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Abstract: This paper presents a method for calculating the health degree (HD) of a braking
system of a mine hoist combined with three-level fuzzy comprehensive assessment (TLFCA) and
a back-propagation neural network (BPNN). Firstly, the monitored values of a sensor are fused by
multi-time fusion and the fuzzy comprehensive assessment values (FCAVs) of the health condition
(HC) of the sensor are obtained. Secondly, the FCAVs of all sensors in a subsystem are fused by
multi-sensor fusion, and FCAVs of the subsystem are obtained. Then the FCAVs of all subsystems
are fused by multi-subsystem fusion and FCAVs of the system are obtained. All the FCAVs are fed
into a pre-trained neural network, and the corresponding HD of the sensor, subsystem and system is
obtained. Finally, the practicability, reliability and sensitivity of the proposed method are verified by
the monitored values of the test rig. This paper presents a method to provide technical support for
intelligent maintenance, and also provides necessary data for further prognostics health management
(PHM) of the braking system. The method presented in this paper can also be used as a reference for
the HD calculation of the whole hoist and other complicated equipment.

Keywords: mine hoist; braking system; fuzzy comprehensive assessment (FCA); health assessment;
neural network; health management

1. Introduction

As a key equipment in the mine production, the mine hoist constructs the connection between
ground level and the underground, and shoulders the important task of lifting coal, ore, personnel,
materials and equipment. With the rapid development of science and technology, the mine hoist is
developing towards the large scale, complication, automation and intelligence. The braking system
is the last safeguard to ensure the safe operation of the hoist. Once the braking system fails, it may
affect the hoist or even cause the whole mine to shut down. A survey of hoist accidents finds that the
accidents caused by braking system faults account for more than 60% of all hoist accidents. Therefore,
it is imperative to improve the safety and reliability of the hoist braking system.

Prognostics health management (PHM) is proposed to meet the requirement of self-protection and
independent diagnosis, and it is the upgrade and development of condition-based maintenance (CBM).
It emphasizes the condition perception in the equipment management, monitors the equipment health
condition (HC), and the frequent fault area and period, and predicts fault occurrence through the data
monitoring and analysis, thus greatly improving the reliability and operational maintenance efficiency.
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PHM was proposed by the U.S. Department of Energy and the U.S. Department of Defense
in the development of army-equipped helicopters [1,2]. The theory was developed and widely
used in the health management of aerospace [3,4], naval ship [5], wind turbine [6], power plant [7],
rotating machinery [8,9], electronic equipment [10] and other large and sophisticated equipment,
which provides a reliable guarantee for safe operation. As one of the core technologies of PHM,
equipment health assessment has been extensively studied [11] and widely used in liquid hydrogen
supply systems [12], aircraft hydraulic systems [13], aeroengines [14], wind tunnel equipment [15],
and so on. Because of the importance of hoists in mine production, many scholars have done research
on the condition monitoring [16–18] and fault diagnosis [19–21] of hoist activity, and achieved many
results [22,23]. However, the health assessment of the hoist and braking systems is seldom studied.
At present, the implemented standards of health assessment of hoists are all issued by authoritative
organizations, such as the national standard, the industry standard, the international standard, and so
on, e.g. coal mine safety regulations stipulate the following requirements for the braking system:
(1) the safety braking deceleration must be less than or equal to 5 m/s2 during the vessel’s ascent
with a heavy load, and must be greater than or equal to 1.5 m/s2 during the vessel’s descending with
heavy-load in vertical well. (2) The idle time of disc brake, which refers to the time from the closing
of the protection circuit to the contact time between the brake shoe and the brake disc, should not
exceed 0.3 s. (3) The gap between brake shoe and brake disc should not be greater than 2mm, generally
between 0.5–1.5 mm. These assessment standards, which can be called threshold or limit assessment
standards, are all for a single parameter and lack of health assessment of the system and the overall
hoist. In this paper, a method of assessing the health degree (HD) of a mine hoist braking system based
on the combination of three-level fuzzy comprehensive assessment (TLFCA) and back-propagation
neural network (BPNN) is proposed.

The rest of this paper is structured as follows: Section 1 introduces the method of calculating the
HD of a mine hoist based on the combination of TLFCA and BPNN. Section 2 introduces the fuzzy
comprehensive assessment (FCA) method. Section 3 first introduces the hoist and braking system,
and then introduces the TLFCA method and steps. Section 4 introduces the method of training a neural
network by fuzzy comprehensive assessment values (FCAVs) and corresponding HD. Section 5 verifies
the reliability, stability and sensitivity of the proposed method by examples. Section 6 summarizes the
advantages and disadvantages of the method and its further development and application.

