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Abstract: In this work, we investigate the capacity allocation problem in the energy harvesting
wireless sensor networks (WSNs) with interference channels. For the fixed topologies of data and
energy, we formulate the optimization problem when the data flow remains constant on all data
links and each sensor node harvests energy only once in a time slot. We focus on the optimal data
rates, power allocations and energy transfers between sensor nodes in a time slot. Our goal is to
minimize the total delay in the network under two scenarios, i.e., no energy transfer and energy
transfer. Furthermore, since the optimization problem is non-convex and difficult to solve directly,
by considering the network with the relatively high signal-to-interference-plus-noise ratio (SINR),
the non-convex optimization problem can be transformed into a convex optimization problem by
convex approximation. We attain the properties of the optimal solution by Lagrange duality and
solve the convex optimization problem by the CVX solver. The experimental results demonstrate
that the total delay of the energy harvesting WSNs with interference channels is more than that in
the orthogonal channel; the total network delay increases with the increasing data flow for the fixed
energy arrival rate; and the energy transfer can help to decrease the total delay.

Keywords: energy harvesting; energy transfer; wireless sensor networks; interference channel;
convex approximation; capacity assignment problem; Lagrange duality

1. Introduction

Energy harvesting is a promising solution to provide self-sustainability and extend the lifetime
for energy-limit wireless sensor networks (WSNs) [1,2]. Thus, it has attracted much attention from
researchers in recent years [3]. However, the energy harvesting process from the natural environment
and the radio frequency signals [4] is instable, due to the time change of the day, the season or other
factors [5]. Wireless energy transfer (WET) [6,7], as a friendly means of compensating energy, can
transfer energy from some energy-rich sensor nodes to others with energy-hungry sensor nodes so as
to enhance the overall network performance [8]. Meanwhile, due to the broadcast nature of wireless
communications, the data signals of simultaneous transmissions cannot avoid interfering with each
other in the same frequency band [9]. As a result, it decreases the network performance.

Because of these considerations, we investigate the energy harvesting WSNs and concentrate on
the delay minimization problem of the WSNs with interference channels. The delay of every data link
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is determined by the information rate on the link, which is monotonically decreased as the rate of
the link for the fixed data flow over it [10]. The information rate is monotonically increasing in SINR.
We focus on the capacity assignment problem, which is similar to Bertsekas et al. [10]. In particular,
compared with the special case, in which information and energy transfer channels are orthogonal to
each other [11], we consider the general case of the communication model. In other words, the data
transmission channels interfere with each other. This is a more realistic and meaningful model for the
capacity assignment problem.

Therefore, by considering the energy consumption and power allocation for the fixed data flow,
we formulate the capacity assignment problem in the energy harvesting WSNs with interference
channels as a non-convex optimization problem. It is constrained by data flow conservation conditions,
information rate requirements, energy and power consumption. Employing the relatively high SINR,
the non-convex optimization problem can be transformed into a convex optimization problem by
convex approximation in "log-sum-exp" form [12]. The solution properties of the transformed capacity
allocation problem are derived by Lagrange duality. Then, it is available to search the optimal Lagrange
multiplier and obtain the optimal solution to minimize total delay for the energy harvesting WSNs
with interference channels in a time slot. Finally, we solve the approximate convex problem by the
CVX solver [13].

Our study is related to and based on the previous classical works on a capacity allocation problem
in communication networks [10]. In [14], the simultaneous routing and resource allocation (SRRA)
are investigated. A capacitated multi-commodity flow model is used to describe the data flows
in the wireless networks. The optimization problem is solved by the dual-decomposition method.
A general flow-based analytical framework is presented in [15]. In order to balance aggregate user
utility, total network cost, power control, rate allocation, routing and congestion control are jointly
optimized in wireless networks. Channel-aware decision fusion by MIMO channels is investigated
in an existing large antenna-array at the decision fusion center [16]. A decentralized multi-sensor
estimation problem is studied in [17]. In a WSN with a coherent MAC, the detection and estimation of
a zero-mean Gaussian signal is investigated in [18]. In [19], sensors simultaneously report sensed data
to a fusion center with multiple antennas in a WSN and a Gaussian mixture channel model is adopted
to attain a general fading description of the channels collective between the sensors and the fusion
center. A machine learning based method is proposed for joint scheduling and power control in [20].
However, the previous works have not considered the energy harvesting and energy cooperation.
Fouladgar et al. [21] investigates the optimization problem of simultaneous information and energy
flows in graph-based communication networks with energy transfer. In [22], a model of multi-hop
information transmission and energy transfer in TDMA-based multi-hop WSNs is proposed. Among
previous studies, the most related to ours is that in [11], which investigates the delay minimization
problem in the energy harvesting wireless communication networks with energy transfer. However,
though Gurakan et al. [11], Fouladgar et al. [21] and Xu et al. [22] study the optimization problem of
the joint information transmission and energy transfer, they neglect the interference among the data
links. These motivate us to consider a general capacity assignment problem which is to minimize total
delay in the energy harvesting WSNs with interference channels.

