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Abstract: Herein, the design for a tunable plasmonic refractive index nanosensor is presented.
The sensor is composed of a metal–insulator–metal waveguide with a baffle and a circular split-ring
resonator cavity. Analysis of transmission characteristics of the sensor structures was performed using
the finite element method, and the influence of the structure parameters on the sensing characteristics
of the sensor is studied in detail. The calculation results show that the structure can realize dual
Fano resonance, and the structural parameters of the sensor have different effects on Fano resonance.
The peak position and the line shape of the resonance can be adjusted by altering the sensitive
parameters. The maximum value of structural sensitivity was found to be 1114.3 nm/RIU, with a
figure of merit of 55.71. The results indicate that the proposed structure can be applied to optical
integrated circuits, particularly in high sensitivity nanosensors.

Keywords: plasmonic refractive index sensor; Fano resonance; finite element method;
metal–insulator–metal waveguide

1. Introduction

Surface plasmon polaritons (SPPs) are the electromagnetic wave modes spread along the metal
surface [1,2]. They arise from the coupling of incident photons and free electrons on the surface of
metals. The electric field intensity of SPPs decays exponentially in the direction perpendicular to
the metal-dielectric interface. SPPs break the traditional optical diffraction limit and can realize
the transmission and processing of optical information at a nanometer scale [3,4]. Specifically,
metal–insulator–metal (MIM) waveguide, which is one of the SPPs-based waveguides and has
the merits of strong local field enhancement characteristics, suitable propagation length, and easy
integration, and has potential application value in highly integrated photonic circuits [5,6]. There are
many optical devices that have been studied, such as plasmonic sensors [7–10], filters [11–13], and
splitters [14]. These devices are based on MIM waveguides and made up of waveguides and resonators.

Special optical effects can be produced by MIM waveguide coupled resonators, such as
Fano resonance [15–17] and in some cases, electromagnetically induced transparency (EIT) [18,19].
Fano resonance can be considered as an analogy of EIT [20]. Plasmonic systems based on Fano
resonance are likely to be highly sensitive sensors because of its sharp and asymmetrical line
shape [21,22], owing to which, its transmittance spectrum can be rapidly reduced from the peak
to the trough. The full wide half magnitude (FWHM) of this transmission spectrum is relatively narrow
and can be easily identified and tracked; thus, greatly improving the sensing resolution [23]. A large
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number of refractive-index sensor structures based on Fano resonance have been reported [24–28].
This includes a plasmonic Fano system consisting of a stub and a square-cavity resonator with a peak
sensitivity of 938 nm/RIU, and the obtained FOM* is approximately 1.56 × 105 [23]. It also includes
a symmetric waveguide structure consisting of a baffle coupled with an M-type cavity [29], which
can attain a sensitivity of 780 nm/RIU and the FOM* is 1.35 × 104; and a nanosensor consisting of an
MIM waveguide with double rectangular cavities, which can achieve a sensitivity of 596 nm/RIU and
the FOM is 7.5 [30]. Although the FOM in some works is very high, it is defined differently in each
work, and is usually referred to as FOM*. The maximum value of structural sensitivity was found to
be 1114.3 nm/RIU, with a figure of merit of 55.71, in this study. It should be noted that the sensitivity
is significantly larger than that in other recent works.

In this paper, a novel compact refractive index nanosensor is proposed. The proposed sensor is
composed of a baffle coupled with a circular split-ring resonance cavity (CSRRC). Both the transmission
spectra and magnetic field distribution of the sensing system are simulated using the COMSOL
Multiphysics software based on finite element method (FEM) analysis. The loss of structural symmetry
is caused by splitting in the circular resonant cavity, which can excite new resonance modes that cannot
be realized by a regular ring. The Fano resonance of the spectrum has varying degrees of dependence
on the structural parameters of the system. Hence, the influence of structural parameters, such as
the splitting size of CSRRC, the outer radius of CSRRC, and the silver baffle width, on the sensing
characteristics is studied.