2. Method of Calculating Health Degree (HD) Based on Combination of Three-Level Fuzzy
Comprehensive Assessment (TLFCA) and Back-Propagation Neural Network (BPNN)

Since Professor Zadeh, a cybernetics expert in the United States, put forward the concept of
fuzzy sets, fuzzy mathematics has developed rapidly in recent decades, and FCA based on fuzzy
mathematics theory has also been studied and widely applied [2,24–27]. The basic idea of FCA
is to make a reasonable comprehensive assessment through considering the factors related to the
assessed affairs by using the principle of fuzzy linear transformation and maximum membership
degree. The FCA method provides a new mathematical tool for solving multi-objective assessment and
decision problem under fuzzy environment. As a composite system with several subsystems, there are
many factors that need to be considered in the health assessment of hoist braking system. With the
characteristic of “fuzziness”, it is difficult to measure quantitatively the influence that the factors have
on each other and on the HC of the system. Therefore, it is suitable to use the method of FCA to assess
the HC of the braking system of the mine hoist. However, the principle of maximum membership
ignores the contribution of non-maximum membership to HD, and the result is only a certain HC,
not the degree belonging to the HC. HD is a number within the scope of [0,1], representing the health
value of an assessed object. This method not only makes the assessment result express the degree
belonging to a certain HC accurately, but also accords with people’s thinking habits. In this paper,
a method for assessing the HD of mine hoist breaking system based on the combination of TLFCA and
BPNN is proposed. The block diagram of the method is shown in Figure 1. Firstly, the data fusion
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of multiple time points is carried out by the sensor output samples, and the FCAVs of a sensor are
obtained. Then, the FCAVs of multiple sensors in each subsystem are fused in space, and the FCAVs of
the subsystem are obtained. Finally, the BPNN is used to accomplish the defuzzification calculation of
HD from the FCAVs.
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Figure 1. Block diagram of method of calculating health degree (HD) based on the combination of
three-level fuzzy comprehensive assessment (TLFCA) and back-propagation neural network (BPNN).

3. Introduction to the Fuzzy Comprehensive Assessment (FCA) Method

The basic idea of fuzzy assessment is using the principle of fuzzy transformation and maximum
membership degree. In order to make a reasonable comprehensive assessment of the assessment object,
we should consider all the factors related to the assessed factors, standardize each index, and distribute
the weight according to the influence of the different index. In the comprehensive assessment of a
complex system, because there are many factors, and each factor must be given a certain weight, it is
likely that the following situation will occur: 1© Difficulty in determining appropriate weight; 2© Lack
of meaningful assessment results, etc. For such a problem, the method of multi-level FCA can be used,
which means the factors are divided into several layers according to the characteristics, and the FCA
of each type at the lowest level is carried out firstly to obtain the assessment matrix of the upper layer.
Then the FCA of each class at the upper layer is carried out, and the assessment matrix at the upper
layer can be obtained. In a similar fashion, the final result of the problem can be obtained. The steps of
the two-level FCA are as follows, and the multi-level assessment method continues to be subdivided
on the basis of the two-level.

Step 1: Determine the factor sets of the assessed object, denoted by U:
U = [U1, U2, · · · , Us]

Ui =
[
Ui1, Ui2, · · · , Uiki

]
s.t.

s
∑

i=1
ki = n

s.t.(∀i, j)
(
i 6= j→ Ui ∩Uj = ∅

) (1)

where Ui is the ith factor class, Uij is the the jth factor in ith factor class, s is the number of factor classes,
ki is the number of factors in the ith factor class, and n is the total number of factors.

Step 2: Determination assessment sets, denoted by V:

V = [V1, V2, · · · , Vm] (2)

where Vl is the lth assessment factor, and m is the number of assessment factors.
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Step 3: Determine the weighting sets
(1) The weight sets of the factor sets, denoted by W: W = [W1, W2, · · · , Ws]

s.t.
s
∑

i=1
Wi = 1 (3)

where Wi is the weight of Ui.
(2) The weight sets of factor classes, denoted by ωi:

ωi =
[
ωi1, ωi2, · · · , ωiki

]
s.t.

ki
∑

j=1
ωij = 1

i = 1, 2, · · · , s (4)

where ωij is the weight of Uij.
Step 4: Determine the fuzzy conversion matrix between Ui and Vl denoted by Ri:

Ri =


Ri

11 Ri
12 · · · Ri

1m
Ri

21 Ri
22 · · · Ri

2m
...

...
...

...
Ri

ki1
Ri

ki2
· · · Ri

kim

 (5)

where Ri
jl is fuzzy conversion value of the jth factor in the ith factor class and the lth assessment factors.

Step 5: Calculate the FCAVs of the ith factor class by fuzzy matrix compound operation, denoted
by FCAVi:

FCAVi = ωi ◦ Ri = (FCAVi1, FCAVi2, · · · , FCAVim), i = 1, 2, · · · , s (6)

where ◦ is fuzzy operator, FCAVil =
ki
∑

j=1

(
ωij · Ri

jl

)
, l = 1, 2, · · · , m , and FCAVil is the FCAV of the

lth assessment factor in the ith factor class.
Step 6: Determine the fuzzy relationship matrix between U and V, denoted by R:

R =


FCAV1

FCAV2
...