Lagrange method is a powerful studied tool which has been widely applied for the resource
allocation problem in wireless networks [11,23]. It is worth noting that, although we utilize a similar
mathematical approach to that in [11] for modeling and solving the capacity assignment problem, our
study is significantly different from the previous studies: the previous studies only consider a special
case where the data transmission channels are orthogonal to each other, rather than consider the impact
of data transmission interference. However, the more realistic case is that data transmission channels
interfere with each other, which is one of the critical issues to be tackled in this study. Therefore,
we need to remodel the capacity assignment problem for the energy harvesting WSNs with interference
channels in a time slot.

In this paper, our main contributions are as follows:
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• We investigate a general and meaningful model of capacity assignment problem where the data
links interfere with each other in the energy harvesting WSNs.

• Considering the relatively high SINR, we transform the non-convex optimization problem into
a convex one by convex approximation, and also derive the optimal solution properties by
Lagrange duality.

• Numerical results show that the interference signals significantly affect the network performance;
the energy transfer can help to decrease the total network delay.

The rest of this paper is structured as follows. Section 2 introduces the network model and problem
formulation. Section 3 investigates the capacity assignment problem with interference channels in a
time slot. Section 4 demonstrates the performance results. Finally, Section 5 concludes the paper.

Notations. Throughout this paper, matrices and vectors are denoted by boldface uppercase and
lowercase letters, respectively. log(·) stands for the natural logarithms. All numbers, vectors and
matrices take real values in this paper. For a vector a, ai is the ith element; similarly, aij denotes the
(i, j)th entry of matrix A.

2. System Model and Problem Formulation

In this study, each sensor node not only has the capability of harvesting energy and sensing
data from the ambient environment, but it also can transmit or receive energy and data. As the data
transmission channels interfere with each other, the interference signals among the data flow may be
unavoidable. Hence, we consider an energy harvesting WSNs model with interference channels as
shown in Figure 1.
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Figure 1. Interference channel model of data flows with the half-duplex mode.

Let G = (V, E) be a directed graph modeling N sensor nodes which are placed randomly and
seamlessly in a certain area. The vertices set V = {v0, v1, . . . , vN} is composed of one sink node and N
sensor nodes. The edges set E is composed of the communication links between the sensor nodes, i.e.,
(vi, vj) ∈ E, if and only if a node vi can send a message to a node vj with the power constraint pij.

A data collection tree T = (VT , ET) [24] is constructed for the energy harvesting WSNs with sink
v0 at level 0. It is an acyclic spanning subgraph of G = (V, E) where VT = V and ET ⊆ E. In the data
collection tree T, each sensor node vn can collect the sensing data from the area of interest and then
store it for future transmission in a data buffer. Each sensor node vn has to send the sensing data to
sink v0 periodically in multi-hop fashion and half-duplex mode under the interference channel. Sensor
nodes vi and vj are siblings if they have the same parent. Note that a sensor node can be either a
transmitter, a relay or a receiver, which is determined by its location in WSNs. For brevity, the ordered
pair (vi, vj) is replaced by (i, j) in the following sections (Throughout the paper, we denote sensor
node indices by the first subscripts i, j and n. The subscript i and j denote the start node and the end
node at each link (i.e., data link and energy link), respectively.).

We consider the following interference model to characterize the relationships among data links
in tree-based energy harvesting WSNs. For any data link l, let pl ∈ (0, pmax

l ] be the depleted power
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which transmits data flow from the sensor node vi to the sensor node vj in a time slot. We employ
p = {pl |l ∈ ET} as transmission power vector. Then, the received SINR of data link l is

SINRl(p) =
Gll pl

∑l̄ 6=l Gl̄l pl̄ + σl
, (1)

where Gl̄l is the channel gain from the transmitter of data link l̄ to the receiver of data link l, which is
dependent on various factors such as path loss, shadowing and fading effects. Particularly, Gll is the
gain of primary link l and σl denotes the channel noise power [25]. We adopt a simple distance based
on the path-loss model to calculate the data link gains as Gll = d−α

l , where α is constant between 3 and
4, which depends on the ambient conditions [26]. We assume that the channel gain remains constant
and does not change over the time slot.

