set to the range of values

(emax = 0.01, 0.02, ..., 0.09).

5. Study Results and Evaluation

The performance of the proposed approach was evaluated based on the results obtained from the
two layers as follows.

5.1. Data Filtering Layer

As mentioned above, to ensure the efficiency of the proposed approach, it was evaluated
based on the readings of three sensors (Sensors 1–3) over the temperature data. To evaluate the
proposed approach, we compared the results with two algorithms commonly used in data reduction,
namely Least Mean Square (LMS) algorithm and Papageorgius’s method, which employ Perceptually
Important Points algorithm (PIP). LMS algorithm was selected as prediction algorithm and the CLONE
approach of Papageorgius’s method was selected because it is faster than other two approaches (TWIN
and AVG) to avoid the delay and perform a fair comparison. The CLONE approach of Papageorgius’s
method was implemented with cache size equal to 100 items. We compared three aspects to evaluate
the results of the proposed approach: the number of forwarded items, data reduction percentage of
incoming data and data reduction accuracy.

• Data reduction percentage is obtained by:

SP = (((AD)− (TD))× 100)/100 (11)

DRP = 100− (SP) (12)

where SP is the saving percentage, AD represents the actual data, TD represents the transmitted
data, and DRP is the data reduction percentage.

• Data reduction accuracy is the similarity between actual data and filtered data mixed with
estimated data to make a set of the same length as the original one based on the Jaccard coefficient
as follows:

If T1 =
[(

t1
1, v1

1
)

,
(
t1
2, v1

2
)

, . . . ,
(
t1
n, v1

n
)]

is the real data and T2 =
[(

t2
1, v2

1
)

,
(
t2
2, v2

2
)

, . . . ,
(
t2
n, v2

n
)]

is
the filtered data, the Jaccard similarity coefficient between them is calculated [4] as:

α =

n
∑

i=1
min(

(
t1
i , v2

i
)
)

n
∑

i=1
max(

(
t1
i , v2

i
)
)
× 100 (13)

where n is the length of actual data. A range of maximum absolute error (emax = 0.01, 0.02,..., 0.09)
was used to investigate the impact of emax on the amount of forwarded data to the data fusion layer,
data reduction percentage and data reduction accuracy and to verify and evaluate the results of the
proposed approach, LMS algorithm and Papageorgius’s method (CLONE).

Tables 4–6 summarize the experiment results of the data filtering layer for Sensors 1–3.
They represent the comparison of the proposed approach, LMS and Papageorgious’s method (CLONE)
based on the range of Maximum Absolute Error (MAE), as mentioned above. The comparison was
performed based on 5896 readings of each sensor. In addition, the number of forwarded data to the
data fusion layer is also represented. Moreover, the data reduction percentage and data reduction
accuracy were calculated based on Equations (11)–(13) for each sensor, respectively. To illustrate the
data in Tables 4–6, Figures 5–7 present the performance of the proposed approach with a comparison

Sensors 2019, 19, 795 12 of 19

to LMS and Papageorgious’s method (CLONE) with emax = 0.01 in terms of data filtering. Accordingly,
it can be seen that the proposed approach outperformed LMS and Papageorgious’s method (CLONE)
for Sensors 1–3. The figures show the temperature data as y-axis plotted against the number of samples
as x-axis.

