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Abstract: The wireless sensor network (WSN) is mainly composed of a large number of sensor
nodes that are equipped with limited energy and resources. Therefore, energy consumption in
wireless sensor networks is one of the most challenging problems in practice. On the other hand, data
fusion can effectively decrease data redundancy, reduce the amount of data transmission and energy
consumption in the network, extend the network life cycle, improve the utilization of bandwidth,
and thus overcome the bottleneck on energy and bandwidth consumption. This paper proposes
a new data fusion algorithm based on Hesitant Fuzzy Entropy (DFHFE). The new algorithm aims
to reduce the collection of repeated data on sensor nodes from the source, and strives to utilize the
information provided by redundant data to improve the data reliability. Hesitant fuzzy entropy is
exploited to fuse the original data from sensor nodes in the cluster at the sink node to obtain higher
quality data and make local decisions on the events of interest. The sink nodes periodically send
local decisions to the base station that aggregates the local decisions and makes the final judgment,
in which process the burden for the base station to process all the data is significantly released.
According to our experiments, the proposed data fusion algorithm greatly improves the robustness,
accuracy, and real-time performance of the entire network. The simulation results demonstrate that
the new algorithm is more efficient than the state-of-the-art in terms of both energy consumption and
real-time performance.
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1. Introduction

Wireless sensor networks (WSNs) are multi-hop self-organizing network systems formed by
a large number of inexpensive wireless sensor nodes through wireless communication. Their purpose
is to cooperatively perceive, collect, and process the information of perceived objects in the monitoring
area and send it to the terminal. As an important part of Internet of Things (IoT), WSNs have broad
application prospects in environmental monitoring, national defense, military, medical and health care,
smart home, and many others. In most cases, sensor nodes are battery-powered and not rechargeable;
moreover, they are usually deployed in environments that are inaccessible or difficult to reach and are
expected to operate for months. Therefore, how to minimize those nodes’ energy consumption and
maximize the network life cycle has recently attracted a lot of research interest.

In most applications, the sensor nodes are randomly deployed in a high-density target area.
To keep the cost low, those sensor nodes that are responsible for collecting data are usually made
from inexpensive parts. Therefore, when deployed in a variety of complex environments, such as
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mining fields and fish farms, these sensor nodes might become highly unreliable for data acquisition.
To this end, it is unfeasible to only rely on a single sensor node to collect the data of a monitoring
object. The state-of-the-art is to deploy multiple sensor nodes to monitor the same object to improve
the reliability of the monitoring information.

Monitoring the same object using multiple sensor nodes leads to the situation of receiving multiple
relevant, possibly redundant, data of the same object. How to obtain accurate and reliable information
from these redundant data is a key research question. Recent literature shows that energy consumption in
WSN comes from two sources: computing and communication [1]. Since the ratio between computing- and
communication-incurred energy consumption is about 1:3000, sensor nodes should focus on local simple
data processing and reduce long-distance data transmission. In order to achieve this goal, sensor nodes must
work in a coordinated manner. One possible approach is to organize WSN nodes in clusters, which forms
a tighter interaction and collaboration between nodes while facilitating the reliability of the entire WSNs and
saving network bandwidth. Moreover, data fusion within the cluster can effectively optimize redundancy,
reduce the amount of data transmission and energy consumption in the network, extend the network life
cycle, and improve bandwidth utilization. According to the fusion operation level, data fusion is divided
into data-level fusion, feature-level fusion, and decision-level fusion [2]. Among them, decision-level data
fusion is a process of the fusion of raw data collected by various sensor nodes, whose main purpose is
to obtain high-quality information and make accurate decisions on events of interest based on the data
collected from various sensor nodes.

In this paper, we propose a new data fusion algorithm at the decision level. The proposed
algorithm is inspired by hesitant fuzzy entropy [3] to distribute the weight of the redundant data to
extract meaningful and reliable data fusion to make local decisions. The algorithm gathers nodes’ local
decisions and sends them to the base station to reach the final decision. Our algorithm can improve
the reliability and accuracy of the network, reduce the transmission of the original data in the network,
extend the entire network life cycle, and prevent network congestion.

In the next section, we will introduce the research status of data fusion in wireless sensor networks.
The third section introduces the network model, energy model, and cluster formation of the network
system. In the fourth section, a data fusion algorithm based on entropy of the hesitant fuzzy set is
proposed. The fifth section demonstrates the accuracy and robustness of the system through simulation
experiments. The sixth section concludes this paper.