To illustrate, Figure 1 shows a tree-based energy harvesting WSNs with interference channels.
In the figure, there are only five active links at the first time slot since we employ half-duplex sensor
nodes [26]. Meanwhile, the network has five energy cooperation links, which can transfer energy
to sensor nodes’ required energy. It guarantees that the sensing data can be successfully sent to the
receivers at the time slot. In Figure 1, we assume that the active link l8 is the primary link, the receiver
v3 not only receives the data flow signal from the transmitter v8, but also receives the interference
signals from other transmitters v1, v9, v12 and v13. The interference signals are represented by red
dashed lines with arrows. Meanwhile, the sensor node v7 can transfer energy to the sensor node v8

through the energy link q14. At the same time, other receivers also receive interference signals from
active links’ transmitters except themselves. For brevity, we do not label them in Figure 1.

2.1. Network Data Flow Model

Let us denote the data link (i, j) as l ∈ 1, . . . , L (The data link can be denoted (i, j) or l, they can be
interchangeable in this paper). The topology of data flows can be described by an N × L matrix A. The
entries of matrix A can be defined by anl , which is incident with sensor node n and data link l. More
precisely, each entry anl is defined as

anl =


1, if n = i,

−1, if n = j,

0, otherwise.

(2)

Let us define Id(n) as the set of incoming data links to sensor node vn and Od(n) as the set of
outgoing data links from sensor node vn, respectively. Assume that the data flow dl on each data
link follows the uniform distribution U(0, a]. The set of data flows {dl |l ∈ ET} is referred to as the
L-dimensional flow vector. The divergence vector s associated with the data flow vector d is an
N-dimensional vector which indicates the nonnegative amount of outside data flow injected into the
sensor node vn. Suppose that the data flow is lossless over links. For every sensor node vn, the flow
conservation conditions can be expressed as

sn = ∑
l∈Od(n)

dl − ∑
l∈Id(n)

dl , ∀n. (3)

The data flow conservation through the total WSNs can be rewritten as

Ad = s. (4)

Moreover, the data flow dl over each data link l cannot exceed the information carrying capacity
cl , i.e.,

dl ≤ cl , ∀l. (5)
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2.2. Network Energy Flow Model

In this section, we present the energy model for the case where each sensor node has a single
energy harvest in a time slot. Notice that we only consider harvested energy from the ambient
environment and transferred energy from the neighbor sensor node, and ignore the energy contributed
by interference in this paper.

2.2.1. Energy Harvesting Model

Each sensor node powered can harvest energy from the ambient environment. Since the
transmission consumption is the most significant amount of energy, we only account for energy
consumption of transmitting data in this study. It is assumed that the energy harvesting sensor node
has a capacity battery Bmax which is enough for transmitting the data. The capacity of storage is
considered to be constant, i.e., energy outage and circuitry cost are negligible. Since energy harvesting
sources have a random nature, the energy arrivals are considered as an independent and identically
distributed (i.i.d.) Poisson distribution P(λ) with parameter λ [27,28]. We assume that the energy
arrivals occur only once in a time slot. Let En be the harvested energy of a sensor node vn in a time
slot, En ∈ (0, Bmax]. The harvested energy in a time slot can be exploited only in a later time slot.

2.2.2. Energy Cooperation Model

Energy cooperation depends upon the statistics of the energy harvesting and the energy
consumption of the sensor nodes. In general, for a sensor node vn, the more data flow is transmitted,
the more energy is required. In order to replenish the energy of energy-hungry sensor nodes, the
technique of wireless energy cooperation [29] is adopted in our study. It is assumed that the energy is
unidirectionally transferred from the sensor node vi to the sensor node vj in a time slot, the transfer
efficiency is ηij, ηij ∈ (0, 1], due to energy loss in transmission and conversion.

2.2.3. Energy Flow Model

In the previous analysis, we utilize N-dimensional vector E to present the harvested energy
vector for the WSNs. In the energy transfer process, the wireless energy links are similar to data links.
The wireless energy link q is also denoted as an ordered pair (i, j) in energy routing. The energy can be
sent from the sensor node vi to the sensor node vj over energy link q, q ∈ 1, . . . , Q, if the energy of the
sensor node vj is not enough energy to operate. The energy transfer efficiency is ηq on each energy
link q where ηq ∈ (0, 1]. It implies that δi amount of energy is transferred on wireless energy link q
from the sensor node vi to the sensor node vj, and the sensor node vj receives ηqδi amount of energy.
The request for energy transfer is known in advance, whereas the amount of transferred energy is
unknown. The topology of energy flow can be denoted by an N × Q matrix B. The entries of the
matrix B can be defined by bnq, which is incident with sensor node n and wireless energy link q. More
specifically, each entry bnq can be described as [11]

bnq =


1, if n = i,

−η, if n = j,

0, otherwise.

(6)

We define Oq(n) and Iq(n) as the set of outgoing and incoming wireless energy links at the
sensor node vn, respectively. The variable xq is the amount of energy transferred. Let vector x be the
L-dimensional energy flow vector.