According to the results in Table 4, it is noted that the proposed approach achieved data reduction
percentage in the range 43.25–85.13% with data reduction accuracy in the range 69.41–92.61% in
comparison with LMS algorithm, which achieved data reduction percentage in the range 13.61–73.88%
with data reduction accuracy in the range 71.92–96.30%. Papageorgious’s method (CLONE) achieved
high accuracy in the range 88.89–94.91% with very low data reduction percentage ranging 5.14–9.18%.
The results are plotted against emax in Figure 8. In Table 5, the results show that the proposed approach
achieved data reduction percentage in the range 39.52–77.34% and data reduction accuracy in the range
62.60–93.30%, while LMS algorithm achieved data reduction percentage in the range 11.48–75.13% with
data reduction accuracy in the range 69.96–71.54%. Papageorgious’s method (CLONE) achieved low
data reduction percentage and high data reduction accuracy in the ranges 3.02–5.73% and 97.63–94.32%,
respectively. The results are plotted against emax in Figure 9. Moreover, the results in Table 6 show
that the data reduction percentage achieved by the proposed approach is in the range 41.99–84.26%
with accuracy in the range 93.17–68.56%, while LMS algorithm achieved data reduction percentage
in the range 12.91–73.42% and data reduction accuracy in the range 72.49–96.79%. Papageorgious’s
method (CLONE) achieved data reduction percentage in the range 4.40–9.12% with data reduction
accuracy in the range 90.92–96.01%. Figure 10 illustrates the results plotted against emax. It can be
noted that Papageorgious’s method (CLONE) achieved the highest data reduction accuracy and the
lowest data reduction percentage followed by LMS algorithm, which achieved data reduction accuracy
higher than the proposed approach but with lower data reduction percentage. Based on the results
shown in Tables 4–6, we can say that the proposed approach achieved the highest data reduction
percentage compared to LMS algorithm and Papageorgious’s method (CLONE). This is attributed to
the fact that the proposed approach employs the data change technique to remove the redundant data
of each sensor, as described in Section 3.1. Moreover, the proposed approach relies on Kalman filter to
calculate the deviation between the sensor actual readings and their estimated values. Kalman filter
has an advantage of faster error convergence and better estimation through changing the measurement
covariance by controlling fundamental parameters. As emax increases, the data reduction percentage
increases too, while the data reduction accuracy decreases. In fact, as emax increases, the differences
between actual values and their estimated ones increase. Therefore, the data reduction percentage
increases, while the data reduction accuracy decreases.

Table 4. Comparison of the proposed approach, LMS and Papageorgius’s method (CLONE) for Sensor 1.

MAE Incoming
Data

Proposed Approach LMS Papageorgious’s Method (CLONE)

Forwarded
Data No.

Reduction
Percentage

of Incoming Data

Reduction
Accuracy

Forwarded
Data No.

Reduction
Percentage

of Incoming Data

Reduction
Accuracy

Forwarded
Data No.

Reduction
Percentage

of Incoming Data

Reduction
Accuracy

0.01 5896 3346 43.25% 92.61% 5129 13.01% 96.30% 5593 5.14% 94.91%
0.02 5896 2652 55.02% 91.59% 3774 35.99% 90.50% 5515 6.46% 93.59%
0.03 5896 2152 63.50% 86.67% 3049 48.29% 88.42% 5472 7.19% 92.86%
0.04 5896 1803 69.42% 85.11% 2560 56.58% 84.91% 5444 7.67% 92.38%
0.05 5896 1547 73.76% 82.77% 2273 61.45% 76.39% 5426 7.97% 91.21%
0.06 5896 1348 77.14% 79.92% 2044 65.33% 75.53% 5406 8.31% 91.07%
0.07 5896 1183 79.94% 77.12% 1842 68.76% 74.51% 5375 8.84% 90.87%
0.08 5896 1015 82.78% 73.75% 1661 71.83% 73.73% 5367 8.97% 89.33%
0.09 5896 877 85.13% 69.41% 1540 73.88% 71.92% 5355 9.18% 88.89%

Sensors 2019, 19, 795 13 of 19

Table 5. Comparison of the proposed approach, LMS and Papageorgius’s method (CLONE) for Sensor 2.

MAE Incoming
Data

Proposed Approach LMS Papageorgious’s Method (CLONE)

Forwarded
Data No.

Reduction
Percentage

of Incoming Data

Reduction
Accuracy

Forwarded
Data No.

Reduction
Percentage

of Incoming Data

Reduction
Accuracy

Forwarded
Data No.

Reduction
Percentage

of Incoming Data

Reduction
Accuracy

0.01 5896 3566 39.52% 93.30% 5219 11.48% 96.96% 5718 3.02% 97.03%
0.02 5896 2983 49.41% 90.16% 3896 33.92% 90.15% 5667 3.88% 96.16%
0.03 5896 2522 57.23% 78.70% 3075 47.85% 87.60% 5644 4.27% 95.77%
0.04 5896 2204 62.62% 77.32% 2505 57.51% 82.86% 5623 4.63% 95.42%
0.05 5896 1965 66.67% 75.22% 2160 63.36% 75.67% 5603 4.97% 95.09%
0.06 5896 1754 70.25% 72.89% 1919 67.45% 74.93% 5587 5.24% 94.81%
0.07 5896 1598 72.90% 70.24% 1711 70.98% 74.16% 5571 5.51% 94.53%
0.08 5896 1460 75.24% 66.66% 1578 73.24% 73.51% 5563 5.65% 94.40%
0.09 5896 1336 77.34% 62.60% 1465 75.15% 71.54% 5558 5.73% 94.32%

Table 6. Comparison of the proposed approach, LMS and Papageorgius’s method (CLONE) for Sensor 3.

