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Abstract: Agile Earth observation can be achieved with responsiveness in satellite launches,
sensor pointing, or orbit reconfiguration. This study presents a framework for designing
reconfigurable satellite constellations capable of both regular Earth observation and disaster
monitoring. These observation modes are termed global observation mode and regional observation
mode, constituting a reconfigurable satellite constellation (ReCon). Systems engineering approaches
are employed to formulate this multidisciplinary problem of co-optimizing satellite design and
orbits. Two heuristic methods, simulated annealing (SA) and genetic algorithm (GA), are widely
used for discrete combinatorial problems and therefore used in this study to benchmark against a
gradient-based method. Point-based SA performed similar or slightly better than the gradient-based
method, whereas population-based GA outperformed the other two. The resultant ReCon satellite
design is physically feasible and offers performance-to-cost(mass) superior to static constellations.
Ongoing research on observation scheduling and constellation management will extend the
ReCon applications to radar imaging and radio occultation beyond visible wavelengths and
nearby spectrums.

Keywords: Earth observation; remote sensing; satellite constellation; reconfigurability; repeat ground
tracks; simulated annealing; genetic algorithm

1. Introduction

Earth observation has experienced unprecedented growth through the use of satellite data [1,2].
Space-based, spatio-temporal data is now regularly used to remotely measure fresh water elevation [3],
explore potential mineral deposits [4], monitor changes in land-cover and land-use [5,6], to name a
few practical applications. In particular, Earth observation for situational awareness often involves
mobile targets, such as hurricanes [7,8] or emergency areas whose locations cannot be determined a
priori [9,10]. For example, crop classification and growth monitoring may be routinely performed on
pre-designated areas [11,12], whereas the time and location of flooding or drought cannot be accurately
predicted and requires contingent responses.

As a way of incorporating responsiveness and agility into Earth observation, the concept of
reconfigurable satellite constellation (ReCon) has been proposed [13,14]. The operation of a ReCon
comprises the following two modes: Global observation mode (GOM) for normal operations and
regional observation mode (ROM) for contingent responses. In GOM, satellites in a ReCon evenly
scan the entire region within a latitude band without any bias (Figure 1a). In ROM, satellites move
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to repeat ground tracks (RGT) and periodically fly more often over certain regions along their fixed
paths (Figure 1b) while ignoring the remainder in between. The satellites in ROM have 2.5 times more
access time than those in GOM on average [15]. Near the equator where the satellites struggle in terms
of GOM access, ROM achieves up to 10 times more access, which is achieved at the intersections of
ascending trajectories and descending trajectories depicted in Figure 1b. There are a few examples
that may be regarded as precursors of a ReCon. Two European Remote Sensing satellites, ERS-1 and
ERS-2, were lunched into a single orbit and could reconfigure the revisit time of their repeat ground
tracks from 3 to 35 days [16,17]. The KH(keyhole)-11 satellites consisted of five satellites allocated to
two planes, all of which were highly maneuverable for reconnaissance purposes [18]. Further scale-up
of a ReCon would require optimal planning of multiple satellite maneuvers. The ReCon just started
gaining interests from industries, out of theory, as its operational complexity is being overcome via
onboard algorithms and ground computing resources [19–21]. Satellite orbits and view orientation can
thus be planned in time to maximize the value of distributed satellite missions (DSMs) [22–25].
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Figure 1. Two observation modes of a ReCon: (a) Global observation mode (GOM); (b) Regional 
observation mode (ROM). Note that the satellite is moving along solid lines from left to right in 
prograde orbits (this case) and vice versa in retrograde orbits. 

Walker Delta and Walker Star are well-known constellation types that symmetrically distribute 
satellites in the inertial reference frame to provide global coverage [26,27]. The former distributes 
orbit planes over the full longitudes of 360 degrees while the latter distributes over the longitude 
range of 180 degrees because of near-polar orbital inclination. Flower Constellations (FCs) distributes 
satellites in a rotating reference frame instead of an inertial reference frame [28]. Sub-global coverage 
may also be provided by squeezing orbital plane distribution onto a confined longitude band of 
interest [5,29]. The above-mentioned methodology has been implemented in a number of DSM tools. 
For example, Operational Network of Individual Observation Nodes (ONION) aims at 
simultaneously meeting Earth observation requirements and data download requirements, whose 
optimal solution is a hybrid Walker constellation of small satellites (CubeSats) and larger satellites 
[30]. Trade- space Analysis Tool for Constellations (TAT-C) conducts performance-cost analyses on 
uniform Walker constellations, non-uniform Walker constellations, and ad-hoc constellations [31]. 
The proposed ReCon framework may supplement these tools by adding reconfigurability to static 
Earth observing constellations operating in various wavelengths. 