FCAVs

 =


FCAV11 FCAV12 · · · FCAV1m
FCAV21 FCAV22 · · · FCAV2m

...
...

...
...

FCAVs1 FCAVs2 · · · FCAVsm

 (7)

Step 7: Obtained FCAVs of the factor sets by fuzzy matrix compound operation, denoted by FCAV:

FCAV = W ◦ R =
(

FCAV1, FCAV2, · · · , FCAVm,
)

(8)

where ◦ is fuzzy operator, FCAV1 is the FCAV of the factor sets belongs to the lth assessment factor.

4. Comprehensive Assessment of the Health Condition (HC) of Braking System

4.1. Introduction of Hoist and Braking System

A hoist mainly consists of hoisting container, hoisting rope, hoisting device, derrick, hoisting
sheave, loading and unloading equipment and accessories. The mine hoists used in China are mainly
single-rope winding hoists and multi-rope friction hoists. Their schematic diagrams are shown in
Figure 2a,b respectively.
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Figure 2. Schematic diagram of mine hoist. (a) single rope winding hoist. 1—hoisting pulley;
2—hoisting sheave; 3—derrick; 4—skip; 5—dump track; 6—ground coal bunker; 7—wire rope;
8—dumper; 9—underground coal bin; 10—conveyer; 11—ration bucket. (b) tower-type multi-rope
friction hoist. 1—driving wheel; 2—guide wheel; 3—shaft tower; 4—skip; 5—wire rope; 6—tail rope.

The brake system of hoist consists of brake, hydraulic transmission system and control system,
with the functions of working brake, stopping brake, safety brake, and regulation rope brake. Brake
clearance (BC), brake disc deflection, brake disc temperature, the motor current of tjhe hydraulic pump,
oil pressure of system, oil temperature, liquid level and oil pressure of accumulator are installed in
the braking system to monitor the HC of braking system in real time [28–32]. The scene photograph
of braking system is shown in Figure 3a, and the block diagram of sensor installation in the braking
system is shown in Figure 3b:
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4.2. Setting Up Factor Sets

According to the block diagram of sensor installation in braking system, the monitored parameters
of brake clearance, brake disk deflection, brake disc temperature, motor current of hydraulic pump,
oil pressure of system, oil temperature, liquid level and oil pressure of accumulator are chosen as the
assessment factor sets. The BCs of all brakes constitute the brake subsystem. Brake disc deflection and
brake disc temperature constitute the brake disc subsystem. The hydraulic subsystem is constituted by
motor current of hydraulic pump, oil pressure of system, oil temperature, oil quantity, contamination
degree and oil pressure of the accumulator. That is, the factor sets of the braking system:

U = [U1, U2, U3]= [brake, brakedisc, hydraulicsystem]

U1 = [U11, U12, · · · , U18] = [BC1, BC2, · · · , BC8]

U2 = [U21, U22]= [temperature, deflection]
U3 = [U31, U32, U33, U34, U35]

= [motorcurrentofhydraulicpump, oilpressureofsystem, oiltemperature,
oilquantity, pollutiondegree, oilpressureofaccumulator]

4.3. Setting Up Assessment Sets

Based on the actual needs of the evaluation decision, and the degradation degree of the actual
operation, four different categories of HC are defined, namely health state (HS), sub-health (SH),
critical fault (CF), and fault state (FS). Four categories of HC can be described as follows:

HS: The whole braking system or the subsystems such as brake, brake disc and hydraulic
system is very healthy. All sensor parameters are also healthy, and their measurement data are
close to expectations.

SH: The whole braking system or the subsystems such as brake, brake disc and hydraulic system
is in SH, which is a state between HS and CF. All sensor parameters data may fluctuate near their
expectations, but within the normal range. In general, most HC is between HS and SH.

CF: The braking system or the subsystems such as brake, brake disc and hydraulic system is in
the CF, which is a transition state. Their actual measurements have deviated from expectations relative
to the SH state, but not completely.

FS: The braking system or the subsystems such as brake, brake disc and hydraulic system is in FS.
The actual outputs of most sensors or sensors with high importance are completely different from its
expected results.

Four different categories of HC are considered as criteria for health assessment, that is,
the assessment sets for HC:

V = [V1, V2, V3, V4] = [HS, SH, CF, FS].