MAE Incoming
Data

Proposed Approach LMS Papageorgious’s Method (CLONE)

Forwarded
Data No.

Reduction
Percentage

of Incoming Data

Reduction
Accuracy

Forwarded
Data No.

Reduction
Percentage

of Incoming Data

Reduction
Accuracy

Forwarded
Data No.

Reduction
Percentage

of Incoming Data

Reduction
Accuracy

0.01 5896 3420 41.99% 93.17% 5135 12.91% 96.79% 5658 4.04% 96.01%
0.02 5896 2742 53.49% 91.30% 3919 33.53% 90.33% 5589 5.21% 94.84%
0.03 5896 2235 62.09% 86.13% 3131 46.90% 88.37% 5551 5.85% 94.20%
0.04 5896 1853 68.57% 84.24% 2661 54.87% 83.91% 5501 6.70% 93.34%
0.05 5896 1559 73.56% 82.36% 2338 60.35% 77.09% 5464 7.33% 92.72%
0.06 5896 1330 77.44% 80.29% 2092 64.52% 76.36% 5436 7.80% 92.24%
0.07 5896 1161 80.31% 77.43% 1919 67.45% 75.72% 5387 8.63% 91.41%
0.08 5896 1039 82.38% 73.54% 1644 72.12% 74.90% 5369 8.94% 91.11%
0.09 5896 928 84.26% 68.56% 1567 73.42% 72.49% 5358 9.12% 90.92%

0 1000 2000 3000 4000 5000 6000
Samples (Sensor 1)

20

22

24

26

28

te
m

pe
ra

tu
re

 [c
°]

Actual Readings of Sensor 1
LMS
Proposed Approach
Papageorgious's Method (CLONE)

Figure 5. Comparison of the proposed approach, LMS and Papageorgius’s method (CLONE) for
Sensor 1 with emax = 0.01.

Sensors 2019, 19, 795 14 of 19

0 1000 2000 3000 4000 5000 6000
Samples (Sensor 2)

19

20

21

22

23

24

25

26

27

te
m

pe
ra

tu
re

 [c
°]

Actual Readings of Sensor 2
LMS
Proposed Approach
Papageorgious's Method (CLONE)

Figure 6. Comparison of the proposed approach, LMS and Papageorgius’s method (CLONE) for
Sensor 2 with emax = 0.01.

0 1000 2000 3000 4000 5000 6000
Samples (Sensor 3)

20

22

24

26

28

te
m

pe
ra

tu
re

 [c
°]

Actual Readings of Sensor 3
LMS
Proposed Approach
Papageorgious's Method (CLONE)

Figure 7. Comparison of the proposed approach, LMS and Papageorgius’s method (CLONE) for
Sensor 3 with emax = 0.01.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
emax

0

20

40

60

80

100

D
at

a
R

ed
uc

tio
n

Pe
rc

en
ta

ge
 (%

)

(a)

 Proposed Approach
LMS
Papageorgious's Method (CLONE)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
emax

0

20

40

60

80

100

D
at

a
R

ed
uc

tio
n

A
cc

ur
ac

y
(%

)

(b)

 Proposed Approach
LMS
Papageorgious's Method (CLONE)

Figure 8. Data reduction percentage (a) and data reduction accuracy (b) vs. emax for Sensor 1.

