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Abstract: Automatic sorting of banknotes in payment facilities, such as automated payment machines
or vending machines, consists of many tasks such as recognition of banknote type, classification of
fitness for recirculation, and counterfeit detection. Previous studies addressing these problems have
mostly reported separately on each of these classification tasks and for a specific type of currency
only. In other words, there has been little research conducted considering a combination of these
multiple tasks, such as classification of banknote denomination and fitness of banknotes, as well as
considering a multinational currency condition of the method. To overcome this issue, we propose a
multinational banknote type and fitness classification method that both recognizes the denomination
and input direction of banknotes and determines whether the banknote is suitable for reuse or should
be replaced by a new one. We also propose a method for estimating the fitness value of banknotes and
the consistency of the estimation results among input trials of a banknote. Our method is based on a
combination of infrared-light transmission and visible-light reflection images of the input banknote
and uses deep-learning techniques with a convolutional neural network. The experimental results
on a dataset composed of Indian rupee (INR), Korean won (KRW), and United States dollar (USD)
banknote images with mixture of two and three fitness levels showed that the proposed method gives
good performance in the combination condition of currency types and classification tasks.

Keywords: multinational banknote type and fitness classification; fitness value estimation;
visible-light reflection image; infrared-light transmission image; deep learning

1. Introduction

Recently, despite the growth of electronic financial transactions that have caused a decrease in the
use of physical currency, transactions involving banknotes are still playing an important role in daily
life as well as large-scale commercial exchanges. Automated machines involve many processes in these
transactions and have the ability to handle multiple tasks, which are banknote recognition, fitness
classification, counterfeit detection, and serial number recognition. Among them, banknote recognition
determines the denomination of the input currency paper, and fitness classification evaluates the
physical condition of the banknote and decides whether it is suitable for recirculation or if it should be
replaced by a new one. The determination of a banknote’s denomination is the primary function of the
counting system; meanwhile, fitness classification helps to prevent problems that might occur due to a
low quality or damaged banknote being inserted into the system, such as jams or incorrect recognition.
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Regarding the functionalities of the automated banknote sorting system, one popular approach is
based on image processing, in which input banknotes are captured by various imaging sensors and
their optical characteristics are used for classification tasks [1,2]. Previous studies about banknote
recognition and banknote fitness classification are mostly reported separately for each of the problems;
that is, when dealing with banknote recognition, little research has considered the fitness of the
banknotes for recirculation, meanwhile fitness classification studies have mostly been conducted under
the assumption that the type and denomination of banknotes have been correctly pre-classified.
Considering these issues, this study aims to propose a method to simultaneously solve these
two problems.

The structure of our paper is as follows. In Section 2, the related works involving banknote
recognition and fitness classification are analyzed and explained in detail. The motivation and
contribution of this research is mentioned in Section 3. In Section 4, we explain the proposed banknote
type and fitness classification method in detail. The experimental results and conclusions are mentioned
in Sections 5 and 6, respectively.

2. Related Works

The studies concerning banknote recognition of multiple currency types are mostly based on the
banknote images captured by visible-light sensors. They can be conducted on either combined
or separated countries’ banknote datasets. In the banknote recognition method proposed by
Bhurke et al. [3], a color model of the hue, saturation, and value (HSV) of banknote images from five
currencies, which were Indian rupees (INR), Australian dollars (AUD), Euros (EUR), Saudi Arabia
riyals (SAR), and United States dollars (USD), was used as the features for the template-matching-based
recognition system. Banknotes of USD, EUR, and Chinese Renminbi (RMB) were classified in the
method proposed by Gai et al. [4] with the combination of quaternion wavelet transform (QWT) and
generalized Gaussian density (GGD) for feature extraction and neural network (NN) for classification.
Four banknote datasets of United States, South African, Angolan, and Malawian currencies were
used for experiments in the banknote recognition methods proposed by Pham et al. [5,6]. In these
studies, they used a K-means-based method for recognition of banknotes with the classification features
extracted by principal component analysis (PCA) of the discriminative region selected by similarity
map [5] and optimized by genetic algorithm (GA) [6] on banknote images. Visible-light banknote
images were also popularly used in the studies that simultaneously classify banknotes of multiple
currency types. The multinational paper currency recognition methods proposed in Reference [7] were
experimented on banknote datasets consisting of four types of currencies from Japan, Italia, Spain,
and France. In this research, Takeda et al. [7] employed GA for optimizing the feature extraction
and NN for classifying banknotes. Youn et al. [8] proposed a multi-banknotes classification method
using multi-templates and correlation matching of five currencies’ banknote images acquired by a
contact image sensor (CIS). The convolutional neural network (CNN)-based method proposed by
Pham et al. [9] classified banknotes of six national currencies, which were Chinese yuan (CNY), EUR,
Japanese yen (JPY), Korean won (KRW), Russian rubles (RUB), and USD, in consideration of the size
characteristics of the banknotes. In Reference [10], Hassanpour and Farahabadi employed a hidden
Markov model (HMM) for modelling the texture characteristics of banknotes to classify more than
100 denominations of banknotes from different countries.

Regarding fitness classification of banknotes, besides the studies focusing on a certain kind
of national currency, there have also been studies considering the variety of currency types [11].
In these studies, experiments were conducted with datasets of banknotes from various countries
and regions. Considering soiling as the main reason for unfit banknotes, Lee et al. [12] presented
a soiled banknote fitness determination method applied to EUR and RUB based on morphology
and Otsu’s [13] thresholding algorithms on banknote images. In the fuzzy-based method proposed
by Kwon et al. [14], fitness was determined based on the features extracted from the less textured
regions on banknote images captured by visible-light reflection (VR) and near-infrared transmission



Sensors 2019, 19, 792 3 of 28

(NIRT) sensors. This method was tested with the banknote image databases of USD, INR, and KRW.
Pham et al. [15] also proposed a CNN-based method for classifying fitness for these three types of
currencies using VR banknote images regardless of the denomination and input direction of input
banknote into the system. A CNN was also used in the multinational banknote fitness classification
method proposed in Reference [11], in which input images to the CNN classifier was the combination
of banknote images captured by VR and infrared transmission (IRT) sensors.

Most of the previous works concerning banknote recognition and banknote fitness classification
considered only one of these two problems. The banknote recognition studies classified currency
papers based on the origin countries, denominations and input directions without considering the
physical quality of the banknotes. The ability of rejecting uncertain or misclassification cases in the
recognition results was considered in several studies [5,6,16]; however, these studies did not specify
whether banknotes were rejected because of low quality or invalid data, and no fitness assessment
was proposed in these studies. In the cases of banknote fitness classification studies, most of the
works were under the assumption that the denomination and input direction of the banknote being
evaluated were known. The CNN-based fitness classification method can determine the fitness levels
of a banknote without pre-classification of the banknote image [15] as well as simultaneously for
multiple types of currencies [11]. Nevertheless, the fit banknotes may still be rejected if the recognition
results of denomination are incorrect. Considering the overall framework of the banknote sorting
system, banknote recognition and fitness classification were combined in hierarchical form [2], that is,
we needed two classifiers for dealing with these two problems. There have been studies in the field of
image classification that have been composed of multiple CNNs in an ensemble and that employed a
sum rule score-fusion [17]. Experimental results on various bioimage and medical datasets showed
that the ensembles of CNNs outperformed the single CNN trained on a specific dataset [17]. However,
an intensive training process was required, and the resulting systems could become very complex.
On the evaluation of the state-of-the-art methods, CNNs could be a promising approach for combining
banknote recognition and fitness classification based on the advantages of deep-learning techniques,
which were comprehensively reviewed in previous researched [18,19].