This study focuses on heuristic optimization techniques, simulated annealing and genetic 
algorithm which are representative of single-point-based methods and population-based methods, 
respectively. The two methods have widely been used in solving NP-hard combinatorial problems 
[32,33] to benchmark each other, sometimes forming hybrids to complement one another [34,35]. 
These two are a good starting point before transitioning to multiple-objective optimization or other 
state-of-the-art methods in future work [36,37]. 
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Figure 1. Two observation modes of a ReCon: (a) Global observation mode (GOM); (b) Regional
observation mode (ROM). Note that the satellite is moving along solid lines from left to right in
prograde orbits (this case) and vice versa in retrograde orbits.

Walker Delta and Walker Star are well-known constellation types that symmetrically distribute
satellites in the inertial reference frame to provide global coverage [26,27]. The former distributes
orbit planes over the full longitudes of 360 degrees while the latter distributes over the longitude
range of 180 degrees because of near-polar orbital inclination. Flower Constellations (FCs) distributes
satellites in a rotating reference frame instead of an inertial reference frame [28]. Sub-global coverage
may also be provided by squeezing orbital plane distribution onto a confined longitude band of
interest [5,29]. The above-mentioned methodology has been implemented in a number of DSM tools.
For example, Operational Network of Individual Observation Nodes (ONION) aims at simultaneously
meeting Earth observation requirements and data download requirements, whose optimal solution
is a hybrid Walker constellation of small satellites (CubeSats) and larger satellites [30]. Trade-space
Analysis Tool for Constellations (TAT-C) conducts performance-cost analyses on uniform Walker
constellations, non-uniform Walker constellations, and ad-hoc constellations [31]. The proposed
ReCon framework may supplement these tools by adding reconfigurability to static Earth observing
constellations operating in various wavelengths.

This study focuses on heuristic optimization techniques, simulated annealing and genetic
algorithm which are representative of single-point-based methods and population-based methods,
respectively. The two methods have widely been used in solving NP-hard combinatorial
problems [32,33] to benchmark each other, sometimes forming hybrids to complement one
another [34,35]. These two are a good starting point before transitioning to multiple-objective
optimization or other state-of-the-art methods in future work [36,37].

The paper is organized as follows. Section 2 delineates the ReCon framework, and Section 3
conducts a preliminary design search prior to applying optimization methods. After that, Sections 4
and 5 apply optimization techniques of simulated annealing and genetic algorithm, respectively.
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Section 6 analyzes and compares the results from the previous three sections, and conclusions are
made in Section 7.

2. Methodology

The proposed ReCon framework employs multidisciplinary system design optimization (MSDO)
derived from systems engineering. The objective of optimizing a ReCon is threefold: To minimize
revisit access time and maximize area coverage; to minimize the initial launch mass of the entire
satellite constellation (number of orbit planes × number of satellites per plane × satellite mass); and to
minimize reconfiguration time. The ReCon framework optimizes the geometry of an individual orbit
and the arrangement of multiple orbits in addition to satellite payload design while satisfying the
imagery resolution requirement.

2.1. Problem Formulation

The ReCon framework may be regarded as nonlinear programming (NLP), due to the nonlinear
nature of satellite coverage and launch mass. Equation (1) is a general NLP formulation where
the fitness function F or the constraint h is nonlinear. Both the constraint and the objective are
nonlinear in the ReCon framework, as will be discussed in more detail in Sections 2.2.4 and 2.2.5.
Multiple constraints are expressed as a vector h, and the objective F is scalar. The design vector
x (Section 2.2.1) is varied throughout the optimization process such that xLB ≤ x ≤ xUB, but the
operating parameter p remains unchanged (Section 2.2.3). Intermediate variables (Section 2.2.2) are
not included in Equation (1), but they play a role as data inputs and output to relay internal states
among subroutines.