2. Structure Model and Analytical Method

A schematic diagram of the designed waveguide structure is shown in Figure 1. The waveguide
consisted of a CSRRC and the MIM waveguide with a baffle. For simplicity, we used a two-dimensional
model. To ensure that only the fundamental transverse magnetic (TM0) mode was available [31], the
width of the MIM waveguide and the CSRRC was fixed at w = 50 nm. The CSRRC was formed by
splitting the complete ring. The length of the CSRRC split was represented by l and the direction of
split was denoted by the angle θ between the center of the split and the x-axis. The inner and outer
radii of the CSRRC resonator were r and R, respectively, and d and g denote the width of the baffle and
the coupling gap size, respectively.

The yellow and white parts in the figure were metallic silver and dielectric air, respectively. The
relative dielectric constant of air is εd = 1, and the dielectric constant of silver is obtained using the
Debye–Drude dispersion model [32]:

ε(ω) = ε∞ +
εs − ε∞

1 + iτω
+

σ

iωε0
(1)

In Equation (1), the dielectric constant of the infinite frequency is taken as ε∞ = 3.8344, the
static dielectric constant is taken as εs = −9530.5, the relaxation time is τ = 7.35 × 10−15 s, and the
conductivity of silver is σ = 1.1486 × 107 S/m.

To analyze the optical response characteristics of the coupled structures, the COMSOL software
was used to develop a geometric analysis model. We used ultra-fine meshing to maintain convergence.
Certain corresponding parameters, such as the relative dielectric constant of silver, the refractive index
of air, and the top and bottom boundaries of the structure were each set using perfectly matched layer
PMLs. By simulation calculations, the transmission spectrum of the coupled system was acquired.
The transmittance was expressed by T = (S21)

2, where the S21 is the transmission coefficient from the
input port to the output port (P1 to P2).
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divide the resonance mode of CSRRC into a symmetrical mode and an asymmetrical mode. These 
two resonant valleys correspond to the symmetric mode of m = 1 (λ = 960 nm) and the asymmetric 
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Figure 1. 2D Schematic of a plasmonic refractive index nanosensor.

3. Simulations and Results

First, we studied the role of the split in the MIM ring. We calculated the transmission spectrum
of the MIM waveguide side-coupled complete ring and the CSRRC, respectively. The structural
parameters of CSRRC were set as: R = 140 nm, θ = 45◦, and L = 70 nm. The comparison of transmission
spectra in the two cases is shown in Figure 2. It contains only the microring resonator and no silver
baffle was added. By performing a comparison with the complete ring, a new resonance mode
appeared in the CSRRC transmission spectrum at λ = 665 nm.

To better understand the transmission characteristics of the structure, we observe Figure 2, which
shows the magnetic field distribution HZ of the side-coupled CSRRC structure at the resonant valleys.
As shown, the magnetic field distribution exhibited different symmetries. At λ = 960 nm, the field
distribution was symmetric about the axis across the split and there were two nodes. For the field
distribution at λ = 665 nm, there were three nodes, and the field distribution was asymmetric about the
axis across the split. Therefore, according to the symmetry of the magnetic field, we could divide the
resonance mode of CSRRC into a symmetrical mode and an asymmetrical mode. These two resonant
valleys correspond to the symmetric mode of m = 1 (λ = 960 nm) and the asymmetric mode of m' = 1
(λ = 665 nm), respectively [33]. We attribute the emerging resonance mode to the symmetry loss of
the structure.
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As shown in Figure 1, a silver baffle was inserted into the MIM waveguide to form the sensor
system with CSRRC. The baffle width was d = 20 nm.