In the CNN-based multinational banknote recognition method proposed in Reference [9],
the study focused on the classification of currency type and denomination based on the recognition of
the input banknote direction by using visible-light images of banknotes and CNN classifiers. However,
the physical quality of the input banknote was not considered, and evaluation of the fitness for
recirculation of banknotes was not reported in this study. Considering banknote fitness classification,
the method proposed in Reference [14] classifies banknote fitness based on the region of interest (ROI)
on banknote images and a fuzzy system. In this study, the whole banknote image was not used
for recognition; only certain regions on banknote images were cropped and used for extraction of
classification features, which are the average pixel values of ROIs. Since the ROIs on each type of
banknote images are different according to the denomination and input direction, this study was
conducted on the assumption that the types of banknotes were manually pre-classified. Only two
images of each banknote were used for recognition: VR image and NIRT image, which were captured
on the same side of the input banknote. The fuzzy-based classifier used in this research does not
require a training process; however, it was only applied to classify the fitness of banknotes into two
classes of “fit” and “unfit” based on the soiling level on the banknote surface (number of output
classes is two). Using deep-learning techniques, the research in Reference [15] aimed at classification
of banknote fitness regardless of the denomination and input direction of banknotes belonging to
certain currency types. In this study, only one gray-scale image of banknotes captured by VR sensors
was used for classification by CNN. Banknotes of INR and KRW were classified into three fitness
levels of “fit”, “normal”, and “unfit”, and the number of fitness levels for USD was two. Although
the pre-classification of denomination and input directions were not necessary, the experiments were
conducted separately on each national currency. In other words, currencies type still had to be manually
selected when the number of output classes was two or three. To overcome the issue in Reference [15],
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the fitness classification method proposed in Reference [11] was able to simultaneously classify fitness
of banknotes from three national currencies without pre-classification of currency type, denomination,
and input direction of banknotes. A CNN was used as the classifier, and the input images were the
combination of three images, which were infrared light transmission IRT and two-side VR images of
banknotes captured by three sensors at the same time. In this study, banknotes were classified only
into fitness levels without being considered the types of currency, denomination, and input direction
(number of output classes was five).

Based on the analysis of the advantages and disadvantages of the previous related works,
we propose a method for classifying both banknote type and fitness using CNN on multi-channel
banknote images consisting of VR and IRT images. The problem of a large number of output classes in
our proposed method due to multiple currency types and fitness levels can be solved by utilizing the
advantage of intensive training process of deep CNN. We also employ additional CNN for estimating
fitness values of banknotes using a regression method with quantized average gray values of VR
images. The performance of the CNN classifier is evaluated by recognition accuracy, meanwhile the
performance of the CNN fitness value estimator is evaluated through the consistency of the estimated
values among trials of each banknote by our proposed criterion. Table 1 summarizes the strength and
weakness of the previously mentioned studies compared to our proposed method. In Table 2, we give
the details of the banknote datasets used for experiments in the previous studies.

Table 1. Summary of related works on banknote recognition and fitness classification considering the
variety of currency types.

Category Method Advantage Disadvantage

Banknote
recognition

Single Currency
Recognition

- Using HSV color features
and template matching [3].
- Using QWT, GGD feature
extraction, and NN
classifier [4].
- Using similarity map, PCA,
and K-means-based
classifier [5,6].

Simple in image
acquisition and
classification as
recognition process is
conducted on separated
currency types with
visible light image.

Currency types need
to be manually
selected before
recognition.

Multiple Currency
Recognition

- Using GA for optimizing
feature extraction and NN
for classifying [7].
- Using multi-templates and
correlation matching [8].
- Using CNN [9].
- Using HMM for modeling
banknote texture
characteristic [10].

Multinational banknote
classification methods do
not require the
pre-selection of
currency type.

Classification task
becomes complex as
the number of classes
increase.

Banknote fitness
classification

Using Single Sensor

- Using image morphology
and Otsu’s
thresholding [12].
- Using CNN with VR
images [15].

Simple in image
acquisition because of
using only one type of
visible-light banknote
image.

Currency types need
to be manually
selected.

Using Multiple
Sensors

- Using fuzzy system on VR
and NIRT banknote
images [14].
- Using CNN with VR and
IRT images for
multinational banknote
fitness classification [11].

Performance can be
enhanced by using
multiple imaging sensors.

Complexity and
expensiveness in the
implementation of
hardware.

Banknote type and fitness classification
(proposed method)

Using CNN for banknote
recognition and fitness
classification of banknotes
from multiple countries
with VR and IRT images.

Take advantage of deep
learning technique on
CNN for a large number
of classes when
combining banknote
recognition and fitness
classification into one
classifier.

Time consuming
procedure for CNN
training is required.
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Table 2. Summary of banknote datasets used for experiments in the previous studies (Ref: Reference(s),
N/A: Not Available).

Category Ref. Currency Type Output Description Dataset
Availability

Banknote
Recognition

Single Currency
Recognition

[3] INR, AUD, EUR,
SAR, USD

2 denominations for
each of INR, AUD,
EUR, and SAR. USD
was not reported.

N/A

[4] USD, RMB, EUR
24 classes of USD, 20
classes of RMB, and
28 classes of EUR.

N/A

[5]

USD, Angola
(AOA), Malawi
(MWK), South
Africa (ZAR)

68 classes of USD, 36
classes of AOA, 24
classes of MWK, and
40 classes of ZAR.

N/A

[6]

Hongkong (HKD),
Kazakhstan (KZT),
Colombia (COP),
USD

128 classes of HKD,
60 classes of KZT, 32
classes of COP, and
68 classes of USD.

N/A

Multiple Currency
Recognition

[7]
Japan (JPN), Italy
(ITL), Spain (ESP),
France (FRF)

23 denominations. N/A

[8] KRW, USD, EUR,
CNY, RUB 55 denominations. N/A

[9] CNY, EUR, JPY,
KRW, RUB, USD

248 classes of 62
denominations. DMC-DB1 [9]

[10]

23 countries (USD,
RUB, KZT, JPY,
INR, EUR,
CNY, etc.)

101 denominations. N/A

Banknote Fitness Classification

[11] INR, KRW, USD

5 classes with 3
classes of case 1 (fit,
normal and unfit)
and 2 classes of case 2
(fit and unfit).

DF-DB2 [11]

[12] EUR, RUB 2 classes (fit
and unfit). N/A

[14] USD, KRW, INR 2 classes (fit
and unfit). N/A

[15] KRW, INR, USD

3 classes of KRW and
INR (fit, normal, and
unfit), 2 classes of
USD (fit and unfit).

DF-DB1 [15]

Banknote type and fitness classification
(proposed method) INR, KRW, USD

116 classes of
banknote kinds and
fitness levels.