MinJ(x, p) s.t. h(x, p) ≤ 0 , (1)

Inequality constraint may be enforced by adding penalization to J where that larger values
for penalty vector elements will more strongly discourage constraint violation. In Equation (2),
each constraint violation is weight-accumulated only if hi is positive as shown by indicator
function 1h>0.

MinJ(x, p) + g ∑
i
{whi

hi(x, p)1hi>0} , (2)

Finally, non-penalized J is also a weighted sum of several figures of merit, as shown in Equation
(3). Definitions for constraints and figures of merit are summarized in Table 1.

Min ∑
i
{wFi Fi(x, p)}+ g ∑

i
{whi

hi(x, p)1hi>0} . (3)

Table 1. Figures of merit and constraints in ReCon optimization.

Figure of Merit Definition Constraint Definition

F1
F2
F3
F4

(−1) × GOM coverage (%)
ROM revisit time (s)

Constellation mass (kg)
Reconfiguration time (day)

h1
h2
h3
h4

Minimum altitude (km)
Maximum altitude (km)
Maximum aperture (m)

Max propellant mass
fraction

It would be noteworthy to mention that these figures of merit exhibit highly nonlinear behaviors
and lack closed forms most of the time. Among four figures of merit, only reconfiguration time, as
will be discussed in Section 2.3.3, has a closed form solution which is inversely proportional to the
product of (Earth radius + altitude) and ∆(altitude). Constellation mass is obtained through numerical
iterations described in Section 2.3.4 to solve the rocket equation with exponential terms. The remaining
two figures of merit are temporal coverage in GOM and revisit time in ROM. A potential region
of interest (latitude band in this case) should be sufficiently observed by maximizing the temporal
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coverage in GOM, and an outstanding target within that region, once identified, must be visited as
frequently as possible by minimizing the revisit time in ROM. There have been efforts to develop
non-numerical algorithms for calculating the temporal coverage and revisit time of ground targets
at the equator [38], but considerable errors would occur if targets are located at high latitudes where
orbit groundtracks are cluttered (Figure 1). These methods also apply only to a single satellite, yet to
be extended up to a constellation level. Numerical orbit simulation is therefore used in this work to
compute coverage and revisit time. While coverage and revisit time are enhanced as the number of
satellites increases, the larger launch mass (proxy of cost) must be accompanied. Combined with the
inherent nonlinearity of each figure of merit, tensions among figures of merit lead to complex objective
space of this problem, discussed again in Section 6.1 and exemplified by the poor performance of
gradient-based approaches.

Constraints are intended to bring engineering considerations into the optimization process such
that the final solution is physically reasonable, as well as being mathematically optimal. Minimum
and maximum altitude boundaries define design space where Earth-observing satellite can safely
operate without suffering excessive atmospheric drag or radiation. Maximum aperture and propellant
fraction limits are prescribed to ensure that ReCon satellites can be readily manufactured with current
technologies and be safely launched in reality.

2.2. Model Overview

Concurrent design of satellite size and orbit configuration needs several design variables; without
enough number of them, many aspects of the tradespace cannot be considered. On the other hand,
considering too many variables would increase the tradespace beyond our computing power and slow
down the optimization process. To achieve a balance between a coarse model and a fine model in
fast prototyping, this study uses the following five data types: Design variables, parameters, internal
variables, constraints, and objectives which will be explained in this subsection.

2.2.1. Design Variables

Design variables are analogous to knobs used for adjusting design specifications. The following
five design variables have been chosen to maintain adequate degrees of freedom:

• Altitude;
• Altitude difference;
• Number of orbit planes;
• Number of satellites per plane;
• Field of regard.

The altitude variable is the height of a satellite in ROM represented by a repeat ground track
(RGT) ratio. For example, a ratio of 15/1 means that satellite revolves around Earth 15 times in
1 day (Earth rotates once). As seen in Table 2, ratios between 31/2 and 14/1 are sampled such that
the resulting ROM has an altitude between 300 km and 1200km. The procedures for calculating
RGT altitudes are provided in Appendix A [39,40]. The altitude difference is the difference between
the GOM altitude the ROM altitude, i.e., (ROM altitude) + (altitude difference) = (GOM altitude).
While these first two variables govern the vertical distribution of satellites, the next two variables
dictate the horizontal distribution of satellites. Lastly, the field of regard relates to the viewing range,
achieved by either maneuvering the whole satellite or the optics subsystem only.
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Table 2. Design variables in ReCon simulation.