2.3. Communication Model

For the energy harvesting WSNs with interference channels, we focus on minimizing the total
delay and enhancing the network performance in order to ensure that sensing data on each data link



Sensors 2019, 19, 785 6 of 16

can reach the sink as quickly as possible. It is similar to [10,11]; we assume that each time slot is large
enough and the delay on the data link l follows the M/M/1 queueing model in this work. It can be
defined as

Dl =
dl

cl − dl
, (7)

where dl is the amount of data flow and cl is the information carrying capacity of communication link
l in which dl ≤ cl , ∀l ∈ ET .

According to the Shannon formula [11,30], the information carrying capacity (or information rate)
cl of data link l can be expressed as

cl =
1
2

log(1 + SINRl(p)), (8)

where all logarithms in our study are taken to the base e.
At every sensor node vn, the total power depleted (In contrast to transmission power consumption,

the energy consumption of sensing data is ignored in our study.) on transmission data link l and
energy link q are constrained by the usable energy as:

∑
l∈Od(n)

pl ≤ En + ∑
q∈Iq(n)

ηqxq, ∀n. (9)

Let K = A+, where (a+)nl = max{anl , 0}, which only distinguish the outgoing links at each
sensor node n. Hence, the energy availability constraints in Equation (9) can be rewritten as

Kp + Bx ≤ E. (10)

Notice that the power and energy can be interchangeable in a unit of time slot in this paper.

3. Capacity Assignment Problem in Energy Harvesting WSNs with Interference Channels

We consider the capacity assignment problem in WSNs with interference channels for a single
energy harvesting sensor node in a time slot. Assume that the data flow assignments dl on all data links
are fixed and available for harvested energy and transferred energy. The total delay D in a WSNs is

D = ∑
l∈ET

dl
cl − dl

. (11)

Hence, the goal of minimizing total delay in the energy harvesting WSNs with interference
channels can be written as

min
cl ,pl ,xq

∑
l∈ET

dl
cl − dl

, (12a)

s.t. Kp + Bx ≤ E, (12b)

dl ≤ cl , ∀l, (12c)

xq ≥ 0. (12d)

As shown in Figure 1, because the data transmission signals of active links interfere with each
other, each data flow signal cannot perform interference cancelation and is treated as an additive
noise compared with the primary link signal. By utilizing the information rate cl in Equation (8), the
minimizing total delay in the energy harvesting WSNs with interference channels is
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min
pl ,xq

∑
l∈ET

dl
1
2 log

(
1 + Gll pl

∑l̄ 6=l Gl̄l pl̄+σl

)
− dl

, (13a)

s.t. Kp + Bx ≤ E, (13b)

pl ≥
∑l̄ 6=l Gl̄l pl̄ + σl

Gll

(
e2dl − 1

)
, ∀ l, (13c)

xq ≥ 0. (13d)

By analyzing Equation (13), we find that the minimizing of the total delay depends on the
maximizing of the information carrying capacity cl . Meanwhile, because the information carrying
capacity cl is a monotonically increasing function of SINRl(p), the maximizing of information carrying
capacity cl depends on the maximizing of the SINRl(p).

Note that the optimization problem (13) is non-convex since both the objective function (13a) and
the constraint condition (13c) are non-convex in terms of transmission power vector p, and it is not
straightforward to attain the optimal solution. Therefore, we need to study the fundamental properties
of the optimization problem (13) and transform it into the convex optimization problem.

3.1. Convex Approximation

We can get a convex approximation for capacity assignment problem with interference channels
when the SINRs are relatively high (e.g., SINRs ≥ 5 or 10). The information carrying capacity (or
information rate) cl by using the Equation (1) can be rewritten as

cl(p) ≈
1
2

log(SINRl(p))

=
1
2

log

(
Gll pl

∑l̄ 6=l Gl̄l pl̄ + σl

)

= −1
2

log
(

∑l̄ 6=l Gl̄l pl̄ + σl

Gll pl

)
= −1

2
log

(
σl p−1

l
Gll

+
∑l̄ 6=l Gl̄l pl̄ p−1

l
Gll

)
.

(14)

Let p̃l = log(pl), i.e., pl = e p̃l for l ∈ ET , we define

c̃l( p̃) = cl(p( p̃))

= −1
2

log

(
σle− p̃l

Gll
+

∑l̄ 6=l Gl̄le
p̃l̄− p̃l

Gll

)
,

(15)

where the functions c̃l( p̃) are concave in the vector p̃.
With the approximation information carrying capacity formula, the optimization problem (13)

can be reformulated as

min
p̃l ,xq

∑
l∈ET

dl

− 1
2 log

(
σl e
− p̃l

Gll
+

∑l̄ 6=l Gl̄le
p̃l̄− p̃l

Gll

)
− dl

, (16a)

s.t. Kp + Bx ≤ E, (16b)

e p̃l ≥
∑l̄ 6=l Gl̄le

p̃l̄ + σl

Gll
e2dl , ∀ l, (16c)

xq ≥ 0, (16d)
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where the objective function (16a) is a convex function in the new variable p̃l [12]. The information
carrying capacity constraint (16c) is convex function in p̃l and dl . This means that the optimization
problem (16) is a convex optimization problem and the global optimal solution can be found.