DF-DB3 [20]

3. Contributions

In this study, we automatically classified banknotes in both type (national currency type,
denomination, input direction) and fitness level (fit, normal, and unfit), and none of these categories
were manually pre-classified (number of output classes is 116). The three channel images of input
banknotes composed by IRT and two-side VR images were used with CNN, but we conducted
the experiments with various CNN architectures for comparison, rather than using only one CNN
architecture as in previous studies, since the number of output classes in this study was huge compared
to previous works. Beside fitness classification, we also newly proposed a fitness value estimation of
banknote using regression technique of CNN, and using a new criterion of average quantization error
(AQE) to evaluate the regression results among trials of input banknotes.

Our proposed method is novel in the following aspects compared to previous works:
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• This is the first study on multinational banknote classification of both type and fitness. Considering
the related works, each category of banknote type and banknote fitness was reported in the
separate studies.

• Our proposed method can simultaneously classify banknote of three types of currency, which are
INR, KRW, and USD with three fitness levels in the cases of INR and KRW (namely fit, normal,
and unfit) and two levels in the case of USD (namely fit and unfit), into separate classes of currency
type, denomination, input direction and fitness levels. To handle with the huge number of output
classes, we adopt CNN for the multinational banknote classification of both type and fitness.

• We also estimate the fitness value of input banknote by using CNN regression with the average
pixel values of multiple trials of the banknote. For evaluating the estimation results, we considered
the consistency of the regression testing results among trials of banknotes, and proposed a criteria
called AQE.

• Dongguk Banknote Type and Fitness Database (DF-DB3) and a trained CNN model with
algorithms are made available in Reference [20] for fair comparison by other researchers.

4. Proposed Method

4.1. Overview of the Proposed Method

Figure 1 shows the overall flowchart of the proposed method. Banknote images are captured
by three sensors which are an IRT and two VR sensors of front and back sides of the banknote.
The subsequent preprocessing step including segmentation of the banknote regions from captured
images and equally resized to the resolution of 240 × 120 pixels to be inputted to the CNN models in
the next steps. Preprocessed banknote images are fed into CNN in the form of a three-channel image,
in which the IRT, front side VR, and back side VR images are the first, second, and third channels,
respectively. There are two trained CNN models in our proposed system: the first CNN (CNN-1)
classifies banknotes for the currency type, denomination, input direction, and fitness level, and the
second CNN (CNN-2) estimates the fitness value of the input banknote, as shown in Figure 1.
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4.2. Acquisition and Preprocessing of Banknote Images

For acquisition of the banknote images in this study, we used capture device including imaging
sensors of various wavelengths equipped in the commercial counting machine [21]. IRT and VR
images are selected as they can reflect the fitness characteristics of banknotes according to the analysis
of the lightning mechanism on new and old banknotes [14]. Each imaging sensor is a line sensor and
banknotes images are captured by continuously triggering the line sensor when banknotes are passed
through the machine in high speed. The successive captured line images which have the resolution of
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1584 pixels are concatenated to form a two-dimensional image of the input banknote. The number
of triggering times in the case of INR or KRW for VR and IRT images were 464 and 116, respectively,
meanwhile, those in the case of USD were 350 and 175, respectively. Consequently, captured images
in the case of USD had the resolutions of 1584 × 350 and 1584 × 175 pixels for VR and IRT images,
respectively, and for the case of INR or KRW, the resolutions of VR and IRT images are 1584 × 464 and
1584 × 116 pixels, respectively.

The denomination of banknote is typically determined based on classifying banknote images
according to the input direction. Using contact sensors, the input banknote’s image can be captured in
one of the four directions, denoted by A, B, C, and D, which are forward front side, backward front
size, forward back side, and backward back side, respectively. Examples of VR banknote images in
these directions are shown in Figure 2. The capture device simultaneously captures VR images of the
input banknote on the front and back side by two sensors denoted by VR1 and VR2, respectively, and
IRT image by the sensor from the same side of VR1. Examples of these capture images are shown in
Figure 2.
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Figure 2. Example of KRW banknote images captured by the device in: (a) front side’s forward VR 
image (A direction); (b) front side’s backward VR image (B direction); (c) back side’s forward VR 
image (C direction); (d) back side’s backward VR image (D direction); (e) forward IRT image and (f) 
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original images in (a–f), respectively. 

  

Figure 2. Example of KRW banknote images captured by the device in: (a) front side’s forward VR
image (A direction); (b) front side’s backward VR image (B direction); (c) back side’s forward VR image
(C direction); (d) back side’s backward VR image (D direction); (e) forward IRT image and (f) backward
IRT image; (g–l) are the corresponding banknote region segmented images from the original images in
(a–f), respectively.

The original captured banknote images consist of the foreground banknote region and background,
as shown in Figure 2a–f. We used the built-in segmentation algorithm of the counting machine [15] to
extract the banknote region from the captured image in order to remove the redundant information and
fix the rotation and displacement of the banknote when being inserted to the machine. The segmented
images are then resized to 240 × 120 pixels and combined into a three-channel image composed by
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IRT, VR1, and VR2 images as the first, second, and third channels, respectively, to be used as the input
image to the CNN models in the next steps. Examples of the segmented banknote images are also
shown in Figure 2.

4.3. CNN Models for Banknote Classification

In this research, we classified banknotes from multiple countries according to both banknote
types and fitness levels. As a result, the number of output classes is relatively large, compared to the
previous works on banknote fitness classification, and the deeper CNN structures should be considered.
In our study, we compared the performance of the CNN architectures of AlexNet [22], GoogleNet [23],
ResNet-18, and ResNet-50 [24]. Although GoogleNet and ResNets have the deeper structures with
more convolutional layers than AlexNet which has only five convolutional layers (denoted by “Conv”
in Figure 3), their layers can also be grouped into five convolutional groups, denoted by Conv1 to
Conv5, as shown in Figure 3. The original CNN architectures used squared input images of 224 × 224
pixels [22–24]; however, the shape of banknotes is typically rectangular. Therefore, we modified the
input size of the CNNs structures to 240 × 120 pixels with three channels and trained the modified
model from scratch. This helps to not only adapt to the rectangular shape of banknotes but also reduces
the numbers of learnable parameters in the networks. The detail architectures of the CNNs with each
layer’s attributes and output feature map size are given in Tables 3–6.
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Table 3. Architecture of AlexNet used in this study (unit: pixel).

Layer Name Filter Size Stride Padding Number of Filters Output Feature Map Size

Image Input Layer 120 × 240 × 3

Conv1
Conv. 7 × 7 × 3 2 0 96 57 × 117 × 96
CCN

Max Pooling 3 × 3 2 0 28 × 58 × 96

Conv2
Conv. 5 × 5 × 96 1 2 128 28 × 58 × 128
CCN

Max Pooling 3 × 3 2 0 13 × 28 × 128

Conv3 Conv. 3 × 3 × 128 1 1 256 13 × 28 × 256

Conv4 Conv. 3 × 3 × 256 1 1 256 13 × 28 × 256

Conv5
Conv. 3 × 3 × 256 1 1 128 13 × 28 × 128

Max Pooling 3 × 3 2 0 6 × 13 × 128

Fully Connected Layers

Fc1 4096
Fc2 2048

Dropout
Fc3 116

Softmax
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Table 4. Architecture of GoogleNet used in this study. “Conv. 1×1 (a)” and “Conv. 1×1 (b)” denote the 1 × 1 convolutional layers used for 3 × 3 and 5 × 5
convolutional computing reduction, respectively, “Conv. 1×1 (c)” denotes the 1 × 1 convolutional layers used for 3 × 3 pooling dimensional matching (unit of filter
size, stride, and feature map size: pixel).