The other structural parameters were set as follows: R = 140 nm; θ = 45◦; l = 70 nm; g = 10 nm.
The transmission spectra of the entire system are shown in Figure 3. We can see that the system (red
solid line) had a sharp asymmetrical linearity at λ = 955 nm and λ = 660 nm, which are typical Fano
resonance phenomenon. This phenomenon is formed by the interaction of a broadband continuous
state and a narrowband discrete state. For better illustration of the formation of Fano resonance, the
entire structure could be divided into the following two structures: a MIM waveguide with baffle and
an individual CSRRC resonator. The transmission profile of an isolated MIM waveguide with a baffle
(solid black line) corresponds to the broadband continuous spectrum, which has a negative slope and
a low transmittance. The transmission profile of the individual CSRRC resonator (solid blue line) has
two narrow transmission dips, at λ = 665 nm and λ = 960 nm. Hence, we consider this as a narrowband
discrete state. The two Fano resonances, at λ = 955 nm and λ = 660 nm, were aroused by the MIM
waveguide with a baffle mode interacting with the symmetric mode of m = 1 and the asymmetric
mode of m' = 1 of the CSRRC resonator, respectively. We indicate the first-order (λ = 955 nm) Fano
resonances as Fano(1,1) mode and the second-order (λ = 660 nm) as Fano(2,1) mode [23]. Figure 3
shows their corresponding magnetic field distribution.
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(black line), and sensor system (red line). The HZ field distribution is shown at the resonant peak.

We then studied the effect of the orientation angle on the resonance characteristics of the system.
Because the structure was symmetric about the y-axis, we calculated the transmission spectra of the
sensor system at orientation angles of θ = −90◦, −45◦, 0◦, 45◦, and 90◦, as shown in Figure 4. The other
parameters were the same as that of Figure 3. There were two phenomena that can be seen from the
picture: First, the position of two Fano resonances were nearly unaffected by the orientation angle.
Second, the peak intensities of the two Fano resonances varied with the orientation angle. This was
because the transmittance, in the two modes of the isolated CSRRC resonator, changed at different
orientation angles, thus affected the transmittance of the entire sensor system. The above results show
that the peak intensities of the Fano resonance can be changed by adjusting the orientation angle θ.
Compared with the complete ring system, the side-coupled CSRRC sensor system can control the
resonance more flexibly. By comparison, the transmittance of the Fano(2,1) mode and the Fano(1,1)
mode in the transmission spectrum at an orientation angle of θ = 45◦ was high, which is convenient
for observation. Hence, the structure with an orientation angle of θ = 45◦ was analyzed in this paper.
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The Fano resonance was significantly affected by varying refractive indices of the dielectric
because of its sharp and asymmetrical line shape [33]. Such a short wavelength change can generate
an ultra-narrow transmission peak, which can significantly increase the sensing resolution. Therefore,
we studied the sensing properties of the Fano system. Figure 5a shows the transmission spectrum of
the structure at different refractive indices, where the refractive index varied from 1.24 to 1.39 RIU
(at intervals of 0.03). The structural parameters of the waveguide were the same as that in Figure 3.
It is observed from the figure that the two Fano resonances both exhibited obvious redshifts as the
refractive index increased. The wavelength shift of the Fano resonance peak changed ∆λ as ∆n was
increased, as shown in Figure 5b. The figure of merit (FOM) and the sensitivity (S) are two major
parameters for assessing sensor performance. They are generally expressed as:

S =
∆λ
∆n

(2)

FOM =
S

FWHM
(3)

From Figure 5b, the peak shift changed linearly as the refractive index increased, which provides
a possibility for the application of a refractive index sensor. By linear fitting, the sensitivity of the
Fano(2,1) mode was found to be 623.8 nm/RIU, with an FOM = 20.79. The sensitivity of the Fano(1,1)
mode was 923.8 nm/RIU, and FOM = 40.16. Due to the higher sensitivity and FOM of the Fano(1,1)
mode, it was studied in more detail.
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Figure 5. (a) Transmission spectra of the sensor at different refractive indices n. (b) Fitted line plot of
the peak shift (∆λ) changes with the change in the refractive index (∆n).