4.4. Standardized Processing of the Monitored Values

The monitored values have different physical significances and ranges. In order to carry on
the comprehensive analysis, standardized processing is required, that is, the monitored data should
be converted to [0,1]. According to the influence of monitored values to equipment performance,
the monitored values can be divided into three types: benefit type, cost type and interval type.
The greater the value of the benefit type, the better the performance of the equipment will be, and the
smaller the value of the cost type, the better the performance of the equipment. Combining the
characteristics of benefit and cost, when the interval type, value is in a certain range, the performance
of the equipment is the best. The farther away from the range the value is, the worse the performance
of the equipment will be. The standardized processing formula for each type datum is as follows:

(1): Benefit type

g(x) =


0 x < xmin1

x−xmin1
xmin2−xmin1

xmin1 ≤ x ≤ xmin2

1 x > xmin2

(9)
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(2): Cost type

g(x) =


1 x < xmax2

xmax1−x
xmax1−xmax2

xmax2 ≤ x ≤ xmax1

0 x > xmax1

(10)

(3): Interval type

g(x) =



0 x < xmin1
x−xmin1

xmin2−xmin1
xmin1 ≤ x ≤ xmin2

1 xmin2 < x < xmax2
xmax1−x

xmax1−xmax2
xmax2 ≤ x ≤ xmax1

0 x > xmax1

(11)

where x is the monitored value, [xmin1, xmax1] is the required range of the lowest operation of the data,
[xmin2, xmax2] is the required range of the best operation of the data, and xmin1 ≤ xmin2 < xmax2 ≤ xmax1.

The standardized data are shown in Figure 4:
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4.5. Determination of Fuzzy Membership Function

The thought of membership function degree is the basic idea of fuzzy mathematics, and the key
of applying fuzzy mathematics is to establish a membership function that accords with the reality.
According to the analysis of the historical data of the acquired values of the braking system, it can
be seen that during the steady-state operation, the acquired values obey the normal distribution,
that is, the closer to the best estimation, the greater the probability of occurrence. For the HD of
the braking system, the closer to the best estimation, the better the HC, so we choose the normal
distribution function as the membership function of the fuzzy set of four categories of HC. Among
them, the partial large and partial small normal distribution function is used for HS and FS, respectively,
and the intermediate normal distribution function is used for SH and critical CF as shown in Figure 5.
The membership functions of the four fuzzy subsets can be written as Formula 12:

fVl (x) = exp

[
−‖x− µl‖2

2δ2
l

]
(12)

where Vl represents various HC, l = 1, 2, 3, 4 respectively. V1, V2, V3, V4 represent the four states of
HS, SH, CF and FS. µl is the expected value of the lth HC. δl is the standard deviation of the lth HC.
Reference paper [13] for µl and δl values, given according to the empirical method, the values are
shown in Table 1.
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Table 1. The values of mean and standard deviation.

HC

HS SH CF FS

µ 1 0.6 0.3 0
δ 0.2 0.15 0.15 0.15

4.6. Weight Vector Calculation

Determining the weight of each index reasonably is an important work to obtain reliable
assessment results. There are many methods for weight determination, including subjective weight
method, objective weight determination method and subjective and objective weight determination
method. Subjective weight determination includes expert estimation, and an analytic hierarchy process
(AHP). Objective weight determination, which is based on the inherent information contained in the
assessment index, includes the weight determination method based on fuzzy distance, index variance
and coefficient of variation, etc. In order to ensure the objectivity, impartiality and scientificalness of
weight coefficient, this paper puts forward a method of weight determination which combines expert
scoring, objective weight determination and AHP.

4.6.1. Weight Sets of Sensors

(1) Experts score to determine the weight of each time point: w1
i =

[
w1

i1, w1
i2, · · · , w1

ik
]
, k is the

number of time points.
(2) According to the characteristics of health management, the further the monitored value from

the expected value, the greater the probability of fault is and the greater the weight is. So define the
scale value of the ith parameter at the jth time point as Formula 13:

dij =
cij

sij
(j = 1, 2, · · · , k) (13)

where cij is the absolute value of the difference between the monitored and expected value of the ith
parameter at the jth point; sij is the absolute value of the difference between the expected value of the
health and fault of the ith parameter.

According to the Formula 13, we can get the scale value of the ith parameter at jth point:
dij = [di1, di2, · · · , dik], and then get the weight vector w2

i =
[
w2

i1, w2
i2, · · · , w2

ik
]

by normalized
scale value:

w2
ij =

dij
k
∑

j=1
dij

(14)
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(3) Determine the weight sets of the ith sensor wi: After getting w1
i and w2

i , the weight sets of the
ith sensor are calculated as follows:

wi =

 w1
i1 + w2

i1
k
∑

j=1

(
w1

ij + w2
ij

) ,
w1

i2 + w2
i2

k
∑

j=1

(
w1

ij + w2
ij

) , · · · ,
w1

ik + w2
ik

k
∑

j=1

(
w1

ij + w2
ij

)
 = [wi1, wi2, · · · , wik] (15)

4.6.2. Weight Sets of Subsystems

(1) According to the FCAVs of each sensor or subsystem and the principle of maximum
membership, if there is a parameter in FS, the weight of the parameter is 1 and the rest is 0.