2. Related works

In our prior work [4], we proposed a new topology for a three-tier WSN inspired by the Chinese
Remainder Theorem to eliminate the conventional routing tables. The new topology reduced the network
traffic and energy consumption, allowed for query parallelism, and incorporated a new protocol to effectively
aggregate and deduplicate redundant data in a neighborhood cluster. In this paper, we have proposed
a new data fusion algorithm inspired by hesitate fuzzy entropy within the clusters to reduce redundant
data transfer and further improve the reliability of the network. Most common data fusion models are
based on trees, clusters, particle swarm optimization, and so on. Yuan et al. [5] asserted that the path to
the sink node determines where the data can be fused, thus influencing the efficiency of the aggregation
process. The topology is constructed by descending the path traversing the tree, and data fusion is carried
out at the same time. Chen et al. [6] opined that relevant data are fused by constructing an aggregation tree.
Luo et al. [7] mainly discusses the problem of minimum energy reliable information collection in data fusion
and proposes a practical distributed approximation algorithm for chain and tree topology, which improves
the reliability of the data fusion tree. In [8], the minimum fusion steiner tree was proposed to conduct
efficient data collection by aggregation in wireless sensor networks. A random algorithm was adopted
to allow fusion points to be selected according to the data volume of nodes. The tree-based data fusion
algorithm can indeed reduce data redundancy to a certain extent, but in the process of building the tree,
more time and extra energy may be needed, resulting in the failure of the entire network system to respond
to emergencies in a timely manner.
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Su et al. [9] combined the fuzzy logic method with clustering and proposed a data fusion method
to ensure fault tolerance between sensors and effectively improve the communication bandwidth
available between network components. A clustering based fuzzy logic theory data fusion method
was proposed in [10] to examine the influence of inaccurate WSN observation values and different
fuzzy sets on the data fusion algorithm. Most of these cluster-based algorithms focus on improving
the accuracy of data, but the improved accuracy is also relative, and the final accuracy remains to
be discussed. Sung et al. [11] proposed an improved local optimization method to improve the
measurement accuracy of multi-sensor data fusion in the Internet of things. Data aggregation can
be expressed as multidimensional according to particle swarm optimization. The improved particle
swarm optimization algorithm can find the minimum solution of the objective cost function in the
multidimensional allocation topic, which is considered in the particle swarm initialization, crossover
rule, and mutation rule. Through effective candidate measures, the optimal isolation degree can
be found effectively, to narrow the search scope. Dhivya et al. [12] adopted the Cuckoo Based
Particle Approach (CBPA) to optimize the network. Nodes are randomly deployed and organized
into static clusters through Cuckoo Search (CS). After selecting the cluster head, the information is
collected, marked, and transmitted to the base station using the generalized particle approximation
algorithm. The generalized particle model algorithm (GPMA) transforms the network energy
consumption problem into the dynamics and kinematics problems of many particles in the force
field. Such data fusion based on particle swarm optimization cannot be used in scenarios with high
real-time requirements, and it consumes more energy than the common data fusion algorithms.

At present, there are few applications of hesitant fuzzy entropy to wireless sensor network data fusion,
but there are many applications of fuzzy theory to wireless sensor network data fusion. An example of
such is [13], where all kinds of sensor signals in the cluster head are collected and a method based on
fuzzy rules for fusion is used to improve the reliability and accuracy of perception information and reduce
the false data packet rate. Also, in [14], a wireless sensor data fusion method based on fuzzy theory was
proposed to improve the service quality of the wireless sensor network. This method can only distinguish
the authenticity of collected data and hence reduces the burden of data processing at the base station. Korvin
et al. [15] employed the use of fuzzy set theory to aggregate the data of multiple sensors at the cluster level,
obtain higher quality information from the collected original data, and make accurate decisions on matters
of interest. Similarly, [16] solved the network congestion problem based on the fuzzy strategy. This kind of
algorithm greatly reduces the redundancy of data, but it does not consider the impact of such data fusion
on the accuracy of data, resulting in data distortion.

In addition, some applications combine fuzzy theory with other theories to solve data fusion
problems. Banerjee et al. [17] used an order weighted average operator and fuzzy measure to determine
the weight of data from different sensors, and then local aggregation was carried out to solve data
incompleteness and improve data security. In [18], an adaptive fuzzy logic algorithm, which is
superior to the average fuzzy logic algorithm, was proposed to solve the inaccuracy of data fusion.
Hao et al. [19] used fuzzy logic to make initial local decisions at the group head before uploading to
the base station. The base station then used the uploaded local decisions to calculate the fusion support
degree of clusters and conducted the final fusion of events. Zhai et al. [20] mainly adopted hesitant
language preference relationships (HLPRs) to put forward correct opinions on different wireless sensor
network schemes, and fuse uncertain data information to improve the credibility of the overall network.
The state-of-the-art approaches as explained above can improve the reliability of information collection,
reduce the transmission of redundant information, or be employed to make accurate decisions on
events of interest through data fusion. This paper attempts to achieve all of these effectively with
a new data fusion algorithm based on hesitant fuzzy entropy.

3. System Model and Cluster Formation

This section mainly introduces several important models of the network system and the formation
of clusters.
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3.1. Network Model

In this paper, WSNs have the following characteristics: 1. The network system is divided into
three types of nodes: a base station, several sink nodes, and a large number of sensor nodes; 2. the base
station has enough energy and storage space, and a powerful computing capacity. It mainly collects
local decisions of each sink node and conducts comprehensive analysis on them. Finally, it makes
a reasonable prediction on the occurrence probability of current events in the whole monitoring area
and sends the final prediction results to the terminal. In order to better illustrate the algorithm in
this paper, we assume that the base station is stationary; 3. the Sink node location is fixed. It also has
sufficient power and storage space, and a strong processing ability. Sink nodes act as cluster heads in
the network and receive data periodically from their neighbor sensor nodes; 4. the monitoring area of all
sink nodes can cover the whole monitoring area, and each sensor node has its own cluster head (i.e., sink
node); 5. sensor nodes have limited energy and storage space and can perform simple calculations.

As shown in Figure 1, this network model is composed of a base station, several sink nodes, and a large
number of sensor nodes. Sensor nodes have the following characteristics: 1. Sensor nodes are randomly
distributed and sink nodes are distributed uniformly in the monitoring area, as far as possible; 2. the sensor
nodes in the monitoring area are isomorphic. The initial energy E0 of the sensor nodes is the same and
limited, and the energy consumption of various sensor nodes in the simulation experiment is also the same;
3. each sensor node has a unique ID in the network and can only perceive one attribute signal; 4. the sensor
node position is fixed once deployed and cannot be moved. When a sensor node sends out a packet, it puts
the residual energy Er in the header file of the data packet to convey the information to the neighbor nodes;
5. the communication radius of all nodes is adjustable and can communicate directly with the parent sink
node; 6. due to the high density of sensor nodes, there is a large amount of redundancy in the data collected
by nodes, which requires data fusion processing; 7. the sensor node can perceive the distance from its
neighbor nodes through RSSI [4].