Remark 1. Here, we use the approximation 1
2 log(1 + SINRl(p)) ≈ 1

2 log(SINRl(p)) which is reasonable
for the optimization problem (13), since 1

2 log(SINRl(p)) ≤ 1
2 log(1 + SINRl(p)). This implies that the

approximation is an underestimate and a tighter constraint for the information carrying capacity cl(p). Therefore,
the solution of convex problem (16) is always feasible for the original optimization problem (13).

3.2. Properties of Capacity Assignment Problem with Interference Channels

For convex optimization problem (16), we form the dual problem by introducing Lagrange
multiplier λ ∈ RN , β ∈ RL and γ ∈ RQ. The Lagrangian function is given by

L( p̃l , xq, λ, β, γ)

= ∑
l∈ET

dl

− 1
2 log

(
σle
− p̃l

Gll
+

∑l̄ 6=l Gl̄le
p̃l̄− p̃l

Gll

)
− dl

+ ∑
n

λn

 ∑
l∈Od(n)

e p̃l − En − ∑
q∈Iq(n)

ηqxq


− ∑

l∈ET

βl

(
e p̃l −

∑l̄ 6=l Gl̄le
p̃l̄ + σl

Gll
e2dl

)
−∑

q
γqxq.

(17)

The Lagrangian function (17) corresponds to Lagrange dual function Q : RN × RL × RQ → R as

Q(λ, β, γ) = inf
p̃l ,xq

L( p̃l , xq, λ, β, γ). (18)

The dual optimization problem is

max Q(λ, β, γ), (19a)

s.t. λ ≥ 0, β ≥ 0, γ ≥ 0. (19b)

The KKT optimality conditions hold for the convex optimization problem (16), thus we have

∂L
∂ p̃l

=
∂tl( p̃l)

∂ p̃l
+ e p̃l

λi(l) −

βl − β l̄ ∑̄
l 6=l

Gll̄e
2dl̄

Gl̄ l̄

 = 0, ∀l, l̄ (20)

∂L
∂xq

= −ηqλj(q) − γq = 0, ∀i, j ∈ VT , ∀q, (21)

where

tl( p̃l) , dl

[
−1

2
log

(
σle− p̃l

Gll
+

∑l̄ 6=l Gl̄le
p̃l̄− p̃l

Gll

)
− dl

]−1

. (22)

The complementary slackness conditions are

λn

 ∑
l∈Od(n)

e p̃l − En − ∑
q∈Iq(n)

ηqxq

 = 0, ∀n, (23)

βl

(
e p̃l −

∑l̄ 6=l Gl̄le
p̃l̄ + σl

Gll
e2dl

)
= 0, ∀l, (24)
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γqxq = 0, ∀q. (25)

We extend Lemmas 1 and 2 in [11] and derive some properties about the optimal power allocation
with interference channels as follows.

Lemma 1. The feasibility of the convex optimization problem (16) requires βl = 0, ∀l.

Proof. The proof is a similar procedure in [11]. If the convex optimization problem (16) is feasible, the
objective function (16a) must be bounded . The constraint condition (16c) for any data link l means
that the objective function (16a) is unbounded. Thus, the constraint condition (16c) must strictly satisfy
the inequalities for all data link l. From Equation (24), we can conclude that βl = 0, ∀l.

Lemma 2. At each sensor node vn, the optimal power allocation with interference channels among data
links satisfies

∂tl( p̃l)

∂ p̃l
=

∂ti( p̃i)

∂ p̃i
, ∀l, ∀i ∈ Od(n). (26)

Proof. The proof is a similar procedure in [11]. Combining Equation (20) and Lemma 1, we attain

∂tl( p̃l)

∂ p̃l
= −e p̃l λi(l), ∀l. (27)

Since the outgoing links l and i reside in the same sensor node n, we have

∂tl( p̃l)

∂ p̃l
= −e p̃l λi =

∂ti( p̃i)

∂ p̃i
. (28)

Thus, we can conclude that Equation (26) holds.

In the next subsections, we separately solve the convex optimization problem (16) under two
cases, i.e., no energy transfer and energy transfer.