Layer Name Filter
Size/Stride

Number of Filters Output
Feature Map

SizeConv. 1 × 1 Conv. 1 × 1 (a) Conv. 3 × 3 Conv. 1 × 1 (b) Conv. 5 × 5 Conv. 1 × 1 (c)

Image Input Layer 120 × 240 × 3

Conv1

Conv. 7 × 7/2 64 60 × 120 × 64

Max Pooling 3 × 3/2 30 × 60 × 64

CCN

Conv2

Conv. 1 × 1/1 64 30 × 60 × 64

Conv. 3 × 3/1 192 30 × 60 × 192

CCN

Max Pooling 3 × 3/2 15 × 30 × 192

Conv3

Inception3a 64 96 128 16 32 32 15 × 30 × 256

Inception3b 128 128 192 32 96 64 15 × 30 × 480

Max Pooling 3 × 3/2 7 × 15 × 480

Conv4

Inception4a 192 96 208 16 48 64 7 × 15 × 512

Inception4b 160 112 224 24 64 64 7 × 15 × 512

Inception4c 128 128 256 24 64 64 7 × 15 × 512

Inception4d 112 144 288 32 64 64 7 × 15 × 528

Inception4e 256 160 320 32 128 128 7 × 15 × 832

Max Pooling 3 × 3/2 3 × 7 × 832

Conv5

Inception5a 256 160 320 32 128 128 3 × 7 × 832

Inception5b 384 192 384 48 128 128 3 × 7 × 1024

Average
Pooling 3 × 7/1 1 × 1 × 1024

Fully-Connected
Layer

Dropout

Fc 116

Softmax
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Table 5. Architecture of ResNet-18 used in this study (unit: pixels).

Layer Name Filter Size Stride Padding Number of Filters Output Feature Map Size

Image Input Layer 120 × 240 × 3

Conv1

Conv. 7 × 7 × 3 2 3 64 60 × 120 × 64

BN

Max Pooling 3 × 3 2 1 30 × 60 × 64

Conv2
Res2a

Conv. 3 × 3 × 64 1 1 64
30 × 60 × 64

Conv. 3 × 3 × 64 1 1 64

Res2b
Conv. 3 × 3 × 64 1 1 64

30 × 60 × 64
Conv. 3 × 3 × 64 1 1 64

Conv3
Res3a

Conv. 3 × 3 × 64 2 1 128
15 × 30 × 128Conv. 3 × 3 × 128 1 1 128

Conv. (Shortcut) 1 × 1 × 64 2 0 128

Res3b
Conv. 3 × 3 × 128 1 1 128

15 × 30 × 128
Conv. 3 × 3 × 128 1 1 128

Conv4
Res4a

Conv. 3 × 3 × 128 2 1 256
8 × 15 × 256Conv. 3 × 3 × 256 1 1 256

Conv. (Shortcut) 1 × 1 × 128 2 0 256

Res4b
Conv. 3 × 3 × 256 1 1 256

8 × 15 × 256
Conv. 3 × 3 × 256 1 1 256

Conv5

Res5a

Conv. 3 × 3 × 256 2 1 512
4 × 8 × 512Conv. 3 × 3 × 512 1 1 512

Conv. (Shortcut) 1 × 1 × 256 2 0 512

Res5b
Conv. 3 × 3 × 512 1 1 512

4 × 8 × 512
Conv. 3 × 3 × 512 1 1 512

Average Pooling 4 × 8 0 1 × 1 × 512

Fully-Connected Layers Fc 116

Softmax
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Table 6. Architecture of ResNet-50 used in this study (unit: pixels).

Layer Name Filter Size Stride Padding Number of Filters Output Feature Map Size

Image Input Layer 120 × 240 × 3

Conv1

Conv. 7 × 7 × 3 2 3 64 60 × 120 × 64

BN

Max Pooling 3 × 3 2 1 29 × 59 × 64

Conv2

Res2a

Conv. 1 × 1 × 64 1 0 64

29 × 59 × 256
Conv. 3 × 3 × 64 1 1 64

Conv. 1 × 1 × 64 1 0 256

Conv. (Shortcut) 1 × 1 × 64 1 0 256

Res2b-c

Conv. 1 × 1 × 256 1 0 64

29 × 59 × 256Conv. 3 × 3 × 64 1 1 64

Conv. 1 × 1 × 64 1 0 256

Conv3

Res3a

Conv. 1 × 1 × 256 2 0 128

15 × 30 × 512
Conv. 3 × 3 × 128 1 1 128

Conv. 1 × 1 × 128 1 0 512

Conv. (Shortcut) 1 × 1 × 256 2 0 512

Res3b-d

Conv. 1 × 1 × 512 1 0 128

15 × 30 × 512Conv. 3 × 3 × 128 1 1 128

Conv. 1 × 1 × 128 1 0 512

Conv4

Res4a

Conv. 1 × 1 × 512 2 0 256

8 × 15 × 1024
Conv. 3 × 3 × 256 1 1 256

Conv. 1 × 1 × 256 1 0 1024

Conv. (Shortcut) 1 × 1 × 512 2 0 1024

Res4b-f

Conv. 1 × 1 × 1024 1 0 256

8 × 15 × 1024Conv. 3 × 3 × 256 1 1 256

Conv. 1 × 1 × 256 1 0 1024

Conv5

Res5a

Conv. 1 × 1 × 1024 2 0 512

4 × 8 × 2048Conv. 3 × 3 × 512 1 1 512

Conv. 1 × 1 × 512 1 0 2048

Conv. (Shortcut) 1 × 1 × 1024 2 0 2048

Res5b-c

Conv. 1 × 1 × 2048 1 0 512

4 × 8 × 2048Conv. 3 × 3 × 512 1 1 512

Conv. 1 × 1 × 512 1 0 2048

Average Pooling 4 × 8 1 0 1 × 1 × 2048

Fully Connected Layers
Fc 116

Softmax
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In all of the CNN structures, rectified linear units (ReLUs) are passed through each convolutional
layer and the fully-connected layers. This activation function is popularly used in CNN as it works
as a rectifier that allows only the positive values to pass and helps to improve training speed as
well as avoid the gradient-vanishing, compared to the conventional sigmoid function [11,25]. Local
response normalization units are used in all the CNN architectures to aid generalization. In the cases
of AlexNet and GoogleNet, cross-channel normalization (CCN) is used at the first two convolutional
layers [22,23]. In the cases of ResNets, batch normalization (BN) that allows speeding up training of
CNN and reduce the sensitivity to network initialization is used in the first convolutional layers and
before ReLU units [24,26]. The formula of CCN and BN are shown in the following Equations (1) and
(2), respectively.

x =
x(

K +
α·SSqr

WindowChannelSize

)β
(1)

x = γ

(
x − µB

σB

)
+ δ (2)

where x is the mini-batch data or the activity of the kernel, x is the value obtained by normalization.
In CCN, K, α, and β are the hyperparameters, SSqr is the sum of the squared elements in the
normalization window with the size defined by WindowChannelSize argument. The parameters of
WindowChannelSize, K, α, and β for CCN are chosen to be 5, 1, 10−4, and 0.75, respectively [11]. In BN,
µB and σB are the mean and square-root of the variance over a mini-batch and over each input channel,
respectively; γ and δ are the learnable scale factor and offset values, respectively.