Sensors 2019, 19, x FOR PEER REVIEW 4 of 18 

 

3.1. Network Model 

In this paper, WSNs have the following characteristics: 1. The network system is divided into 

three types of nodes: a base station, several sink nodes, and a large number of sensor nodes; 2. the 

base station has enough energy and storage space, and a powerful computing capacity. It mainly 

collects local decisions of each sink node and conducts comprehensive analysis on them. Finally, it 

makes a reasonable prediction on the occurrence probability of current events in the whole 

monitoring area and sends the final prediction results to the terminal. In order to better illustrate the 

algorithm in this paper, we assume that the base station is stationary; 3. the Sink node location is 

fixed. It also has sufficient power and storage space, and a strong processing ability. Sink nodes act 

as cluster heads in the network and receive data periodically from their neighbor sensor nodes; 4. the 

monitoring area of all sink nodes can cover the whole monitoring area, and each sensor node has its 

own cluster head (i.e., sink node); 5. sensor nodes have limited energy and storage space and can perform 

simple calculations. 

As shown in Figure 1, this network model is composed of a base station, several sink nodes, and 

a large number of sensor nodes. Sensor nodes have the following characteristics: 1. Sensor nodes are 

randomly distributed and sink nodes are distributed uniformly in the monitoring area, as far as 

possible; 2. the sensor nodes in the monitoring area are isomorphic. The initial energy 𝐸0  of the 

sensor nodes is the same and limited, and the energy consumption of various sensor nodes in the 

simulation experiment is also the same; 3. each sensor node has a unique ID in the network and can 

only perceive one attribute signal; 4. the sensor node position is fixed once deployed and cannot be 

moved. When a sensor node sends out a packet, it puts the residual energy 𝐸𝑟  in the header file of 

the data packet to convey the information to the neighbor nodes; 5. the communication radius of all 

nodes is adjustable and can communicate directly with the parent sink node; 6. due to the high 

density of sensor nodes, there is a large amount of redundancy in the data collected by nodes, which 

requires data fusion processing; 7. the sensor node can perceive the distance from its neighbor nodes 

through RSSI [4]. 

 

 

Figure 1. Schematic Diagram of the Network Model. Figure 1. Schematic Diagram of the Network Model.

3.2. Energy Model

In this paper, we assume that the base station and sink nodes have sufficient energy. Complex
operations, such as data fusion, are operated from sink nodes. The energy consumption of those sensor
nodes comes from three states: the idle state, the transmitting state, and the receiving state. The energy
consumption of data processing is not considered for sensor nodes because they are simply redundant
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data deletion. The energy consumption in the idle state is negligible; the transmitting energy (ETX) and
the receiving energy (ERX) of transmitting a n-bit message to d-distance away are calculated as follows:

ETX(n, d) = n·Eelec + n·dk·εamp

ERX(n) = n·Eelec
(1)

where Eelec denotes the energy consumption of each transmitter or receiver, εamp denotes the energy
consumption of the amplifier by one square meter per bit, and k denotes the propagation attenuation
index. In practice, the choice of k [4] usually ranges between 2 and 5, depending on the environment;
if higher interference (e.g., high buildings, dense forests) is expected, a higher k value should be set.

3.3. Cluster Formation

In this network system, we use the method of Chinese Remainder Theorem (CRT) for topology
construction and fault-tolerant and low-power transmissions to transmit data [4]. The three-tier
CRT coding system is built using a bottom-up approach. That is, we assume that the total number
of sensor nodes is known; calculate the size of the storage nodes; and finally, determine the base
station’s keyword N. Once N’s range is known, we employ a top-down approach to determine all
the keywords for storage nodes, each of which further determines the keywords of its assigned
sensor nodes. According to the CRT, N will be divided into k coprime integers n1, n2, · · · , nk, where k
represents the number of storage nodes stored in the network. Each storage node’s nk, again according
to the CRT, is decomposed into coprime integers nkj, where j indicates the secondary-index assigned
to each sensor node, These sensor nodes are the children of the sink node. According to the Chinese
Remainder Theorem, each sink node has a unique identifiable two-dimensional coordinate and each
sensor node has a unique identifiable three-dimensional data transmission for preparation.

In this paper, sink nodes are taken as cluster heads, and other nodes in the cluster are composed
of child nodes with their communication range. When the network topology ends, the clustering ends.
In order to facilitate the study of data fusion, cluster-head nodes have a sufficient capacity to act as sink
nodes, so we do not need frequent elections of cluster-head nodes. The children sensor nodes in the
cluster will periodically integrate the collected data and send it to their parent sink nodes. Each cluster
must include all sensor nodes that can detect possible event attributes and the summation of the
communication range of similar sensor nodes in each cluster such that the entire cluster can be covered.
In general, the base station is mobile because it has a large area to manage and requires a separate
protocol to regulate its motion. However, the purpose of this paper is to discuss data fusion, so it is
necessary to assume that the base station is stationary to facilitate subsequent research and highlight
the research focus. In this network system, the base station is able to communicate directly with all
sink nodes and sensor nodes. Sink nodes can communicate with the base station directly or by means
of multiple hops. Sink nodes can communicate with each other directly or through multiple hops,
sink nodes and sensor nodes in the same cluster can communicate with each other, and sensor nodes
within the same cluster can also communicate with each other. Hence, nodes can either communicate
with each other directly or through multiple hops.