3.3. Case without Energy Transfer

As energy transfer does not occur in this case, we have xq = 0, ∀q. Thus, the convex optimization
problem (16) becomes only in respect of p̃l as follows:

min
p̃l

∑
l∈ET

dl

− 1
2 log

(
σl e
− p̃l

Gll
+

∑l̄ 6=l Gl̄le
p̃l̄− p̃l

Gll

)
− dl

, (29a)

s.t. ∑
l∈Od(n)

e p̃l ≤ En, ∀n ∈ VT , (29b)

e p̃l ≥
∑l̄ 6=l Gl̄le

p̃l̄ + σl

Gll
e2dl , ∀ l. (29c)

Since we employ half-duplex WSNs, the optimization problem can be considered L̄ active data
links in the energy harvesting WSNs with interference channels as

min
p̃l

L̄

∑
i=1

∑
l∈Od(n)

−2dl

log
(

σle
− p̃l+∑l̄ 6=l Gl̄le

p̃l̄− p̃l

Gll

)
− dl

, (30a)

s.t. ∑
l∈Od(n)

e p̃l ≤ En, ∀n ∈ VT , (30b)

e p̃l ≥
∑l̄ 6=l Gl̄le

p̃l̄ + σl

Gll
e2dl , ∀ l. (30c)
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If the optimization problem (30) is feasible, then it requires

∑
l∈Od(n)

∑l̄ 6=l Gl̄le
p̃l̄ + σl

Gll
e2dl ≤ En, (31)

which we assume that it holds. Similar to Equations (17) and (30) corresponding to Lagrangian function
L̂ with λ ∈ RN is

L̂( p̃l , λ)

=
L̄

∑
i=1

∑
l∈Od(n)

−2dl

log
(

σle
− p̃l+∑l̄ 6=l Gl̄le

p̃l̄− p̃l

Gll

)
− dl

+ ∑
n

λn

 ∑
l∈Od(n)

e p̃l − En

 . (32)

Meanwhile, the KKT optimality condition is

∂L̂
∂ p̃l

=
∂tl( p̃l)

∂ p̃l
+ e p̃l λ = 0, ∀l ∈ Od(n) (33)

and the complementary slackness condition is

λ

 ∑
l∈Od(n)

e p̃l − En

 = 0, ∀l, (34)

∂tl( p̃l)

∂ p̃l

=− 1
2

dl

[
−1

2
log

(
σle− p̃l

Gll
+

∑l̄ 6=l Gl̄le
p̃l̄− p̃l

Gll

)
− dl

]−2

+
1
2 ∑̄

l 6=l

{
dl̄

[
−1

2
log

(
σl̄e
− p̃l̄ + ∑k 6=l̄ Gkl̄e

p̃k− p̃l̄

Gl̄ l̄

)

−dl̄ ]
−2

(
Gll̄e

p̃l

σl̄ + ∑k 6=l̄ Gkl̄e p̃k

)}
, ∀l, l̄, k.

(35)

From Equation (33), we have

λ = −∂tl( p̃l)

∂ p̃l
e− p̃l

=
dl

2e p̃l

[
−1

2
log

(
σle− p̃l

Gll
+

∑l̄ 6=l Gl̄le
p̃l̄− p̃l

Gll

)
− dl

]−2

− ∑̄
l 6=l

{
dl̄
2

[
−1

2
log

(
σl̄e
− p̃l̄ + ∑k 6=l̄ Gkl̄e

p̃k− p̃l̄

Gl̄ l̄

)

−dl̄ ]
−2

(
Gll̄

σl̄ + ∑k 6=l̄ Gkl̄e p̃k

)}
, ∀l, l̄, k.

(36)

For the total energy constraint condition Equation (30b), the optimal power allocation can be
found by searching the optimal λ∗.

Remark 2. The constraint condition (30c) is not included in the Lagrangian function (32), since the constraint
condition (30c) will always hold when the convex optimization problem (30) is feasible.
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3.4. Case with Energy Transfer

Next, we solve the case with energy transfer, which implies xq ≥ 0 for some energy links q.
The convex optimization problem (16) becomes

min
p̃l ,xq

∑
l∈ET

dl

− 1
2 log

(
σl e
− p̃l

Gll
+

∑l̄ 6=l Gl̄le
p̃l̄− p̃l

Gll

)
− dl

, (37a)

s.t. ∑
l∈Od(n)

e p̃l ≤ En + ∑
q∈Iq(n)

ηqxq, ∀n, (37b)

e p̃l ≥
∑l̄ 6=l Gl̄le

p̃l̄ + σl

Gll
e2dl , ∀ l, (37c)

xq ≥ 0. (37d)

According to the half-duplex mode, the optimization problem (37) which has L̄ active data links in
the energy harvesting WSNs with interference channels can be written as

min
p̃l ,xq

L̄

∑
i=1

∑
l∈Od(n)

dl

− 1
2 log

(
σle
− p̃l

Gll
+

∑l̄ 6=l Gl̄le
p̃l̄− p̃l

Gll

)
− dl

, (38a)

s.t. ∑
l∈Od(n)

e p̃l ≤ En + ∑
q∈Iq(n)

ηqxq, ∀n, (38b)

e p̃l ≥
∑l̄ 6=l Gl̄le

p̃l̄ + σl

Gll
e2dl , ∀ l, (38c)

xq ≥ 0. (38d)

As in Section 2.2.2, it is assumed that some energy xq > 0 is transferred from the sensor node vi to
the sensor node vj over energy link q. Since sensor node vi only transfers energy and does not transmit
data, the energy causality constraint condition on sensor node vj is denoted as

∑
l∈Od(j)

e p̃l (λ∗j ) = Ej + ηqxq. (39)

Therefore, by combining Equations (36) and (39), we can attain optimal power allocations if we
find the optimal λ∗j .