Sensors 2019, 19, 795 15 of 19

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
emax

0

20

40

60

80

100
D

at
a

R
ed

uc
tio

n
Pe

rc
en

ta
ge

 (%
)

(a)

 Proposed Approach
LMS
Papageorgious's Method (CLONE)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
emax

0

20

40

60

80

100

D
at

a
R

ed
uc

tio
n

A
cc

ur
ac

y
(%

)

(b)

 Proposed Approach
LMS
Papageorgious's Method (CLONE)

Figure 9. Data reduction percentage (a) and data reduction accuracy (b) vs. emax for Sensor 2.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
emax

0

20

40

60

80

100

D
at

a
R

ed
uc

tio
n

Pe
rc

en
ta

ge
 (%

)

(a)

 Proposed Approach
LMS
Papageorgious's Method (CLONE)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
emax

0

20

40

60

80

100
D

at
a

R
ed

uc
tio

n
A

cc
ur

ac
y

(%
)

(b)

 Proposed Approach
LMS
Papageorgious's Method (CLONE)

Figure 10. Data reduction percentage (a) and data reduction accuracy (b) vs. emax for Sensor 3.

5.2. Data Fusion Layer

The proposed data fusion layer employs a minimum-mean-square-error criterion for multisensory
data fusion, as described above by Equations (8)–(10). For the evaluation of the data fusion layer of the
proposed approach, we adapted the data fusion layer of the proposed approach for both LMS and
Papageorgious’s method (CLONE) to compare the data reduction percentage of the three approaches
relative to the total original readings of Sensors 1–3. The data reduction percentage is calculated
according to Equations (11) and (12), but relative to the total original readings of Sensors 1–3, instead
of each sensor individually. The input of data fusion layer is based on the output of data filtering
layer depending on maximum absolute error values (emax = 0.01, 0.02,..., 0.09). Moreover, we used
the similarity between the final fused data and the original readings of Sensors 1–3 to calculate the
data recovery accuracy. As shown in Table 7 and Figure 11, the proposed approach had highest data
reduction percentage (69.63–86.32%), while LMS achieved data reduction percentage in the range
66.78–83.51% and Papageorgious’s method (CLONE) achieved data reduction equal to 66.67% and
no change was noted because data reduction percentage of data filtering is inconsiderable. Figure 12
represents the performance the data fusion layer with emax = 0.01 in comparison with the other
methods for which the data fusion layer of the proposed approach is adapted. In the figure, we can see
that there is a slight difference in the output of the data fusion layer for each method. This is because
of the different filtering techniques used by the methods.

Sensors 2019, 19, 795 16 of 19

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
emax

60

65

70

75

80

85

90

95

100

D
at

a
R

ed
uc

tio
n

Pe
rc

en
ta

ge
 (%

)

 Proposed Approach
LMS
Papageorgious's Method (CLONE)

Figure 11. Data reduction percentage vs. emax for fused data of Sensors 1–3.

0 1000 2000 3000 4000 5000
Samples

20

21

22

23

24

25

26

27

te
m

pe
ra

tu
re

 [c
°]

(a)

0 1000 2000 3000 4000 5000
Samples

20

21

22

23

24

25

26

27

te
m

pe
ra

tu
re

 [c
°]

(b)

0 1000 2000 3000 4000 5000
Samples

20

21

22

23

24

25

26

te
m

pe
ra

tu
re

 [c
°]

(c)

Figure 12. The output of the data fusion layer (a) the proposed approach, (b) LMS and
(c) Papageorgius’s method (CLONE) with emax = 0.01 for sensors 1, 2 and 3

The data recovery accuracy was calculated based on the similarity between the fusion results
and the original readings of each sensor using Equation (13). In the case the data of all sensors were
filtered at the same time in the data filtering layer, the data recovery accuracy was calculated by
replacing the filtered-out data with the estimated data calculated by Kalman filter. Figure 13 shows
that the proposed data fusion layer achieved high similarity between the original readings and filtered
readings for different maximum absolute error values (emax = 0.01, 0.02,..., 0.09). It can be noted that
the similarity between the original readings and the filtered readings of Sensor 1 was in the range

Sensors 2019, 19, 795 17 of 19

89.99–92.94%. The similarity between original readings and the filtered readings of Sensor 2 was the
range 80.31–86.98%. The similarity between the original readings and the filtered readings of Sensor 3
was in the range 89.55–92.09%. Figure 13 shows that Sensor 2 had lower similarity than Sensors 1 and
3. This was due to more data filtered in the data filtering layer.

Table 7. Comparison between the proposed approach and LMS algorithm and Papageorgius’s method
(CLONE) for Sensors 1–3.