4. Data Fusion Algorithm Based on Hesitant Fuzzy Entropy and Illustration of an Example

In general, multiple attributes are required to evaluate whether an event will occur (such as
whether a forest is on fire). In WSNs, in order to ensure the accuracy of monitoring data, the same
attribute value will be monitored by multiple sensor nodes. The same monitoring values are different
due to the interference of various reasons (such as noise interference, different distances from the event
occurrence point, etc.). When the sink node receives these inconsistent data, it is worth discussing
how to make a correct judgment on the attribute value. The theory of hesitant fuzzy sets can solve
this problem precisely. The membership degree of an element that is allowed to belong to a set can be
several possible values. In WSNs, multiple possible values of a property value correspond to multiple



Sensors 2019, 19, 784 6 of 17

possible memberships of hesitant fuzzy sets. An accurate entropy weight model is constructed by using
hesitant fuzzy entropy, and the corresponding weight of each sensor monitoring value of this attribute
is obtained. Then, the final result of this attribute is obtained according to the information provided by
the system in advance and periodically transmitted to the base station. As we know, the main energy
consumption of sensor nodes is communication. If the sensor nodes send the data to the sink node as
soon as they receive the data, the sensor nodes in the region with frequent changes in events will greatly
shorten their service life due to frequent sending of monitoring values. Therefore, this paper proposes
a data fusion algorithm based on hesitant fuzzy entropy to solve the above problems, and further
illustrates the principle of the data fusion algorithm with the forest fire prediction system.

4.1. The Introduction of Hesitant Fuzzy Entropy

Information entropy represents the statistical characteristics of the whole information source and
is a measure of the overall mean uncertainty. A hesitant fuzzy set describes the hesitant situation when
people make a decision. In this section, we shall develop some entropy measures for hesitant fuzzy
information and discuss their relationships.

Definition 1 [21]. Let X be a fixed set, and the hesitant fuzzy set on X is in terms of a function α that when
applied to X returns a subset of [0,1], which can be represented as the following mathematical symbol:

A = {< x, α(x) >|x ∈ X} (2)

where α(x) is a set of values in [0,1], denoting the possible membership degrees of the element x ∈ X to the set
A. For convenience, Xia and Xu [22] named α(x) an HFE and H the set of all HFEs.

It is noted that the number of values in different HFEs may be different, so let lα(x) be the number of

values in α(x). We arrange the elements in α(x) in increasing order, and let α(x)σ(i)

(
i = 1, 2, · · · , lα(x)

)
be the ith smallest value in α(x). Given an HFE α, Torra and Narukawa [23] defined the complement
set of α described as αc = ∪γ∈α{1− γ}. In this paper, to operate correctly, we assume that the HFEs α

and β should have the same length l when we compare them. If there is only one value in α, we should
extend it by repeating the value until it has the same length of β.

In the following, we give the axiomatic definition of entropy and cross-entropy for HFEs:

Definition 2 [24]. An entropy on HFE α real-valued function E: H → [0, 1] , satisfying the following axiomatic
requirements:

E(α) = 0, i f and only i f α = 0 or α = 1;
E(α) = 1, i f and only i f ασ(i) + ασ(l−i+1) = 1, f or i = 1, 2, · · · , lα;
E(α) ≤ E(β), i f ασ(i) ≤ βσ(i) f or βσ(i) + βσ(l−i+1) ≤ 1 or ασ(i) ≥ βσ(l−i+1), f or βσ(i) + βσ(l−i+1) ≥

1 i = 1, 2, · · · , l;
E(α) = E(αc).

E(α) = − 1
lα ln 2

lα
∑

i=1

(
ασ(i)+ασ(lα−i+1)

2 ln(
ασ(i)+ασ(lα−i+1)

2 +
2−ασ(i)+ασ(lα−i+1)

2 ln
2−ασ(i)+ασ(lα−i+1)

2

)
(3)

Definition 3 [24]. Let α and β be two HFEs. Then, the cross-entropy C(α, β) of α and β should satisfy the
following conditions:

CA(α,β) ≥ 0;

CA(α,β) = 0 i f and only i f ασ(i) = βσ(i), i = 1, 2, · · · , l.
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CA(α,β)

= 1
lT

l
∑

i=1

(
(1+qασ(i)) ln(1+qασ(i))+(1+qβσ(i)) ln(1+qβσ(i))

2

− 2+qασ(i)+qβσ(i)
2 ln

2+qασ(i)+qβσ(i)
2

+
(1+q(1−ασ(l−i+1)) ln(1+q(1−ασ(l−i+1)))+(1+q(1−βσ(l−i+1)) ln(1+q(1−βσ(l−i+1)))

2

− 2+q(1−ασ(l−i+1)+1−βσ(l−i+1))
2 ln

2+q(1−ασ(l−i+1)+1−βσ(l−i+1))
2

)
, q > 0

(4)

where T = (1 + q) ln(1 + q)− (2 + q)(ln(2 + q)− ln 2), q > 0.

Theorem 1 [24]. Let α be an HFE. Then, EA(α) = 1− CA(α, αc) is an entropy formula for α.

EA(α) = 1− CA(α, αc) = 1−
2

lαT ∑lα
i=1(

(1+qασ(i)) ln(1+qασ(i))+(1+q(1−ασ(lα−i+1))) ln(1+q(1−ασ(lα−i+1)))
2 −

2+qασ(i)+q(1−ασ(lα−i+1))
2 ln

2+qασ(i)+q(1−ασ(lα−i+1))
2 ), q > 0

(5)

where T = (1 + q) ln(1 + q)− (2 + q)(ln(2 + q)− ln 2), q > 0.

4.2. Data Fusion Model Construction

In this network system, sink nodes periodically deliver the latest data fusion message to the base
station. In order to reduce the frequency of communication between sensor nodes and sink nodes,
sensor nodes are required to periodically transmit the collected data to sink nodes. As long as the size
of the cycle is controlled, the real-time performance of the whole network can be maintained, and the
number of times sensor nodes communicate can be greatly reduced. In this paper, it is assumed that
the period required for the sink node to transmit messages to the base station is T, and that the period
for the sensor node to transmit messages to the sink node is t, so T = nt. Moreover, instead of every
sensor node in the cluster passing messages to the sink node during every t time period, it can be
divided into the following two situations: In the first case, an event occurs in the area monitored by the
sensor node, which wakes it up, and the sensor node passes the collected data to the sink node; in the
second case, during the process of event occurrence, the data collected by the sensor node changes,
and it is different from the data transferred in the previous period t, so the data will be transferred
again, otherwise it will not be transferred. This scheme can greatly reduce the communication times of
sensor nodes, thus extending the life of sensor nodes and the network life cycle.