The GoogleNet architecture consists of the convolutional blocks called Inception modules [23],
denoted by “Inception” in Figure 3. The structure of Inception module is shown in Figure 4. The idea
of Inception structure is to perform convolution on an input with three different sizes of filters (1 × 1,
3 × 3, and 5 × 5) to extract the features from the meaningful details of various scales on images. With
the 1 × 1 convolutional layers in each branch, the computational complexity can be reduced before the
3 × 3 and 5 × 5 convolutions [23]. The output feature maps of the filter branches are concatenated
along the third dimension at the output of the Inception block. The numbers of filters in the Inception
modules of the GoogleNet architecture are varied according to the convolutional groups, and the size
of the feature maps at the output of each group is shown in Table 4.
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In the ResNets architectures, the residual blocks are introduced with either two-layer depth used
in ResNet-18 (denoted by “2-Layer-Res” in Figure 3) or three-layer depth used in ResNet-50 (denoted
by “3-Layer-Res” in Figure 3), as shown in Figure 5. These structures were proposed in Reference [24] to
solve the problem of degradation in the performance when the network depth increases, that is, when
deep networks starts converging, with the increment of the network depth, accuracy becomes saturated
and then degrades. The worst case happens when the deeper network layers act as an identity function
where the input and output are equal. If the identity function is optimal, the shortcut connections can
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be used either directly when the input and output are of the same dimension (Figure 5a), or with the
projection by using 1 × 1 convolution for dimensional matching (Figure 5b) [24], and the output of the
residual block is the element-wise summation of the feature map of two or three-layer convolutional
block and that delivered from the input by the skip connection. The details architectures of ResNet-18
and ResNet-50 with 240 × 120 × 3-pixel input images used in our study are described in Tables 5
and 6, respectively.
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The convolutional layers are finally connected to the fully connected layers, which act as the
classifier in the CNN architectures, by passing the feature map through a pooling layer. In the case
of AlexNet, max pooling was used, meanwhile in the case of the remaining CNN structures, average
pooling was used, as shown in Tables 3–6. There are three fully-connected layers denoted by “Fc1”
to “Fc3” in Table 3 of the AlexNet architecture, and only one fully-connected layer in each case of
GoogleNet, ResNet-18, and ResNet-50, denoted by “Fc” in Tables 4–6, respectively. In the connections
before the fully-connected layers of AlexNet and GoogleNet, a dropout layer was employed to prevent
overfitting in the training process of the network. This is a regularization method that randomly
disconnects the network nodes during training [27]. In this study, the probability of a network
connection to be dropped out by this method was chosen to be 50% [11,22].

In the classification CNN, denoted by CNN-1 in Figure 1, the number of output nodes is
the same with the number of classes. In this study, banknotes are classified in both types of
currency, denomination and input direction as well as fitness levels. In the INR dataset there are six
denominations, captured in two input directions with three levels of fit, normal, and unfit. Totally there
were six denominations × 2 directions × 3 fitness levels = 36 classes of INR banknotes. In the KRW
dataset, there were two denominations with the similar three fitness levels, and two denominations
with two levels of fit and normal, all were captured in four directions, resulting to 40 classes of
banknotes in this dataset. The remaining USD dataset consists of five denominations of banknotes
inputted in four directions, and two fitness levels of each kinds. There are consequently 40 classes of
banknote type and fitness in USD dataset. Totally there were 116 (36 + 40 + 40) classes in the banknote
dataset used in our study. From the output yi of the ith node in the last fully connected layer consisting
of N nodes, the input banknote was considered to have the probability pi of belonging to the ith class by
using the normalized exponential function (softmax function) [9,22]. The Softmax function is described
as the following in Equation (3).

pi =
eyi

∑N
i=1 eyi

(3)
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4.4. Banknote Fitness Value Estimation by CNN Regression

In the case of CNN-2 used for fitness value estimation, as shown in Figure 1, the classification
output layer in the architecture of the corresponding CNN-1 was replaced by the regression layer
which has only one output. The loss function was also replaced in the regression training process, from
the cross-entropy loss used in CNN-1 training into the half-mean-squared-error loss for the CNN-2
training. With N samples of training data, K output classes, the loss functions of cross-entropy and
half-mean-squared-error used in CNN classification and regression were calculated as the following
Equations (4) and (5), respectively [28]:

LCE = −
N

∑
i=1

K

∑
j=1

tij ln yij (4)

LHMSE =
1
2

N

∑
i=1

(ti − yi)
2

N
(5)

where LCE and LHMSE are cross-entropy loss and half-mean-squared-error loss, respectively. In (1),
tij is the indicator representing the belonging of ith sample to the jth class, yij is the output of ith
sample for jth class. In (2), ti and yi are the target output and the network’s prediction value of ith
sample, respectively.

In the dataset used in our research, each banknote of KRW and INR was inserted into the capturing
device for multiple times. As a result, the banknote image datasets of KRW and INR consist of images
that represent multiple trials of the banknotes. In this study, we proposed the fitness value estimation
method that procedures the unique result for each banknote regardless of the trials. The reference
target values for fitness values regression were calculated by averaging the pixel values of the VR
trial images that belonged to each of the input banknotes. The VR images were chosen because they
show good reflection of the fitness characteristic of banknotes as analyzed in previous studies [14,15].
Here, we expect that the average pixel values of unfit banknote images are smaller than those of the fit
banknote images, as the VR images tend to become darker when the banknotes’ quality degrades [14].
This can be confirmed by the scatter plots of the examples of average VR1 and VR2 pixel values of
banknotes from the same types (denomination and direction) as in Figure 6. It can be seen from the
Figure 6 that there are relative differences in the average brightness of the VR banknote images of
both sides among three levels of fitness. As a result, average pixel values of VR images were used for
extracting the reference target values of CNN regression.

When we obtained all of the average VR trial image pixel values of the banknotes in the training
dataset, we perform min–max scaling and rounding (quantization) on the obtained values to have
the integer values of 1 to 10 and reassign these quantized values to the sample images as the target
output fitness values. This quantization task is performed separately according to banknote types of
denomination and input direction, because the patterns and brightness of VR images are different
among types of banknotes. Using the integer values for fitness value also helps on evaluation of the
estimation results’ consistency, in which, if the fitness values are integer number in the range of 1 to 10,
in other words, quantized to have the discrete fitness level from 1 (the most unfit) to 10 (the most fit),
the estimated values from the trials of a banknote should distribute in as few quantization levels as
possible. The criterion for evaluating the performance of the fitness value estimation will be explained
in the next section with experimental results.
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5. Experimental Results