In general, the transmission characteristics of the MIM waveguide structures were affected by the
variation of its structural parameters. In this paper, the Fano resonance was caused by the coupling
of the MIM baffle and the CSRRC; therefore, the peak intensity and line shape of the Fano resonance
was affected by the geometric parameters of the structure. We further studied the influence of the
geometric parameters on the Fano resonance.

First, we fixed the other parameters of the waveguide structure at d = 20 nm, l = 70 nm, and
g = 10 nm, and increased the CSRRC outer radius R from 120 to 160 nm with an interval of 10 nm
to study the influence of a single variable on the Fano resonance. The transmission spectra of the
structure at different outer radii were calculated, as shown in Figure 6a. As R increased, both Fano
resonance peaks produced obvious redshifts. This indicates that the resonance wavelength of the Fano
peak was determined by the narrow band discrete state, and the increase of R led to the increase of the
resonant wavelength in the narrow band spectrum, which caused a redshift of the Fano resonance.
The resonance peak shifts of the Fano(1,1) mode with the change in the refractive index ∆n are shown in
Figure 6b. When R = 160 nm, the maximum sensitivity can reach 1114.3 nm/RIU, with an FOM of 55.71.
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In addition, we also studied the effect of the silver baffle width on the transmission spectra.
The baffle width d was varied from 10 to 25 nm in steps of 5 nm, while keeping the other parameters
constant. The transmission spectrum obtained by the simulation is shown in Figure 7a. The following
observations can be made from the figure: First, the change in the position of the peak was minimal
because the field energy was mostly limited to the CSRRC resonator, this can be seen from Figure 3.
Thus, the resonance wavelength primarily depends on the geometric parameters of the CSRRC
resonator. Second, the line shape of the spectra changed as the width of the baffle increases. This is
because the Fano resonance is formed by the interaction of a broadband continuous state and a
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narrowband discrete state. As the width of the baffle increases, the broad continuous spectrum
produced by the isolated MIM waveguide with the baffle will change. This affects the outline of
the Fano resonance. Therefore, when the baffle width was changed from 10 to 25 nm, the outline
of the Fano resonance changed from being asymmetrical to nearly symmetrical. Figure 7b shows
the resonance peak shifts of the Fano(1,1) mode with the refractive index changes ∆n. The obtained
sensitivity of the sensor system changed only slightly with the increase of d. Furthermore, FWHM
became smaller; therefore, FOM got larger.
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Fano(1,1) mode resonance peak shift (∆λ) changing as the change in refractive index (∆n) increases.

The other parameters were fixed at R = 140 nm, d = 20 nm, r = 90 nm, and the split length l of
the CSRRC was changed from 40 to 80 nm (in intervals of 10 nm) to study the influence of CSRRC
split length on the transmission spectrum. The simulation results for different split sizes are shown in
Figure 8a. As the split length l increased, the Fano resonance peak had an obvious blue shift and the
peak intensities of the resonance did not change significantly. Figure 8b shows the relationship of the
resonance peak shift of the Fano(1,1) mode with the change in refractive index ∆n. The fitting results
show that the sensitivity of the sensing system was as high as 960 nm/RIU at l = 40 nm, and the FOM
was 48.
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4. Conclusions

In this study, a tunable refractive index nanosensor system is proposed and analyzed using
FEM analysis. The proposed system consists of an MIM waveguide with a baffle coupled with a
CSRRC resonator. Simulation results indicate that the waveguide structure can realize dual Fano
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resonance. The resonance wavelength depends largely on the geometric parameters of the waveguide.
The resonance wavelength is especially susceptible to the structural parameters of CSRRC (i.e., R and l).
Additionally, the line shape of the spectra is affected by the baffle width d. The peak intensities of the
Fano resonance can be changed flexibly by adjusting the orientation angle θ of CSRRC. The designed
sensor system has excellent performance. By optimizing the geometric parameters, the obtained
sensitivity can reach 1114.3 nm/RIU with an FOM of 55.71. Combining the MIM waveguide based on
SPPs yields the advantages of simple and easy integration. These results can provide a new reference
for on-chip plasmonic refractive index nanosensors.
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