(2) Elsewhere, if there is a parameter or subsystem in CF, the weight of each parameter or
subsystem is determined by the proportion of the CF value in the sum of the CF, that is:

ωi =
FCAVi

CF
n
∑

i=1
FCAVi

CF

(16)

where FCAVi
CF is FCAV of the ith sensor or subsystem is in CF.

(3) If all HC of the sensors or subsystems is HS or SH, the weight of each sensor or subsystem
is determined by AHP method. The AHP method can better quantify experts’ judgment of weight
importance, and overcome the characteristics of weight arbitrariness.

4.7. Fuzzy Comprehensive Assessment Values (FCAVs) Calculation of a Sensor

FCAVs of a sensor are calculated by fusing monitored values of multiple time points. The flow
chart is shown in Figure 6. The steps are as follows:Sensors 2019, 19, x FOR PEER REVIEW  10 of 18 
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4.8. FCAVs Calculation of Subsystem 
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Step 1: Standardize the monitored values.
Step 2: Plugging the standardized data into four membership functions respectively, we can

obtain the fuzzy assessment values of each HC, and use these values to form the HC assessment matrix
of the sensor.

ri =


Fi

HS1 Fi
SH1 Fi

CF1 Fi
FS1

Fi
HS2 Fi

SH2 Fi
CF2 Fi

FS2
...

...
...

...
Fi

HSk Fi
SHk Fi

CFk Fi
FSk

 (17)

where Fi
HSn is the FCAV of the ith sensor at the nth point is in HS; Fi

SHn is the FCAV of the ith sensor at
the nth point is in SH; Fi

CFn is the FCAV of the ith sensor at the nth point is in CF; Fi
FSn is the FCAV of

the ith sensor at the nth point is in FS.
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Step 3: Calculation of fuzzy comprehensive:

FCAVi = wi ◦ ri = [wi1, wi2, · · · , wik] ◦


Fi

HS1 Fi
SH1 Fi

CF1 Fi
FS1

Fi
HS2 Fi

SH2 Fi
CF2 Fi

FS2
...

...
...

...
Fi

HSk Fi
SHk Fi

CFk Fi
FSk


=

(
k
∑

j=1
wi

j ∗ Fi
HSj,

k
∑

j=1
wi

j ∗ Fi
SHj,

k
∑

j=1
wi

j ∗ Fi
CFj,

k
∑

j=1
wi

j ∗ Fi
FSj

)
=
(

FCAVi
HS, FCAVi

SH , FCAVi
CF, FCAVi

SF
)

(18)

4.8. FCAVs Calculation of Subsystem

The FCAVs of the subsystem are obtained through the fusion of the multi-sensor FCAVs, the flow
chart is shown in Figure 7, and the steps are as follows:
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4.8. FCAVs Calculation of Subsystem 

The FCAVs of the subsystem are obtained through the fusion of the multi-sensor FCAVs, the 
flow chart is shown in Figure 7, and the steps are as follows: 
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Step 1: Composing subsystem assessment matrix by the FCAVs of each sensor:

Ri =


FCAVi

1
FCAVi

2
...

FCAVi
ki

 =


FCAVi

HS1, FCAVi
SH1, FCAVi

CF1, FCAVi
SF1

FCAVi
HS2, FCAVi

SH2, FCAVi
CF2, FCAVi

SF2
...

FCAVi
HSki

, FCAVi
SHki

, FCAVi
CFki

, FCAVi
SFki

 (19)

Step 2: Calculation of fuzzy comprehensive

FCAVi = ωi ◦ Ri (20)

4.9. FCAVs Calculation of Braking System

After obtaining the FCAVs of the brakes, brake discs and oil supply subsystems, the calculation
method of the FCAVs of the braking system is the same as in Section 4.8.

5. Neural Network Training of HD Calculation

Fuzzyfication is the process of mapping the crisp values into the n-tuplets of membership functions
degrees. The defuzzyfication is the transformation of the given membership function into a crisp value.

In this paper, BPNN is used to complete the calculation from FCAVs to HD. The specific method
is taking the FCAVs obtained by FCA as input and calculating the value of HD by the trained neural
network. The training of the neural network method is as follows:

In Figure 5, the standardized x is divided into 200 parts by step size 0.005, getting the fuzzy
membership value and its HD value of four categories of HC corresponding to each x value, in which
the 1~30 samples represent FS state, and their HD values are 0–0.15; 31–90 represent CF state,
the corresponding HD values are 0.155–0.45; 91–145 represent SH state, the corresponding HD
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values are 0.455–0.8; 146–200 represent HS state, the corresponding HD values are 0.805–1. Using
the odd samples trains BPNN to include 4 input neurons, 9 hidden layer neurons, and 1 output
neuron [33], Sigmoid transmission function, minimum error of 0.00001 and learning rate of 0.05 are
chosen. The performance of the BPNN model is tested with the even samples, as shown in Figure 8.
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value and the true value; (b) The performance of BPNN model.