5.1. The Experimental Banknote Image Dataset

In this study, we used the multinational banknote image dataset composed of banknotes from three
national currencies, which are INR, KRW, and USD. In the INR dataset there were six denominations
including 10-, 20-, 50-, 100-, 500-, and 1000-rupee banknotes with three levels of fitness of fit,
normal, and unfit. In KRW, banknotes with the same three levels of fitness were collected from
two denominations of 1000 and 5000 won, and those with two levels of fit and normal were collected
for KRW 10,000 and KRW 50,000. In the remaining dataset of USD, two levels of fit and unfit were
defined for five denomination of 5, 10, 20, 50, and 100 dollars. Examples of banknote images in each
dataset with different fitness levels are shown in Figures 7–9. In the cases of INR and KRW, input
banknote images consisted of three images: two VR images captured on both front and back sides of
the banknote, denoted by VR1 and VR2 images, respectively, and one IRT image captured from the
same side of VR1. The number of images per banknote in the case of USD was two images, which were
VR and IRT captured from the same side. By this capturing method, the number of input banknotes in
the dataset was equal to the number or IRT images in all three types of currency. We combined these
captured banknote images into a three-channel image, in which the first, second, and third channels
are the IRT, VR1, and VR2 of the input banknote, to be inputted to the CNN for classification. In the
case of USD, the VR images were duplicated in the second and third channel of the input image to
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adapt to the CNN model. The duplication of VR images for the second and third channels of USD
input images may not be the best solution. In order to compensate the lack of VR2 images in the
case of USD, we can consider the approach of image synthesis techniques such as using PCA [29] or
using the generative adversarial networks (GANs) [30,31]. However, image generation is not the main
purpose of this research and can be considered for the future works. The number of input banknotes
in each fitness levels of each type of currency and denomination are shown in Table 7. This dataset
is available as DF-DB3 in Reference [20]. Including the denominations, input directions and fitness
levels of banknotes, there are totally 116 classes in our experimental multinational banknote type and
fitness database.
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Table 7. Number of input banknotes in the experimental multinational banknote fitness dataset.

Banknote
Type

Number of Banknotes Number of Banknotes after Data Augmentation
Fit Normal Unfit Fit Normal Unfit

INR10 1299 553 196 2598 2212 1960
INR20 898 456 57 2694 2280 1425
INR50 719 235 206 1438 1175 2060

INR100 1477 1464 243 2954 2928 1944
INR500 1399 435 130 2798 2175 1950
INR1000 153 755 71 1530 2265 1775

KRW1000 3690 3344 2695 3690 3344 2695
KRW5000 3861 3291 3196 3861 4045 3196

KRW10000 3900 3779 N/A 3900 3779 N/A
KRW50000 3794 3799 N/A 3794 3799 N/A

USD5 177 N/A 111 3540 N/A 2775
USD10 384 N/A 83 3072 N/A 2075
USD20 390 N/A 51 3120 N/A 1275
USD50 851 N/A 42 4255 N/A 1050

USD100 772 N/A 90 3860 N/A 2250
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5.2. Training and Testing for Banknote Type and Fitness Classification

In the first experiments of training and testing for banknote type and fitness classification using
CNN or CNN-1 in Figure 1, we performed the two-fold cross-validation. For this purpose, we randomly
divided the banknote dataset into two parts, used one for training and another one for testing, and
we repeated the process with these two parts swapped. The overall performance was evaluated by
calculating the average classification accuracy of the two testing results.

There are four CNN architectures used for experiments in this study: AlexNet, GoogleNet,
ResNet-18, and ResNet-50 [22–24], as mentioned in Section 4.3. ResNet-50 was tested in the
comparative experiments in the previous study [11]. We further tested with the shallower version
of ResNet, which is ResNet-18. The other CNN architectures such as VGG-16, VGG-19 [32], and
ResNet-101 were taken into account. However, due to the large number of learnable parameters in
these network architectures [33], the models were not able to be trained on our system and an “Out of
Memory” error was thrown back. As a result, we tested the performance of our method with the four
mentioned CNN architectures. We modified the image input layers of these architecture to the size of
240 × 120 × 3 to adapt the rectangular shapes of banknotes and train the CNN models from scratch.
As a result, intensive training was required, and we performed data augmentation to generalize the
training data and reduce overfitting [9]. The data augmentation method was based on boundary
cropping of the training images [9,11,15], that is, we randomly cropped images of the training dataset in
the range of 1 to 10 pixels on the four boundaries. The multiplication factors were varied according to
the classes of banknotes so that the numbers of training data were increased to be relatively comparable
among classes, as shown in Table 7. Our training and testing experiments were conducted by using
the MATLAB implementation of CNN [34] on a desktop computer with the following configuration:
Intel®Core™ i7-3770K CPU @ 3.50 GHz [35], 16 GB DDR3 memory, and NVIDIA GeForce GTX 1070
graphics card (1920 CUDA cores, 8 GB GDDR5 memory) [36]. The training from scratch method
was the stochastic gradient descend (SGD), which updates the network parameters on batches of
data points at a time [28], with 150 training epochs for GoogleNet and 100 epochs for the remaining
architectures, learning rate of each architectures of AlexNet, GoogleNet, ResNet-18, and ResNet50
initiated at 0.01, 0.001, 0.01, and 0.1, respectively, and reduced by 0.1 times at every 20 epochs. We also
conducted the experiments of transfer learning [34] with the pretrained CNN models by ImageNet
database of the same architectures [33] and compared the testing results with those obtained by CNN
models trained from scratch in this study. In the training process of transfer learning, the number of
training epochs was 15 and learning rate was 0.001.

In the next testing experiments, we performed the classification with the trained CNN models
on the remaining subsets in the two-fold cross-validation. From the obtained accuracies of the two
testing subsets, we calculated the average accuracy of the CNN classifier by taking the ratio of correctly
recognized cases and total number of samples as the following formula [37]:

Acc =
NGA2 + NGA1

N
(6)
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where NGA1 and NGA2 are the number of accurately classified (genuine acceptance) cases of the first
and second testing results in the two-fold cross-validation, N is the total number of banknotes in
the dataset, and Acc is the average classification accuracy. Figure 10 shows the results of average
classification accuracy for each case of CNN architecture, with both the models training from scratch
or transfer learning.
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Figure 10. Average accuracy of banknote type and fitness classification using various CNN architectures
with training from scratch and transfer learning.

It can be seen from the Figure 10 that in most of the cases, CNN models trained from scratch
yielded better results than those trained by transfer learning. This can be explained first by the
difference in the input image size of the CNN models trained from scratch and that of the pretrained
CNN models. By using the size of 240 × 120 × 3 pixels, the input images reflect better the rectangular
shape of banknotes than those with square shape in the cases of pretrained CNNs. In this study, the
rectangular banknote images are reshaped to squared images with the size of 224 × 224 × 3 pixels
to be fed to the pretrained CNN models by bilinear interpolation algorithm. The unevenness of the
average testing accuracies between training from scratch and transfer learning was smaller in the cases
of deep networks than that in the case of the shallow network of AlexNet, the reason for this result is as
follows: the classifier parts of the deep networks consist of only one fully-connected layer, meanwhile
there are three fully-connected layers in the case of AlexNet, as shown in Figure 3. As a result, through
intensive training from scratch with banknote image dataset, the classifier part of AlexNet-based
proposed method performed better than that of the pretrained AlexNet model that was trained by
the ImageNet database [33]. The very deep network architectures such as GoogleNet and ResNet-50
gave less accuracies than AlexNet and ResNet-18, because the deep networks typically required more
intense training task. We further investigated the average accuracy with the certain tasks of the system,
which are banknote type recognition and banknote fitness classification, with the obtained results.
For calculating these results, besides the genuine acceptance cases for both banknote type and fitness
classification, we considered the cases that although banknote fitness was misclassified but banknote
type was correctly recognized as the genuine acceptance cases of banknote types, and vice versa as the
genuine acceptance cases of banknote fitness. With the obtained number of genuine acceptance cases
for both categories, average accuracies were calculated as in Equation (6). The results are shown in
Figure 11.
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Figure 11. Average accuracy calculated separately for banknote recognition and fitness classification
using various CNN architectures with training from scratch and transfer learning.