MAE
Proposed Approach LMS Papageorgious’s Method (CLONE)

Filtered Data No. Fused
Data No. DRP 1 Filtered Data No. Fused

Data No. DRP 1 Filtered Data No. Fused
Data No. DRP 1

Sensor 1 Sensor 2 Sensor 3 Sensor 1 Sensor 2 Ssensor 3 Sensor 1 Sensor 2 Sensor 3
0.01 3346 3566 3420 5372 69.63% 5129 5219 5135 5877 66.78% 5593 5718 5658 5897 66.67%
0.02 2652 2983 2742 4836 72.66% 3774 3896 3919 5444 69.23% 5515 5667 5589 5897 66.67%
0.03 2152 2522 2235 4324 75.56% 3049 3075 3131 4907 72.26% 5472 5644 5551 5897 66.67%
0.04 1803 2204 1853 3873 78.11% 2560 2505 2661 4363 75.34% 5444 5623 5501 5897 66.67%
0.05 1547 1965 1559 3495 80.24% 2273 2160 2338 4019 77.28% 5426 5603 5464 5897 66.67%
0.06 1348 1754 1330 3167 82.10% 2044 1919 2092 3700 79.09% 5406 5587 5436 5897 66.67%
0.07 1183 1598 1161 2883 83.70% 1842 1711 1919 3428 80.62% 5375 5571 5387 5897 66.67%
0.08 1015 1460 1039 2644 85.05% 1661 1578 1644 3119 82.37% 5367 5563 5369 5897 66.67%
0.09 877 1336 928 2420 86.32% 1540 1465 1567 2917 83.51% 5355 5558 5358 5897 66.67%

1 Data Reduction Percentage.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
emax

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Sm
ila

ri
ty

 (%
)

 Sensor 1
Sensor 2
Sensor 3

Figure 13. Similarity between original readings and fused reading vs. emax for Sensors 1–3.

Finally, it is worth noting that the proposed approach achieved the highest data reduction
percentage in the data filtering layer with different values of maximum absolute error (emax = 0.01,
0.02, ..., 0.09) in comparison with LMS method and Papageorgious’s method (CLONE). Moreover,
the proposed approach attained acceptable data reduction accuracy, as shown in Figure 13. In the
data fusion layer, after adapting the second layer of the proposed approach for LMS algorithm
and Papageorgious’s method (CLONE), the proposed approach outperformed LMS algorithm and
Papageorgious’s method (CLONE) in terms of data reduction percentage, as shown in Tables 4–6, and
achieved high data recovery accuracy, as reported in Figure 13.

6. Conclusions

In this paper, we propose an approach for IoT data reduction. The proposed approach is an
in-networking approach and comprises two layers. The first layer (the data filtering layer) is dedicated
for data filtering depending on two techniques, namely data change detection and the deviation
(>user input value) of real observations from their estimated values. Moreover, the data filtering
layer detects the faulty sensor readings by calculating the correlation between the readings of sensors.
The second layer is data fusion layer and it is based on minimum mean square error technique

Sensors 2019, 19, 795 18 of 19

to improve data reliability after filtering operation. Its rule is to fuse the output of the first layer.
The essential goal is to reduce data transmitted from network edge to the cloud.

We compared the proposed approach with LMS method and Papageorgious’s method (CLONE).
Based on the results, the proposed approach achieved a higher reduction percentage than LMS
method and Papageorgious’s method (CLONE), and attained an acceptable data recovery accuracy.
Even though the proposed approach has shown good performance and efficiency in filtering and
fusing the IoT linear data, future work will focus on investigating the application of approach on
nonlinear data and multi-media data as well as the usage of extended Kalman filter. This will also
include dealing with multi-rate data.

Author Contributions: W.M.I. conceptualized the idea of this paper, designed the content and drafted the paper.
M.G. supervised with critical assessment of the draft for quality revision. A.A.A.-S. assessed the results and
suggested the format of tables. A.Z. revised the paper and performed proofreading.

Funding: This research was funded in part by the National Natural Science Foundation of China under grants
61671202 and 61571063, and the National Key Research and Development Program under grant 2018YFC0407101.