6. Example Calculation

6.1. Introduce Test Bed

In this paper, the test bed is the test platform system of the ultra-deep well hoist of CITIC Heavy
Industries. According to the similarity theory, the test bed is reduced to 0.1 of the actual hoist, and the
main parameters of the test bed are shown in Table 2. Sensors of BC, brake disc temperature, deflection
and so on are installed on the test-bed. The design drawing and site photos are shown in Figure 9.
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Table 2. Main parameters of test bed.

Name Specifications

drum
diameter 800 mm
width 160 mm

hoisting height 47 m
diameter of wire rope 10 mm
payload 1t
volume weight 1t
hoisting speed 1.8 m/s
motor powers 75 × 2 kW
brake number 4 × 2

6.2. Sensor Data Acquisition

The on-line monitored values of the test bench is used to verify the health assessment method
proposed in this paper. The sampling frequency of each sensor in the test bed is set to 10 Hz, and in the
data fusion of multiple time points, the number of sampling point is set to 8. A set of on-line monitored
values is shown in Table 3 and T-1 to T-8 are the measured value of 8 time points. These measured
values should be standardized with Formulas 9, 10 or 11 before being brought into Formula 12.

Table 3. The on-line monitored values.

Sensor Name Data Types
Raw Data

T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8

BC 1-1 Interval 0.55 0.56 0.45 0.4 0.45 0.5 0.52 0.58
BC 1-2 Interval 1.55 1.56 1.45 1.4 1.45 1.5 1.52 1.58
BC 2-1 Interval 0.885 0.85 0.45 0.6 0.66 0.85 0.8 0.78
BC 2-2 Interval 0.65 0.86 0.45 0.6 0.85 0.65 0.75 0.58
BC 3-1 Interval 1.35 1.16 1.25 0.9 1.55 1.25 1.12 1.08
BC 3-2 Interval 0.05 0.16 0.05 0.1 0.01 0.05 0.052 0.03
BC 4-1 Interval 2.15 1.96 1.85 2.18 1.95 1.95 2.12 2.18
BC 4-2 Interval 1.55 1.56 1.55 1.5 1.55 1.35 1.62 1.68

Temperature Interval 20 22 20 21 23 20 20 21
Deflection Cost 0.3 0.4 0.2 0.1 0.1 0.15 0.2 0.3

Motor Current Cost 1 1.8 2.2 1.9 1.6 1.65 1.78 1.88
Oil Pressure Interval 11.1 11.2 11.2 11.3 11.2 11.1 11.1 11.1

Oil Temperature Interval 20 25 28 30 33 33 32 30
Oil Quantity Interval 135 130 129 128 126 125 126 125
Oil pressure

of accumulator Interval 9.5 9.4 9.4 9.4 9.3 9.3 9.25 9.25

Contamination Level Cost 1 1.1 1.1 1.1 1.2 1.1 1.2 1.1

6.3. Calculation of FCAVs of a Sensor

Because the calculation process of each sensor is the same, for the convenience of narration, the BC
1-1 sensor is now used as an example to explain the HD calculation process:

Step 1: The standardized value is brought into Formula 12, and the assessment matrix is obtained
based on Formula 17:

r1 =


F1

HS1 F1
SH1 F1

CF1 F1
FS1

F2
HS2 F2

SH2 F2
CF2 F2

FS2
...

...
...

...
F8

HSk F8
SHk F8

CFk F8
FSk

 =



0.4578 0.6065 0.0111 0
0.4868 0.5662 0.0091 0
0.2163 0.946 0.0657 0.0001
0.1353 1 0.1353 0.0003
0.2163 0.946 0.0657 0.0001
0.3247 0.8007 0.0286 0
0.3753 0.7261 0.0198 0
0.5461 0.4868 0.006 0
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Step 2: Use expert scoring to determine weights: Step 2: Use expert scoring to determine weights:
w1

1 = [0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125]
Step 3: Get weights based on Formula 14:
w2

1 = [0.10460.10040.14640.16740.14640.12550.11720.0921
]

Step 4: Get comprehensive weights based on Formula 15:
w1 = [0.10750.10390.14340.16130.14340.12540.11830.0968 ]
Step 5: Get FCAVs based on Formula 18:
FCAVBC1−1 = [0.32160.79000.04930.0001 ]
Step 6: Use neural network to calculate the HD of BC 1-1:
HDBC1−1 = 0.7219
From the calculation results, it can be seen that the HD value of BC 1-1 is 0.7219, the HC is in SH,

so the braking system can continue to run.
Table 4 show the FCAVs, HD and HC of the sensors in brake system.

Table 4. FCAVs, HD and HC of the sensors in brake system.