The Lagrangian method can provide some ideas and in-depth insight into the above-defined
optimization problem. However, it is difficult to find a closed-form optimal solution. Therefore, we use
the CVX solver [13] to tackle the optimization problems (30) and (38) in this paper.

4. Simulation Results and Analysis

We provide some experimental results to demonstrate the resulting optimal energy-delay policies
in the energy harvesting WSNs with interference channels. Note that we only consider the total delay
of all active links in the network in a time slot, thus the power and energy can be interchangeable.
We conduct our experiment on a PC with the Intel(R) Core (TM) i7-7700, 3.60 GHz CPU, 8 GB RAM
and Windows 8 (version 6.2). We use CVX 2.1 [13] which is implemented in MATLAB 9.2 (version
R2017a) to solve the optimization problems.

4.1. Simulation Results

In the simulations, tree-based WSNs topologies are considered. Figure 2 shows the data and
energy topologies in energy harvesting WSNs, which has one sink (i.e., v0), 14 sensor nodes, 14
directed data links and 20 directed energy links. It is noted that each leaf sensor node only needs to
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transfer energy from its sibling neighboring sensor node; each parent sensor node needs to transfer
energy from children sensor nodes in order to transmit successfully heavy sensing data from itself and
children sensor nodes; and the sink node does not need to transfer energy since it is not energy-limited.
Meanwhile, the half-duplex mode is adopted in the network system. In other words, there are only
a few active links in a time slot. In Figure 1, we observe that there are five active links keeping
simultaneous communication in the first time slot.

Sink

Sensor node

Data link

Energy link

1

5

2

6

0

3

7

4

8 10 149 11 1312

q1

l2l1

l4l3 l5 l6

l9 l12 l13 l14l10 l11l7 l8

q2 q3 q4

q5 q6 q8q7 q9 q10 q11 q12

q19 q20q18q17q16q15q14q13

Figure 2. Data and energy topologies.

Each time slot, the energy arrivals follow an i.i.d Poisson distribution P(λ) with λ = 8, and
the data flow on each data link follows the uniform distribution U(0, a], a ∈ [0.5, 1.5]. For ease of
calculation, similar to Johansson et al. [31], all the receivers have the same noise power σl = 1× 10−5

units; all diagonal entries of the channel gain matrix G are set to 1 and the off-diagonal entries are
attained by the uniform distribution U(0, 0.01]. Energy transfer efficiency ηq is set to 0.6 on all energy
links [32].

As an example, we adopt the data and energy topologies in Figure 1 to perform
evaluation the optimization problem. The fixed data flows are d = [dl1 , dl8 , dl9 , dl12 , dl13 ]

T =

[0.4585, 0.8752, 0.6869, 0.2313, 0.4887]T units. The energy arrival vector E1 = [9, 10, 7, 8, 9]T units and
E2 = [11, 10, 8, 4, 6]T units denote transmitters {v1, v8, v9, v12, v13} and transferring energy sensor nodes
{v4, v7, v10, v11, v14}, respectively. The energy transfer efficiency vector is η = [0.6, 0.6, 0.6, 0.6, 0.6]T

(Here, we only give data flow of active links, corresponding to the energy of sensor nodes and the
efficiency of energy transfer. Notice that all variables are uniform units in this paper). The solution
results of optimization problem under two scenarios (i.e., no energy transfer and energy transfer) are
shown in the right half of Table 1. In order to further confirm the significance of our study, we also
perform the optimization problem of the orthogonal channel [11] in the tree-based network topologies.
The solution results are shown in the left half of Table 1.

Table 1. Solution results of optimization problem under both orthogonal channel and interference
channel in the first time slot.

Link
Orthogonal Channel Interference Channel

No Energy Transfer Energy Transfer No Energy Transfer Energy Transfer

Power Delay Power TE Delay Power SINR Delay Power TE SINR Delay

l1 8.8143

0.3740

15.6000 11.0000

0.3622

5.1660 78.6533

1.8858

8.2649 7.9520 78.6532

1.8857
l8 10.0000 16.0000 10.0000 10.0000 143.1230 16.0000 10.0000 143.1436
l9 7.0000 11.8000 8.0000 4.6663 57.5294 7.4654 6.2319 57.5311
l12 6.4475 10.4000 4.0000 2.5360 14.3840 4.0573 1.2875 14.3839
l13 9.0000 12.6000 6.0000 3.5185 43.8209 5.6291 3.0528 43.8212

Transferred energy is abbreviated as TE.