It can be seen from Figure 11 that the error rates of the overall results in Figure 10 were mostly
caused by the error in the fitness classification task of the system. Although the banknote recognition
results were slightly better in the cases of ResNets, the fitness classification results were still the best
in the case of AlexNet. Moreover, the difference between the accuracies of banknote recognition and
fitness classification in the case of AlexNet was the smallest among the compared CNN architectures,
where the second smallest was that of ResNet-18, and both were the models fully trained by our
banknote image database. The results can be explained by the fact that the network architectures with
a smaller number of layers tend to perform better with a smaller dataset when training processes are
performed from scratch [38], especially when the training dataset has significant differences from that
used for pretraining the transfer learning models; in this case, they were our banknote fitness dataset
and the ImageNet database [33]. Since the difference between these two shallow networks were not
significant in both tasks of banknote recognition and fitness classification, and we chose either AlexNet
or ResNet-18 to modify to have rectangular input images of 240 × 120 × 3 as the CNN model for our
proposed method. In Figure 12, we show the examples of error cases occurring in the testing process
by our proposed method.
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Figure 12. Examples of error cases in the testing of our proposed method: (a) Case 1—unfit banknote
with banknote type correctly recognized but fitness level misclassified to normal; (b) Case 2—unfit
banknote with misclassified banknote type; and (c) Case 3—misclassification of both banknote type
and fitness. In (a) and (c), images were arranged similarly as those in Figure 7; in (b), images were
arranged similarly as those in Figure 9.
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In the first case of Figure 12a, the input banknote was unfit due to the stains which can be visible on
banknote images, but the overall brightness of the VR1 was slightly high. Consequently, the banknote
was misclassified to normal. In the second case of the USD image in Figure 12b, the banknote was
correctly classified as unfit, but the denomination was incorrectly recognized, as the quality of the
banknote affected the recognition result. In the last case of Figure 12c, the banknote was so severely
damaged that both the banknote type and fitness could not be recognized.

To test the difference in the classification results when the segmentation of the banknote region
from the original captured image was not used, we conducted comparative experiments with two-fold
cross-validation on the original captured banknote images, whose examples are shown in Figure 2a–f.
The original banknote images which include both banknote regions and background were equally
resized to 240 × 120 pixels and combined into a three-channel image in the order of IRT, VR1, and
VR2 images from first to third channels to be subsequently inputted to the CNN models. In these
comparative experiments, we tested the performance of using unsegmented banknote images with
two CNN architectures, which were AlexNet and ResNet-18 trained from scratch, as they gave better
results compared to the remaining architectures, as shown in Figure 10. The comparative experimental
results of the average classification accuracies with two-fold cross-validation are shown in Table 8.

Table 8. Comparative experimental results of the proposed method between with and without banknote
region segmentation.

Method
AlexNet ResNet-18

Banknote
Recognition

Accuracy

Fitness
Classification

Accuracy

Overall
Accuracy

Banknote
Recognition

Accuracy

Fitness
Classification

Accuracy

Overall
Accuracy

Using Original
Banknote Image 99.535 97.035 96.773 99.608 97.532 97.408

Using Segmented
Banknote Image

(Proposed Method)
99.935 97.928 97.926 99.936 97.678 97.690

The results given in Table 8 show that the segmentation step helped to boost the performance of
the proposed method, in terms of higher average classification accuracies compared to those when
not using banknote region segmentation. The reason for the experimental results can be explained
as follows. From the captured banknote images, the segmentation process extracts the banknote
regions which contain information of textures and patterns for classifying and removing redundant
data from the background. Moreover, the original captured images were also affected by rotation
and displacement of the banknotes when being inserted into the machine. As a result, the banknote
regions captured by various sensors cannot be aligned when being arranged into the three-channel
input image of CNN. When the banknote region segmentation was adopted, only the meaningful
information from banknote images were used for training the CNN models, and the trained filters
responded properly to the aligned banknote regions, which consequently helps to enhance the testing
accuracy and overall performance of the proposed method, as shown in Table 8.

For further confirm the generalization of the classification results of the CNN models trained from
scratch, we conducted the additional experiments with five-fold cross-validation. For this purpose,
we randomly divided the dataset into five subsets, used the combined four subsets for training and
the remainder for testing. This process of training and testing was repeated five times with the
subsets alternated. We subsequently calculated the average classification accuracies of the four CNN
architectures with the models trained from scratch. The experimental results are given in Figure 13.
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accuracy calculated separately for banknote recognition and fitness classification using various CNN
architectures with models trained from scratch.

The results given in Figure 13 shows that the average classification results were much enhanced
in the cases of AlexNet and ResNet-18 and outperformed the remaining CNN structures with five-fold
cross-validation, as the training tasks in the five-fold cross-validation were more intensive. The more
intensive training tasks also helped to increase the fitness classification results in the case of ResNet-18,
consequently enhancing the overall classification accuracy compared to the other CNN architectures,
as shown in Figure 13.

Once the CNN structure for banknote type and fitness classification (CNN-1) was determined, we
proceed to the experiments for the estimation of banknote fitness value using CNN regression (CNN-2)
in the next section.

5.3. Training and Testing for Banknote Fitness Value Estimation with CNN Regression

In the training and testing experiments for the second CNN which estimated the fitness value of
banknotes (CNN-2 in Figure 1), we removed the last classification layer of the CNN structure used for
banknote type and fitness classification (CNN-1) and replaced it with the regression layer that consisted
of only one output. The regression CNN models were trained with the reference target output values
calculated by quantization of the average VR image pixel values, as mentioned in Section 4.4. These
target output values had a range of integer numbers from 1 to 10, corresponding to the increment of
fitness of banknotes in the separate types of denomination and input direction.

The banknote datasets of INR and KRW composed of banknote images captured from input
banknotes that were inserted multiple times to the system, that is, there were multiple trials of
banknotes in the cases of INR and KRW. We evaluated the performance of the estimation task by
not only calculating the difference between desired and predicted output values but also assessing
the consistency of the estimated values among trials of a banknote. For this purpose, we performed
two-fold cross-validation on the banknote dataset with CNN regression using the same four CNN
architectures that were previously used for banknote classification with the same data augmentation
method. In the experiments of CNN regression training, number of training epochs for AlexNet was
100, and that for the other architectures were 60, learning rate for all the architectures was initially set
to 0.001, and reduced 10% every 20 epochs. In the CNN fine-tuning experiments, we set the number of
epochs and learning rate to 15 and 0.001, respectively, for all the pretrained models.
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In the experiments of fitness level estimation, we used the remaining subsets of the banknote
database that were not used for training in the two-fold cross-validation method to test the performance
of CNN regression. The first criterion to be calculated was root-mean-squared error (RMSE) between
predicted integer fitness value and the desired value. The calculation results of RMSE are shown in
Figure 14 for each CNN architecture with both training from scratch and transfer leaning.
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Figure 14. Average root-mean-squared error (RMSE) of banknote fitness estimation using various
regression CNN architectures with training from scratch and transfer learning.