Because the data passed by the sensor nodes are the attribute value in a time period t, within this
period of time t, the sensor nodes monitoring data value may be the same or will continue to change
(for example, the temperature may rise or fall), so it may be the form of Di {d1, d2, · · · , dn}, where n ≥ 1
and di represents the different values collected by the sensor node in time t. Hence, the question of
how to get reasonable monitoring values from these related values arises. This paper uses hesitant
fuzzy entropy to solve the data fusion problem in Algorithm 1. The specific data fusion steps are
as follows:

1. The sink node integrates and standardizes the data collected within a period T;
2. The sink node lists all possible data values Gj of all attribute values ADi, and generates the

hesitant fuzzy set αij (i = 1, 2, · · · , m; j = 1, 2, · · · , n);

3. The matrix of hesitant fuzzy entropy E
(
αij
)

of the data at this stage is calculated through Formula (5);

4. In order to obtain the weight value wi of each set of sensor nodes, an accurate entropy weight
model is constructed by the matrix of hesitant fuzzy entropy Eij:

wi =
1− Ei

m−∑m
i=1 Ei

(6)
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where Ei =
1
n ∑n

j=1 E
(
αij
)
, i = 1, 2, · · · , m.

5. According to Formula (7), the data value of attribute Fj is synthesized:

DFj =
1
n

n

∑
i=1

wiDi (7)

where Di =
1
lα ∑ ασ(i), i = 1, 2, · · · , m.

6. According to Formula (8), the attribute value is converted into the possible probability P of the
occurrence of events.

P = wj

n

∑
j=1

DFj

D′Fj

(8)

The wj is set by the system in advance of the weight value of various parameters leading to the
final event occuring, and D′Fj

represents the threshold value of attribute Fj when this event occurs.
When the value of property Fj, inversely proportional to the probability of an event happening,

is pFj = 1−
DFj
D′Fj

, D′Fj
represents the threshold value of attribute Fj when this event is impossible.

It is important to note that the sink nodes integrate the collected data as follows: At the end of
the cycle, the sink node will send the collected data from the storage to the data processing unit for
processing. The sensor node continues to receive the data in the next period, while the data processing
unit merges the collected data. The sink node will calculate the interval values that may appear in
each attribute value, divide the interval values into 10 parts, and assign the 10 intervals values of
{0–0.1, 0.1–0.2, 0.2–0.3, 0.3–0.4, 0.4–0.5, 0.5–0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9, 0.9–1.0} respectively. Therefore,
the collected data will be assigned the corresponding interval value according to the size of its value,
in order to complete the integration and standardization processing.

The following illustrates the whole process of network data fusion:

Algorithm 1. Data fusion process.

1. When an event occurs, sensor nodes are awakened to perceive and collect event information;
2. for T ≥ 0 do

The sensor nodes will conduct simple integration of the data set monitored in the t period, remove
redundant and identical data;

while DTi 6= DTi−1 do
The integrated data DTi will be transmitted to its cluster- head sink node;

end while
3. end for.
4. The sink node will integrate and standardize the data collected after the T period;
5. The sink node obtains the weight of each attribute value according to the data fusion algorithm, and
synthesizes the final value of each attribute value according to the attribute value;
6. The sink node merges the final value of each attribute value into the final prediction result R f inal ;
7. If R f inal are changed, do

The sink node will periodically transmit the calculated final prediction results to the base station.
8. Else

R f inal will not be transmitted;
9. end if
10. The base station will comprehensively evaluate the collected results to determine the possibility of the
event happening Pf inal in the monitoring area;
11. If Pf inal are changed, do Pf inal is transmitted to the terminal;
12. Else
13. Pf inal will not be transmitted.
14. end if
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Algorithm 1 not only greatly improves the reliability of the entire network, but also fundamentally
improves the network life cycle. The main reasons for this are as follows: The base station dispatches
a large number of data fusion tasks to each sink node, so that complex data fusion tasks are carried out
simultaneously by multiple sink nodes. The base station receives the final prediction results of each
cluster, which greatly saves time and improves the real-time performance of the system as a whole,
and makes the prediction results available in a timely manner for the terminal staff. In general, wireless
sensor network systems are deployed in a large monitoring area, and the predicted events are likely
to occur in a certain area. The regional monitoring mentioned in this paper makes it easier to find
out which area has the highest probability of occurrence of an event in a timely manner (such as
when a portion of the forest is likely to catch fire), improves the accuracy of the prediction system,
and enables people to take more directional defense measures. Finally, because the time period of
sensor nodes and sink nodes is reasonably allocated in this paper, the communication times of the
whole network are reduced so as to extend the life cycle of the whole network.