Sensor Name
Fuzzy Comprehensive Assessment Value

HD HC
HS SH CF FS

BC 1-1 0.3216 0.79 0.0493 0.0001 0.7219 SH
BC 1-2 0.3136 0.8072 0.0479 0.0001 0.7183 SH
BC 2-1 0.5914 0.4793 0.0247 0 0.8156 HS
BC 2-2 0.5819 0.4748 0.0193 0 0.8146 HS
BC 3-1 0.6313 0.4471 0.0266 0 0.8259 HS
BC 3-2 0.0015 0.091 0.9293 0.2384 0.2502 CF
BC 4-1 0.0008 0.0462 0.5412 0.6302 0.1371 FS
BC 4-2 0.2173 0.8818 0.1214 0.0005 0.668 SH

Temperature 0.9722 0.0278 0.0000 0.0000 0.9844 HS
Deflection 0.1428 0.4955 0.3555 0.0062 0.5605 SH

Motor Current 0.5554 0.4436 0.0010 0.0000 0.8203 HS
Oil Pressure 0.2571 0.6463 0.0965 0.0001 0.7114 SH

Oil Temperature 0.7415 0.2581 0.0005 0.0000 0.8645 HS
Oil Quantity 0.7415 0.2581 0.0005 0.0000 0.8645 HS

Oil pressure of accumulator 0.8089 0.1911 0.0001 0.0000 0.8878 HS
Contamination Level 0.8445 0.1555 0.0000 0.0000 0.9044 HS

It can be seen from Table 4 that the data of the BC sensors 2-1, 2-2 and 3-1 are close to the expected
value, with the corresponding HD 0.8156, 0.8146 and 0.8259 respectively; the BC sensor 4-2 data is
slightly farther to the expected value, and the corresponding HD is 0.668; the BC 3-2 data is farther
away from the expectation, and its HD is 0.2502; the BC 4-1 data is the furthest from the expectation,
and many measurements have exceeded the bounds that can be allowed to run, so its HD is 0.1371.
The verification results tally with the actual situation, the closer the fault, the lower the HD value,
and the sensors of the brake disc and hydraulic subsystem also tally with the actual situation.

6.4. Calculation of FCAVs of System and Subsystem

According to the method introduced in Sections 4.8 and 4.9, the FCAVs, HD and HC of subsystems
and brake system are listed in Table 5.
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Table 5. FCAVs, HD and HC of subsystems and brake system.

Name
Fuzzy Comprehensive Assessment Value HD

HC
HS SH CF FS HD

Subsystem
Brake 0.0008 0.0462 0.5412 0.6302 0.1371 FS

Brake Disc 0.5720 0.2643 0.1794 0.0031 0.8145 HS
Hydraulic System 0.6785 0.3378 0.0171 0.0000 0.8386 HS

Brake System 0.0008 0.0462 0.5412 0.6302 0.1371 FS

As shown in the above Tables: due to the failure of BC 4-1, in the absence of other sensors failure,
the brake subsystem and the whole brake system are in FS, which tallies with the actual situation,
indicating the practicality of the method proposed in this paper.

In order to study the sensitivity of the method proposed in this paper, assuming that the values
monitored by BC 4-1 in Table 3 are changed and other sensor-monitored values remain unchanged,
the HD of subsystems and system are studied. The four sets of data in Table 6 are monitored by BC 4-1
in HS, SH, CF and FS respectively. The HD and HC of BC 4-1, brake subsystem and braking system
calculated by different data are also shown in Table 6.

Table 6. Different BC4-1 monitored values and HD HC of sensor, subsystem or system.

Serial
Number

T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8
BC 4-1 Brake

Subsystem
Braking
System

HD HC HD HC HD HC

1 1.08 0.82 0.98 1.23 0.92 1.25 1.13 1.11 0.9803 HS 0.451 CF 0.6944 SH
2 1.55 1.65 1.58 1.63 1.52 1.48 1.55 1.68 0.637 SH 0.3889 CF 0.638 SH
3 1.95 1.96 1.85 1.98 1.95 1.95 1.92 1.88 0.2658 CF 0.3025 CF 0.571 SH
4 2.15 1.96 1.85 2.18 1.95 1.95 2.12 2.18 0.1371 FS 0.1371 FS 0.1371 FS

From Table 6 below, we can see that as the BC 4-1 data changes from near expectations to away
from expectations slowly, the HD of the sensor changes from 0.9803 to 0.1371, the HD of the brake
subsystem changes from 0.451 to 0.1371, and the HD of the system changes from 0.6944 to 0.1371.
The reason for the low HD of the brake subsystem is that the data of BC 3-2 is in CF, and its HD is
merely 0.2502, which is very close to the fault. When the monitored values of BC 4-1 changes from
CF to FS, the HD of the braking subsystem and braking system decrease rapidly, and the HD of the
subsystem in which the fault is located is lower than that of the system, which accords with the actual
situation and is also helpful to find and locate faults. The above analysis shows the reliability and
sensitivity of the method proposed in this paper to some extent.