To better evaluate the optimization problem, we consider the total delay of a data collection
round [24] in the energy harvesting WSNs. A data collection round is a process where the sink collects
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sensing data from all sensor nodes; the sensing data is in turn transferred from leaf sensor nodes
to sink over parent sensor nodes. In particular, the parent sensor nodes not only transmit received
sensing data of child sensor nodes, but also transmit their own sensing data to their parent sensor
nodes. In Figure 2, a data collection round is divided into six time slots according to the half-duplex
communication mode. Using the same parameter settings, we perform the optimization problem
under both orthogonal channel (OC) and interference channel (IFC) with no energy transfer and energy
transfer, respectively. For three different data flow vectors, i.e., d ∼ U(0, 0.5], d ∼ U(0, 1] and d ∼
U(0, 1.5], we attain the total network delay over time as shown in Figure 3.
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Figure 3. The total delay of energy harvesting WSNs over time: (a) Data flow d ∼ U(0, 0.5]; (b) data
flow d ∼ U(0, 1]; (c) data flow d ∼ U(0, 1.5].

4.2. Performance Analysis

From Table 1 and Figure 3, we observe that the network delay in the orthogonal channel is
less than that in the interference channel. It means that the interference signals among data links
significantly affect the total network delay in energy harvesting WSNs, which should not be ignored in
the WSN design. Meanwhile, it can be seen that the total network delay increases with the increasing
data flow for the fixed energy arrival rate in Figure 3.

From Figure 3, we also noticed that, during the earlier time slots, i.e., from time slot 1 to time slot
4, the performance difference of the network delay under both no energy transfer and energy transfer
is insignificant in the two scenarios, i.e., orthogonal channel (OC) and interference channel (IFC). This
is because there is enough energy at each sensor node to send the small amount of sensing data on each
active data link. However, when the amount of sensing data which comes from their own and their
descendant increases over time, the data links load increases, resulting in a lower contribution of the
network delay. Meanwhile, when the energy arrival rate cannot increase over time, the sensing data
remains more often in the buffer because there is not enough energy to transmit it. As a result, there is
a relatively high network delay. This is particularly evident for the scenario with interference channels.

In the scenarios of orthogonal channel and interference channel, the network delay with no energy
transfer is more than that with energy transfer especially during the later time slots, i.e., from time
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slot 5 to time slot 6 in Figure 3, since energy transfer between the energy-rich sensor nodes and the
energy-hungry sensor nodes can help to decrease the total delay and enhance the total performance
in WSNs.

We also noticed that the closer the sensor node is to the sink, the more energy is needed since it
has heavier traffic loads. Meanwhile, the total network delay also increases for the fixed channel gain.
Moreover, it can be seen that the power allocation of each active link is proportional to SINR in Table 1.

5. Discussion

Our work can be further extended in some aspects. First, the approximate method only suits
for the case of the relatively high SINR and cannot be used to deal with the case of low SINR in the
network. Second, we cannot provide a closed-form solution for the optimization problem and only
employed the experimental results to explain the optimization problem, making it difficult to carry
out theoretical analysis on the relationship between data flow and energy flow under interference
channel in a time slot. Moreover, the network topology can be replaced by the others in our model
and the distributed approach [33] can be considered in the large-scale energy harvesting WSNs. In the
future, we will consider the above aspects and plan to show the proposed model on the real sensor
network testbed. In addition, the joint optimization of capacity and flow under interference channel
will be investigated, and the non-orthogonal multiple access technique [34], which is to support a great
number of users, can be explored in energy harvesting WSNs for future works.

6. Conclusions

We have investigated the optimal data rates, power allocations and energy transfers for
minimizing the total delay in the energy harvesting WSNs with interference channels in a time
slot. We have formulated the optimization problem which is subject to information rate requirements,
energy and power consumption as a non-convex optimization problem under two cases, i.e., no
energy transfer and energy transfer. By exploiting the convex approximation with the relatively high
SINR, the optimization problem has been converted into a tractable convex problem. Moreover, we
also have derived the properties of the optimal solution by Lagrange duality. Finally, we solved the
optimization problem by the CVX solver. The experimental results showed that, when data flow and
energy topologies were fixed, the interference signals significantly affect the network performance; the
total network delay increases with the increasing data flow for the fixed energy arrival rate; the energy
transfer can help to decrease the total network delay; and the power allocation on each data link was
proportional to SINR for the energy harvesting WSNs in a time slot. Moreover, we also have discussed
the extension of our work.
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