4.3. Case Study: Implementation of Data Fusion Algorithm in Forest Fire Monitoring and Warning System

This paper illustrates the superiority of this data fusion algorithm through the forest fire
monitoring and early warning system. In the forest fire monitoring and early warning system, it is
usually necessary to monitor the temperature, humidity, smoke concentration and other parameters at
various points in the forest. As shown in Figure 2, the forest fire monitoring and early warning system
consists of three subsystems: data acquisition subsystem, control center subsystem, and emergency
response subsystem. Among them, the data acquisition subsystem mainly uses four types of sensors
to perceive and collect data to further predict the possibility of forest fire. They are temperature, smoke
concentration, air humidity, and far infrared flame sensors. The first three sensors are used for forest
fire prediction, while the far-infrared flame sensor can detect the occurrence of fire and the location
and distance of the fire source. The control center subsystem is composed of sink nodes, base stations,
and terminals. The sink node first merges the data collected in the cluster to obtain local decisions.
Then, the local decision is sent to the base station, and the base station obtains the fire prediction
report through the comprehensive analysis of each local decision collected. It can also obtain the fire
monitoring report and fire spread prediction based on the changes of the prediction results of multiple
cycles, and then send the prediction report to the terminal. The emergency response subsystem is
composed of terminals and fire prevention personnel. When the fire prevention personnel see the
dynamic information of real-time change prediction, they will formulate relevant emergency plans or
measures to prevent forest fire. This paper mainly focuses on the first two subsystems, whose working
principles are described as follows:

The set of monitored features may consist of the following:
F1 : temperature
F2: smoke density
F3 : air humidity
F4: infrared intensity

The set decisions:

d1 : fire unlikely
d2: fire likely
d3: fire is going on
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A decision matrix can be defined as
↓ 80 ↑ 180
↓ 10 ↑ 80
↑ 65 ↓ 25
↑ 700 ↓ 1000

 (9)

where ↓ x indicates any value smaller than x that is replaced with x and ↑ x indicates any value
larger than x that is replaced with x. The above example decision matrix indicates that if feature F1

(temperature) is 80 (degrees Fahrenheit) or less, feature F2 (smoke density) is 10 or less, and feature F3

(humidity) is greater or equal to 65, then decision d1 is taken (i.e., fire unlikely). When the sensor node
receives such data, it will not transfer the packet to the sink node because there is no possibility of fire,
but if feature F1 (temperature) is 180 (degrees Fahrenheit) or more, feature F2 (smoke density) is 80
or more, and feature F3 (humidity) is 25 or less, then decision d2 is taken (i.e., Fire likely) and sensor
nodes will periodically transmit such data collected to sink nodes. When feature F4 indicates that the
monitoring infrared ray wavelength is between 700nm-1000nm, decision d3 is taken. To prove that the
fire has occurred, the sensor node sends the fire occurrence warning packets to its sink node. If the
sink node receives several fire occurrence warning packets (the number received is less than 20% of
the number of infrared sensor nodes), it means that the probability of fire is low and the sink node will
not immediately send the fire warning packet to the base station. If the sink node receives the warning
packets of multiple nodes (more than 75%) in the cluster, it will immediately transmit the message to
the base station for subsequent remedial measures. In general, such sensor nodes will not send data
to cluster head nodes when fire does not occur, so the prediction of fire mainly depends on feature
F1, F2, F3. The following data fusion algorithm is used to predict the probability of forest fire:

Step1: In the period T, a sink node collects packets from sensor nodes in its cluster. First,
we need to filter the data collected for each attribute value. We prefer the data that fire may occur,
but considering the accuracy of the data, we keep the data that appear in a certain data interval more
frequently and the data that are closer to the possibility of fire. In order to reduce data redundancy and
improve data feasibility, we verify whether the following two situations occur together: (1) The data
change trend of the same sensor node stays the same and (2) the set of data significantly changes



Sensors 2019, 19, 784 11 of 17

during the entire course. If so, we believe the latter set of data is more reliable and abandon the first
set. The process of data standardization is as follows: divide the three attribute values into ten parts
according to their interval, and assign values corresponding to 0–1.0. In this way, the collected data
sets can be converted into hesitant fuzzy sets. That is, for the attribute F1, its corresponding value
interval is normalized to {[80, 90]→ [0, 0.1]}, {(90, 100]→ (0.1, 0.2]}, · · · , {(170, 180]→ (0.9, 1.0]}.
The value interval corresponding to the attribute F2 is normalized to {[10, 17] → {[0, 0.1]},
{(17, 24]→ (0.1, 0.2]}, · · · {(73, 80]→ (0.9, 1.0]}. The value interval corresponding to the attribute
F3 is normalized to {[65, 61]→ [0, 0.1]}, {(61, 57]→ (0.1, 0.2]}, · · · {(29, 25]→ (0.9, 1.0]}. In order to
illustrate the problem more concisely, we simplify the integrated data and assume that each attribute
value corresponds to five sets of data, as shown in Table 1.

Table 1. The actual measured value after screening.

F1 F2 F3

S1 {150,155,160} {15,18,24} {45,50,57}
S2 {155,160} {31} {35,42,45}
S3 {160,165,169} {24,30} {40,45,50}
S4 {150,155} {24,32,38} {49}
S5 {140,145} {24} {41,45,48}

Table 2 is the corresponding hesitant fuzzy sets matrix after the standardization of Table 1.
As shown in Table 1, the monitoring values can be three, two, or one, indicating that when the sensors
collects data, they might monitor three, two, or one data value in a collection cycle. The monitoring
values of different numbers also reflect that the attribute values of some sensor nodes monitoring areas
are variable, while some are not.

Table 2. Hesitant fuzzy decision matrix.

F1 F2 F3

S1 {0.7,0.75,0.8} {0.04,0.17,0.2} {0.2,0.38,0.5}
S2 {0.75,0.8} {0.3} {0.5,0.63,0.75}
S3 {0.8,0.85,0.89} {0.2,0.29} {0.38,0.5,0.58}
S4 {0.7,0.75} {0.2,0.31,0.4} {0.4}
S5 {0.6,0.65} {0.2} {0.43,0.5,0.6}

Step2: Formula (5) is used to transform the hesitant fuzzy set matrix into the entropy matrix,
as shown in Table 3.

Table 3. Entropy matrix.