Acknowledgments: We would like to express our gratitude to Younis M. Younis, a Ph.D. student, Hohai University,
for his support and advice. We also acknowledge with high appreciation, the help and encouragement extended
by Zaid Yemeni, a Ph.D. student, Hohai University, and Waleed Karrar, a MSc student, Hohai University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of things: Vision, applications and research
challenges. Ad Hoc Netw. 2012, 10, 1497–1516. [CrossRef]

2. Wu, J.; Feng, Y.; Sun, P. Sensor Fusion for Recognition of Activities of Daily Living. Sensors 2018, 18, 4029.
[CrossRef] [PubMed]

3. Shahid, N.; Aneja, S. Internet of things: A survey on enabling technologies, protocols, and applications.
IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376.

4. Feng, L.; Kortoçi, P.; Liu, Y. A multi-tier data reduction mechanism for IoT sensors. In Proceedings of
the Seventh International Conference on the Internet of Things, Linz, Austria, 22–25 October 2017; ACM:
New York, NY, USA, 2017; p. 6.

5. Papageorgiou, A.; Cheng, B.; Kovacs, E. Real-time data reduction at the network edge of Internet-of-Things
systems. In Proceedings of the 2015 11th International Conference on Network and Service Management
(CNSM), Barcelona, Spain, 9–13 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 284–291.

6. Rahman, H.; Ahmed, N.; Hussain, I. Comparison of data aggregation techniques in Internet of Things
(IoT). In Proceedings of the International Conference on Wireless Communications, Signal Processing and
Networking (WiSPNET), Chennai, India, 23–25 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1296–1300.

7. Lingyun, Y.; Lijing, H.; Manman, Z.; Mingli, Z. RFID data fusion algorithm based on spatio-temporal
semantics in internet of things. In Proceedings of the 2017 13th IEEE International Conference on Electronic
Measurement & Instruments (ICEMI), Yangzhou, China, 20–22 October 2017; IEEE: Piscataway, NJ, USA,
2017; pp. 179–184.

8. Stojkoska, B.R.; Nikolovski, Z. Data compression for energy efficient IoT solutions. In Proceedings of the
25th Telecommunication Forum (TELFOR), Belgrade, Serbia, 21–22 November 2017; pp. 1–4.

9. Ling, W.S.; Yaik, O.B.; Yue, L.S. A novel data reduction technique with fault-tolerance for internet-of-things.
In Proceedings of the Second International Conference on Internet of things and Cloud Computing,
Cambridge, UK, 22–23 March 2017; ACM: New York, NY, USA, 2017; p. 71.

10. Papageorgiou, A.; Cheng, B.; Kovacs, E. Reconstructability-aware filtering and forwarding of time series
data in internet-of-things architectures. In Proceedings of the 2015 IEEE International Congress on Big Data
(BigData Congress), New York, NY, USA, 27 June–2 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 576–583.

11. Narendra, N.; Ponnalagu, K.; Ghose, A.; Tamilselvam, S. Goal-driven context-aware data filtering
in IoT-based systems. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent
Transportation Systems (ITSC), Las Palmas, Spain, 15–18 September 2015; IEEE: Piscataway, NJ, USA,
2015; pp. 2172–2179.

http://dx.doi.org/10.1016/j.adhoc.2012.02.016
http://dx.doi.org/10.3390/s18114029
http://www.ncbi.nlm.nih.gov/pubmed/30463199

Sensors 2019, 19, 795 19 of 19

12. Bijarbooneh, F.H.; Du, W.; Ngai, E.C.H.; Fu, X.; Liu, J. Cloud-assisted data fusion and sensor selection for
internet of things. IEEE Internet Things J. 2016, 3, 257–268. [CrossRef]

13. Dubey, H.; Yang, J.; Constant, N.; Amiri, A.M.; Yang, Q.; Makodiya, K. Fog data: Enhancing telehealth
big data through fog computing. In Proceedings of the ASE BigData & SocialInformatics 2015, Kaohsiung,
Taiwan, 7–9 October 2015; ACM: New York, NY, USA, 2015; p. 14.

14. Xu, X.; Huang, S.; Chen, Y.; Browny, K.; Halilovicy, I.; Lu, W.T. Time series analytics as a service on
IoT. In Proceedings of the IEEE International Conference on Web Services (ICWS), Anchorage, AK, USA,
27 June–2 July 2014; Volume 27, pp. 249–256.