7. Conclusions

According to the actual situation of a mine hoist braking system, we propose a method for
calculating the HD of the braking system of a mine hoist combined with TLFCA and BPNN. A method
of data standardization is proposed and a unified health membership function is defined, which
simplifies the calculation of data health membership. In order to ensure the objectivity, impartiality and
scientific rigour of the weight coefficient, this paper puts forward a method of weight determination
which combines expert scoring, objective weight determination and AHP. A neural network is used
to quantify the HD from FCAVs, which provides technical support for the equipment maintenance
decision and subsequent health prediction. The practicability, reliability and sensitivity of the proposed
method are proved by the monitored data of the test bed.

The limitation of the method in this paper is that the monitored parameters must reflect the
performance of the equipment completely, so obtaining perfect and accurate monitored data is the
precondition of using this method. When the data are standardized in this paper, the selection of each
data limit should not only be in accordance with the relevant regulations, but also need the knowledge
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of experts in related fields. The method in this paper requires high computing speed, and needs to
consider the configuration of the computer hardware and parallel operation, etc.

After the HD calculation is completed, the HD radar chart of each subsystem and system
can be drawn according to the HD of the sensor and subsystem, and the HD trend chart of each
sensor, subsystem and system can be drawn. The visual HD chart provides the basis for operation,
maintenance and management.

The method proposed in this paper provides a technical support for intelligent maintenance of
a braking system such as the residual life prediction and maintenance decision, and provides the
necessary data for perfecting the PHM of the braking system. The method can also provide reference
for the HD calculation of the whole hoist and other complex equipment.
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Nomenclature

HD health degree
PHM Prognostics Health Management
CBM condition based maintenance
TLFCA three-level fuzzy comprehensive assessment
BPNN BP neural network
FCA fuzzy comprehensive assessment
FCAV fuzzy comprehensive assessment value
AHP analytic hierarchy process
HS health state
SH sub-health
CF critical fault
FS fault state
BC brake clearance
HC health condition

Xi the monitored values of the ith sensor, Xi =
[

xi
1, xi

2, · · · , xi
k

]
HDSENSOR HD of sensor
HDSUB−SYS HD of subsystem
HDSYS HD of system
FCAVSENSOR FCAVs of sensor
FCAVSUB−SYS FCAVs of subsystem
FCAVSYS FCAVs of system
U factor sets, U = [U1, U2, · · · , US]

Ui factor classes, i = 1, 2, . . . , s
Uij the jth factor in ith factor class.
V assessment sets, V = [V1, V2, · · · , Vm]

W weight sets of the factor sets, W = [W1, W2, · · · , Ws]

ωi weight sets of the ith factor class or subsystem, ωi =
[
ωi1, ωi2, · · · , ωiki

]
wi weight sets of the ith sensor, wi = [wi1, wi2, · · · , wik].
w1

i weight sets of time point obtained by experts scoring method.
w2

i weight sets of the ith sensor obtained by hierarchy method
R transfer matrix of factor sets and assessment sets
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Ri transfer matrix of the ith factor class or subsystem and assessment sets
ri transfer matrix of the ith sensor

Ri
jl

fuzzy conversion value between the jth factor in the ith factor class and the lth assessment
subset

FCAV FCAVs of factor sets
FCAVi FCAVs of the ith factor class, sensor or subsystem.
FCAVl FCAV of the factor sets belongs to the lth assessment factor.
FCAVil FCAV of the lth assessment factor in the ith factor class
x the monitored value of the sensor.
xmin1 the lower limit value of the lowest operation
xmin2 the lower limit value of the best operation
xmax2 the upper limit value of the best operation
xmax1 the upper limit value of the lowest operation
fVl (x) membership function of assessment sets
Vl different HC, l = 1, 2, 3, 4.
δl standard deviation of the lth HC
µl the optimal expected value of the lth HC.
dij the scale value of the ith parameter at jth point.

cij
the absolute value of the difference between the monitored and optimal expected value of the
ith parameter at jth point.

sij
the absolute value of the difference between the optimal expectation of the health and fault of
the ith parameter.

Fi
HSn FCAV of the ith sensor at nth point is in HS

Fi
SHn FCAV of the ith sensor at nth point is in SH

Fi
CFn FCAV of the ith sensor at nth point is in CF

Fi
FSn FCAV of the ith sensor at nth point is in FS

FCAVi
HS FCAV of the ith sensor or ith subsystem is in HS

FCAVi
SH FCAV of the ith sensor or ith subsystem is in SH

FCAVi
CF FCAV of the ith sensor or ith subsystem is in CF

FCAVi
FS FCAV of the ith sensor or ith subsystem is in FS
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