F1 F2 F3

S1 0.7580 0.4782 0.9227
S2 0.7068 0.8460 0.9378
S3 0.5300 0.7480 0.9990
S4 0.8046 0.8499 0.9617
S5 0.9401 0.6505 0.9994

Step3: Formula (6) is used to calculate the weight of each type of sensor node:

w = (0.2934, 0.1777, 0.2521, 0.1338, 0.143)T (10)

Step4: According to Formula (7), the final data values of all the measured attribute values
are synthesized:

DF1 = 155.8, DF2 = 25.5, DF3 = 46.4
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Step5: Considering that air humidity is the most critical factor leading to forest fire, the weight
vector of these three attribute values given by the system is w = (0.3, 0.2, 0.5)T . Then, Formula (8) is
used to calculate the possibility of fire in this cluster as follows:

P = 0.3× 155.8
180

+ 0.2× 25.5
80

+ 0.5× 1− 46.5
65

= 47% (11)

Step 6: The sink node will send the synthetic attribute values in steps 4 and 5, together with
the 47% probability of fire prediction in the cluster, to the base station. The base station will make
a comprehensive comparison based on the results sent by each sink node, so that it can easily predict
which region has the highest probability of fire. At the same time, it can also judge the dynamic
change trend of a certain region according to several consecutive cycles, in order to prepare for the
follow-up work.

This example is mainly used to illustrate the operation idea of this algorithm, so it simplifies the
data. The filtered data in reality is much more complex than the filtered data in the example, so that the
accuracy rate is higher. At the same time, we can see from this example that if some sensor nodes in
the cluster do not work or die, as long as the monitoring range of similar surviving sensor nodes in the
cluster can cover the whole cluster, the system still operates normally, thus improving the robustness
of the whole network.

5. Evaluation and Discussion

In this section, we introduce the performance analysis of the algorithm and compare it with two
other algorithms. In the experiment, we mainly focus on the influence of this algorithm on the total
energy consumption of the network and the overall network life.

5.1. Experiment Setup

In order to explain the advantages of this algorithm more clearly, we choose a forest fire prediction
system to exemplify the proposed algorithm. This paper mainly uses omnet++ for experimental
simulation, and some data are analyzed and explained by MATLAB. In this simulation experiment,
the monitoring area of the experimental simulation is 50 m × 50 m, in which a base station is placed.
Its energy calculation and storage capacity are sufficient, and the communication radius is 100 m. It is
the destination node for all sink nodes to send data. A total of 30 sink nodes are evenly distributed to
the monitoring area, they have sufficient energy and processing capacity, the monitoring area is based
on its own as the center, and the communication radius is an R = 15 m round area, so the sink nodes can
cover the entire monitoring area. As discussed earlier, the sink nodes collect data from their neighboring
sensor nodes and use the data fusion algorithm to make local decisions which are then sent to the
base station. There are 150 sensors in each of the four sensors of sensing temperature, air humidity,
smoke concentration, and far infrared ray distributed in the monitoring area. The communication
radius of the sensor is r = 5 m, and the sensor mainly induces its relative event attribute value. Besides,
sensor nodes can be used as intermediate nodes for data transmission. In order to further prove the
rationality of node density setting in the experiment, we specially summarized the reasonable range
of node density. As mentioned in [25], the optimal density of nodes is ρ = 1.03. In [26], this study
proposed increasing the node density near the base station during deployment to compensate for the
requirement of high energy consumption. The results show that the optimal node density distribution
is 4:2.5:1, and the closer it is to the base station, the greater the sensor node density. In [27], it mainly
studies the relationship between node density and the number of hops. Experimental results show
that when the node density is 5, it is most beneficial to network data transmission. Therefore, the node
density setting is practical in our experiment, which will not lead to the redundancy of data collection
due to the excessive node density. In addition to the different event attributes induced by these sensor
nodes, other performance parameters are all the same, as shown in Table 4.
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In this simulation system, sink nodes and sensor nodes periodically transmit data to their parent
nodes. The sink nodes report to the base station at period T = 100 s, and the sensor nodes report data
to the sink nodes at period t = 20 s. The sensor sampling rate is the response speed of the sensor node
to the signal, and its value is equal to the reciprocal of the response time. In our simulation system,
the sensor sampling rate value is ∆ f = 0.5 S/s.

In addition, the event generator aims to simulate the forest fire scene in this paper. It does the
simulation by releasing four parameters: temperature, air humidity, smoke density, and far infrared
ray. In order to test the feasibility of simulation, we must give a reasonable value range for these
four parameters: temperature range is 0–300 ◦C, as related data show that wood fires are 180–290 ◦C.
If the temperature is detected in this range, it is considered that the fire is likely to happen. The air
humidity is the absolute air humidity and the value is 0–100. When the value of the air humidity is
25, it is considered that fire is very likely to happen, but when the air humidity value is more than 60,
fire is unlikely to happen. The smoke concentration range is 0–100 and the infrared wavelength is
700–1000 nm.

In this simulation experiment, the infrared signal cannot be released arbitrarily. The constraints
are that when the temperature is above 200 ◦C and humidity of the air is less than 40, the event
generator can send out an infrared signal. Otherwise, it cannot send out an infrared signal. In addition,
the smoke concentration should not be higher than 25 in the absence of fire. The event generator for
a period will be within each cluster more t′ = 5 s to send an event signal to imitate the possibility of
a fire. When the released event signal is certain to avoid a fire, the corresponding sensor node will not
receive the signal. Only when the received data is in the range of possible fire will the sensor node
collect the data (see the decision table above for forest fire occurrence) and then transmit it to the sink
node. We assume that the data published by the event generator is in an 80% probability range of fire
occurrence, and in this 80% probability, the probability of fire occurrence is 20%.

Table 4. Additional parameters in evaluations.