15. Anastasi, G.; Conti, M.; Di Francesco, M.; Passarella, A. Energy conservation in wireless sensor networks:
A survey. Ad Hoc Netw. 2009, 7, 537–568. [CrossRef]

16. Mohamed, M.F.; Shabayek, A.E.R.; El-Gayyar, M.; Nassar, H. An adaptive framework for real-time data
reduction in AMI. J. King Saud Univ. Comput. Inf. Sci. 2018, in press. [CrossRef]

17. Fu, T.C.; Hung, Y.K.; Chung, F.L. Improvement algorithms of perceptually important point identification for
time series data mining. In Proceedings of the 2017 IEEE 4th International Conference on Soft Computing
& Machine Intelligence (ISCMI), Port Louis, Mauritius, 23–24 November 2017; IEEE: Piscataway, NJ, USA,
2017; pp. 11–15.

18. Jugel, U.; Jerzak, Z.; Hackenbroich, G.; Markl, V. VDDA: Automatic visualization-driven data aggregation in
relational databases. VLDB J. Int. J. Very Large Data Bases 2016, 25, 53–77. [CrossRef]

19. Yu, T.; Wang, X.; Shami, A. A Novel Fog Computing Enabled Temporal Data Reduction Scheme in IoT
Systems. In Proceedings of the GLOBECOM 2017–2017 IEEE Global Communications Conference, Singapore,
4–8 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5.

20. Fathy, Y.; Barnaghi, P.; Tafazolli, R. An Adaptive Method for Data Reduction in the Internet of Things.
In Proceedings of IEEE 4th World Forum on Internet of Things, Singapore, 5–8 February 2018; IEEE:
Piscataway, NJ, USA, 2018.

21. Chen, Y.; Si, X.; Li, Z. Research on Kalman-filter based multisensor data fusion. J. Syst. Eng. Electron. 2007,
18, 497–502.

22. Soman, R.; Ostachowicz, W. Kalman Filter Based Load Monitoring in Beam Like Structures Using Fibre-Optic
Strain Sensors. Sensors 2018, 19, 103, doi:10.3390/s19010103. [CrossRef] [PubMed]

23. Singh, R.; Mehra, R.; Sharma, L. Design of Kalman filter for wireless sensor network. In Proceedings of the
International Conference on Internet of Things and Applications (IOTA), Pune, India, 22–24 January 2016;
IEEE: Piscataway, NJ, USA, 2016; pp. 63–67.

24. Gan, Q.; Harris, C.J. Comparison of two measurement fusion methods for Kalman-filter-based multisensor
data fusion. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 273–279. [CrossRef]

25. Coppin, P.R.; Bauer, M.E. Digital change detection in forest ecosystems with remote sensing imagery. Remote
Sens. Rev. 1996, 13, 207–234. [CrossRef]

26. Castanedo, F. A review of data fusion techniques. Sci. World J. 2013, 2013. [CrossRef] [PubMed]
27. Bodik, P.; Hong, W.; Guestrin, C.; Madden, S.; Paskin, M.; Thibaux, R. Intel Lab Data. Available online:

http://db.csail.mit.edu/labdata/labdata.html (assessed on 15 February 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JIOT.2015.2502182
http://dx.doi.org/10.1016/j.adhoc.2008.06.003
http://dx.doi.org/10.1016/j.jksuci.2018.02.012
http://dx.doi.org/10.1007/s00778-015-0396-z
http://dx.doi.org/10.3390/s19010103
http://www.ncbi.nlm.nih.gov/pubmed/30597980
http://dx.doi.org/10.1109/7.913685
http://dx.doi.org/10.1080/02757259609532305
http://dx.doi.org/10.1155/2013/704504
http://www.ncbi.nlm.nih.gov/pubmed/24288502
http://db.csail.mit.edu/labdata/labdata.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Kalman Filter

	Proposed Approach
	Data Filtering Layer
	Data Fusion Layer

	Implementation and Evaluation of the Proposed Approach
	Datasets
	Simulation Environment

	Study Results and Evaluation
	Data Filtering Layer
	Data Fusion Layer

	Conclusions
	References