Although the best regression testing result was obtained from ResNet-18 with transfer learning,
in term of low RMSE, it was difficult to determine whether the predicted values obtained from trials of
a certain banknotes in the dataset were similar to each other, in other words, the consistency of the
predicted results should be determined. For this purpose, we proposed a criterion to evaluate the
difference in the estimated fitness values among trials of a banknotes, called quantization error (QE),
as the predicted values were integers, then we calculate the average quantization error of the results
obtained from entire dataset. The basis of calculation process is illustrated in Figure 15.
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In Figure 15, it was assumed that we had three banknotes from a national currency with
denominations of 1000 inserted into the system several times, where each of these banknotes were
input from the front side, forward direction (denoted by 1000A-1 to 1000A-3). The examples of the
desired fitness value of each banknote and predicted values by CNN regression of each trial of the
banknote are shown in Figure 15. In the first case of 1000A-1, for most of the cases, fitness values
were correctly estimated and there were only two error cases, where differences from the desired
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values was 1. In the second case of 1000A-2, all the trials were predicted to have higher fitness values
than expected; however, the results were the same among trials. In this case, the consistency of the
estimated results was assured. In the last case, the predicted results spread to three levels, this shows
the worst consistency among three examples. The QE of each banknote was calculated as follow:

QE =

{
NQ−1
NT−1 if NT > 1

0 if NT = 1
(7)

where NQ is the number of belonging quantization levels of the trials’ predicted values, NT is the
number of trials per banknote. The QE had values in the range of 0 to 1, in which zero corresponds to
the best case (no quantization error, or all the predicted results have the same value) and 1 corresponds
to the worst case when all the trials have predicted values different from each other (NQ = NT). From
Figure 15, the QE of the 1000A-1 banknote was equal to (2 − 1)/(8 − 1) = 0.142, in the case of 1000A-2
it was zero, which was the best case, and the worst among the three examples was that of 1000A-3
with the QE = 0.222. With the QE obtained from each banknote’s trials, the average quantization error
(AQE) of the estimated results of the entire dataset was calculated by taking the weighted average of
QEs with number of trials per banknote as follow:

AQE =
∑M

i=1 NTiQEi

∑M
i=1 NTi

(8)

where QEi and NTi are quantization error and number of trials of the ith banknote in the dataset, M is
the total number of datasets. The denominator of Equation (8) is the total number of images in the
dataset. Figure 16 shows the comparison of AQE among fitness level estimation results of the CNN
architectures, with both training from scratch and transfer learning.
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The QE determination described above does not take into account the cases where the predicted
values were significantly different among trials of a banknote. That is, NQ in Equation (7) treats these
cases the same with the cases where the differences are only one level. To overcome this drawback,
we considered the range, i.e., the difference between the maximum and minimum of the estimated
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values among the trials of a banknote, and took the geometric average with the numerator of the QE
formula in Equation (7). The adjusted QE of a banknote, denoted by QEA is computed as follow:

QEA =


√
(NQ−1)R
NT−1 if NT > 1

0 if NT = 1
(9)

where R is the range of the estimated values of all the trial of the banknote. The remaining symbols
denote similar to those in Equation (7). If the differences among trials of a banknote are only one step
from each other, the value of R is equal to (NQ − 1), and the numerator of the Equation (9) becomes
equal to that of Equation (7). This case can be seen in the examples of Figure 15 as either the cases of
1000A-1 or 1000A-3 banknotes, where the R values were 1 and 2, equal to 2 levels minus 1 and 3 levels
minus 1 in the corresponding cases, respectively. If the differences among trials are larger, the value
of R increases and the QE of the banknote in such a case is larger than that of the case with smaller
differences among trials. With the adjusted QE, we calculated the AQE of the estimated results of the
dataset by replacing QE with QEA in the weighted average of Equation (8) and the results are shown
in Figure 17.
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The results in Figures 16 and 17 show that the proposed method using AlexNet trained from
scratch with modified input image size produced the best results based on the analysis of consistency of
estimated fitness values among trials of input banknotes with AQE criterion. The differences between
originally proposed and adjusted AQE results are not notable in all the cases, because the estimated
value of trials of each banknote in the dataset is not significantly different from each other. When
the range value is considered in the QE calculation, it did not much affect the overall AQE result.
In terms of low AQE, the best and second-best fitness estimation results were obtained from AlexNet
and ResNet-18 trained from scratch, similar to those in the banknote classification experiments in
the previous section, as shown in Figure 10. As a result, we can conclude that the proposed CNN
architecture based on ResNet-18 and AlexNet can be respectively used for classification of banknotes
and estimation of fitness value, as the obtained results outperformed the other architectures, in terms
of higher average classification accuracy and lower estimation error among trials of banknotes.

In order to further compare the performance of using our proposed method to that using the
previously reported methods in References [9,15] for recognition of both type and fitness of banknotes,
we conducted additional experiments on our database. Referring to References [9,15], we employed
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AlexNet CNN architecture with input VR images for classification of banknotes in both type and
fitness level, which were reported separately in these previous works [9,15]. This method of selecting
input banknote images and CNN architecture was also used for estimating banknote fitness values
in the comparative experiments to our proposed estimation method. The comparative experimental
results of our proposed method and the previous method with average accuracies and estimation
errors are shown in Table 9.

Table 9. Comparison of banknote type and fitness classification and banknote fitness value estimation
results by our proposed method to that of previous method. “RMSE” denotes root-mean-squared error,
“AQE” denotes average quantization error.

Method
Banknote Type and Fitness Classification

Accuracy (unit: %)
Banknote Fitness
Value Estimation

Banknote
Recognition

Accuracy

Fitness
Classification

Accuracy

Overall
Accuracy RMSE AQE

Using VR Images and AlexNet [9,15] 99.955 95.040 95.038 1.048 0.0688

Using IRT, VR
images and CNNs
(Proposed Method)

AlexNet 99.935 97.928 97.926 0.920 0.0513

ResNet-18 99.963 97.678 97.690 1.041 0.0522

It can be seen from Table 9 that the proposed method outperformed the previous method in term
of higher banknote classification accuracy and lower fitness value estimation error. The reason for
the comparative experimental results can be explained by the inclusion of the IRT banknote images
for classification and estimation of banknote fitness. The use of various sensors of visible-light and
near-infrared for capturing banknote images enabled the system to collect useful optical information
of banknotes in various wavelengths. This helped to increase the fitness classification accuracy and
consequently enhance the overall classification accuracy and reduce the fitness value estimation error,
as shown in Table 9.

6. Conclusions

In this study, we proposed a banknote classification method that simultaneously classifies
banknotes from multiple national currencies in both types and fitness levels using the combination of
IRT and VR images of the input banknote and the CNN. We also designed a CNN-based estimator of
banknote fitness value based on the regression of CNN with scaled average VR image pixel values of
banknotes. To evaluate the performance of the estimator, we proposed the criterion of AQE which is
used for determining the consistency of the fitness estimated values among trials of input banknotes.
The experimental results using two-fold cross-validation on the combined banknote image dataset
of INR, KRW, and USD banknotes showed that our proposed method yields good classification
and estimation performance and outperformed the other methods with various CNN architectures,
in term of higher classification accuracy and more consistent estimated values among banknotes’
trials. For future works, we planned to combine the other functionalities in the banknote sorting
domain, such as counterfeit detection or serial number recognition, to our system, as well as conduct
our research with various types of physical currencies. We also consider employing an ensemble of
CNN models for combining these banknote classification tasks and boost the overall performance of
the system.
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