Notion Description Value

Eelec Transmitter orreceiver energy consumption 50 nJ/bit
εamp Amplifier energy consumption 100 pJ/bit/m2

C(trans) Transmitter power 0.020 w
C(rec) Receiver power 0.029 w
E(init) Initial energy 0.8 J
Edata Data fusion energy consumption 5 pJ/bit
MAC Media Access Control IEEE 802.15.4

k Transmission attenuation 4
Ecommunication Built-in communication equipment Zigbee

5.2. Result and Discussion

This paper is compared with two algorithms, namely a Data Fusion Method in Wireless
Sensor Networks (DFM) [14] and Data Fusion in Wireless Sensor Networks using Fuzzy Set Theory
(DFFST) [15]. The reason for choosing these two algorithms is that both choose fuzzy theory in the
data fusion of a wireless sensor network, and they carry out forest fire prediction analysis, which is
very similar to our algorithm. DFM mainly aims at improving the service quality of the network and
reducing the energy consumption of a wireless sensor network, and proposes a data fusion method
based on fuzzy theory. However, this method is only used to distinguish and aggregate the authenticity
of the collected data, and does not further investigate, so it is far from the basic performance of this
paper. The DFFST algorithm mainly uses the fuzzy set theory to aggregate the data of multiple
sensors at the cluster level. To some extent, it can deal with the inaccuracy and conflict inherent in
environmental data reading. However, in reality, if we do not filter the collected data before processing
it, it is likely that a large amount of false information will be adopted. At the same time, the accuracy of
this algorithm cannot be guaranteed. It sets the data value of the same interval collected as the median
value of the interval, which is convenient for processing, but actually greatly reduces the accuracy.
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In order to compare the experimental rigor, the experimental configuration of these three algorithms is
the same.

In this paper, the total number of surviving nodes, residual total energy, and average time delay
of the three algorithms are compared with the increase of network operation times. As shown in
Figure 3, it mainly reflects the change in the number of remaining surviving sensor nodes in the
network with the increase of network operation times. The total numbers of sensor nodes are 600 in the
three algorithms, and the nodes are evenly divided according to the types of nodes in the algorithm.
As shown in Figure 3, when the algorithm runs to 550 rounds, the number of sensor nodes will
suddenly decrease to 150. This is mainly because the sensor sensing air humidity, smoke concentration,
and temperature in this experiment dies, while the node that continues to survive is the far infrared
sensor node, which is mainly related to the fire probability set in this experiment. However, DFFST
and DFM algorithms are distributed in the network running times to 200 and 150 times, and nodes
start to die in succession. It can be said that this algorithm is superior to the above two algorithms
in the uniform consumption of network energy. The main reason why the data fusion algorithm can
achieve this effect is that the sensor nodes periodically simply integrate the collected data and transfer
non-repeated data to the sink nodes. In this way, both the number of data transmission times and
the transmission of redundant data are reduced, and the energy consumption of each sensor node is
greatly reduced. At the same time, the selection of redundant data by sink nodes and base stations is
reduced and the efficiency of data fusion is improved. Therefore, the survival time of sensor nodes is
enhanced, and the life cycle of the whole network is prolonged. The subsequent surviving far-infrared
flame sensor nodes can only detect the occurrence of fire, so they will gradually die with the increase
of network operation times.
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sensor nodes.

Figure 4 mainly shows the relationship between the total residual energy of the network and
the number of network runs. It can be clearly seen from Figure 4 that the total residual energy of
sensor nodes of the proposed data fusion algorithm is significantly higher than that of the other two
algorithms. Moreover, the total energy consumption of the proposed algorithm is linearly related
to the network operation times. It is explained that the proposed algorithm can save energy and
ensure the stability of the whole network energy consumption. The main purpose of the proposed
algorithm is to reduce the transmission of redundant data and thus reduce most energy consumption.
In addition, data fusion is completed by the sink node. The sink node (cluster head) in this paper is
fixed, so the energy consumption of selecting the cluster head is reduced. In the later period of network
operation, only some sensor nodes are working due to the death of sensor nodes, so the overall energy
consumption decreases.
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Figure 5 mainly compares the relationship between network operation times and average time
delay. The average time delay referred to in this paper is the transmission time of packets and data
processing time in the network, excluding the waiting time of packets at the sink node. It only counts
the transmission time delay of packets from the sensor node to the sink node, and then from the
sink node to the base station. It can be clearly seen from Figure 5 that the average time delay of the
proposed algorithm is significantly lower than that of the other two algorithms. The main reason for
this is that the data packets transmitted by the proposed algorithm are relatively small after fusion.
Each sensor node delivers data packets to the sink node on a periodic basis, which reduces network
congestion. In addition, this paper makes local decisions at the sink node, which can greatly reduce
the amount of data in the network. At the same time, the base station can also produce the prediction
results quickly, which improves the real-time performance of the whole system and makes the system
more suitable for application scenarios with a strong real-time performance. As shown in Figure 5,
after 550–600 network runs, the average time delay of DFFST and DFM is not applicable due to a large
number of dead nodes. Therefore, we leave those histograms empty. From the perspective of the
whole network operation cycle, with the increase of network operation times, the average time delay
will also increase to different degrees. Because the number of network nodes and the number of
intermediate nodes are reduced, the average time delay of the whole network will increase and the
overall transmission efficiency of the network will decrease.
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6. Conclusions and Future Work

This paper demonstrates that data fusion in wireless sensor networks can significantly reduce
raw data transmission between networks, which in turn increases the network life and prevents base
stations from being saturated. Specifically, we applied hesitant fuzzy entropy to the data fusion of
a wireless sensor network, which greatly reduces the amount of data transferred in the network and
improves the real-time performance of the entire system. We have shown that the proposed data
fusion algorithm could improve the reliability of data compared to the state-of-the-art. In the future,
we plan to integrate the proposed data fusion algorithm into other system research areas, such as big
data systems [28], key-value stores [29], data compression [30], and blockchains [31].
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