Design Variable Description Range Unit

nk Repeat ground track (RGT) ratio (τ) {31/2, 15/1, 29/2, 14/1} -
delta_alt
n_planes

n_sats
regard
prop

Walker altitude difference from RGT altitude
# of planes in Walker constellation

# of satellites per orbit plane
Field of regard

Propulsion type

[−50, 50]
{2, 3, 4, 5, 6, 7, 8, 9}

{1, 2, 3, 4, 5}
[5, 50]

{cold gas, monoprop, biprop} 1

km
-
-
◦

-
1 monopropellant and bpropellant.

2.2.2. Internal Variables

Internal variables are intermediate values generated through arithmetic operations on design
variables. They are still variables, whose values are affected by design inputs, but cannot be directly
manipulated by a user, as the term “internal” implies. For example, the user cannot directly control the
dimensions of remote sensing optics, but the combination of satellite altitude, field of regard, and GSD
requirement determines the necessary dimensions of optical instruments. The list of internal variables
is provided in Table 3.

Table 3. Internal variables in ReCon simulation.

Internal Variable Description Unit

aperture Optical telescope aperture diameter m
fl

prop_dry_mass
propellant_mass

optics_mass
rgt_alt
delta_v

sat_dry_mass

Optical telescope focal length
Propulsion system dry mass

Propellant mass
Optical subsystem mass

Repeating groundtrack altitude
Total lifetime fuel burn

Satellite dry mass

m
kg
kg
m

km
m/s
kg

2.2.3. Parameters

Parameters are non-varying constants whose values are fixed for simplicity or quick comparison
of design architectures. For example, a total of 10 reconfiguration moves from GOM to ROM or vice
versa are permitted over a 5-year lifetime, as shown in Table 4. The ground resolution of 0.5 m is
also assumed which must be satisfied even when a satellite is tilted the farthest and its distance to
the ground is the largest. The Walker phasing parameter of 1 means that the satellites in adjacent
orbital planes are separated by 360/Ns × 1 degrees where Ns is the total number of satellites in a
constellation [41]. The regional latitude of interest is set to be the 55th parallel of North, assuming a
wildfire monitoring mission over Canada and Alaska [42,43].

Table 4. Parameters used in ReCon simulation.

Parameter Description Value Unit

life Orbit lifetime 5 Year
e

walker_phase
inc

n_recons
gsd

regional_lat
global_lat_band

Orbit eccentricity
Walker phasing parameter

Orbit inclination
# of reconfigurations over lifetime

Ground sample distance
Regional latitude of interest

Global latitude band of interest

0
1

60
10
0.5
55

[0, 60]

-
-
◦

-
m
◦
◦
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2.2.4. Constraints

Constraints are maximal or minimal boundaries desired for intermediate variables. Since the
user has no direct control over them, the values of intermediate variables are indirectly regulated by
penalization if their values exceed or fall below constraints, as summarized in Table 5. The field of
regard, defined as the maximum half-cone tilt angle from nadir, is usually 30◦ and 45◦ in some cases,
making 50◦ an appropriate constraint [44,45]. The minimum altitude is set as 350 km below which
atmospheric friction becomes prohibitive, and the maximum altitude is set as 1200 km beyond which
ground resolution requirements are harder to achieve.

Table 5. Constraints imposed in ReCon simulation.

Constraint Description Value Unit

min_alt Minimum altitude 350 km
max_alt

max_regard
max_aperture
max_prop_frac

Maximum altitude
Maximum field of regard

Maximum aperture diameter
Maximum propellant mass fraction

1200
50
1.8
0.3

km
◦

m
-

2.2.5. Objectives

The goals of a ReCon are to sufficiently observe a potential region of interest (maximize temporal
coverage) and to visit a selected target as often as possible (minimize revisit time) at the same time.
Revisit time and temporal coverage in ROM and GOM each yield the four possible objectives related
to observation performance, but only ROM revisit time and GOM coverage are considered, as shown
in Table 6. Reconfiguration time should also be minimized for the agile transition between GOM and
ROM, taking preferably several days rather than weeks. Constellation mass is directly related to the
cost of developing, manufacturing, and launching remote sensing satellites. Although the detailed cost
analysis is not the scope of this study, providing better observation performance while suppressing the
satellite mass (and cost) is considered ideal.

Table 6. Objectives of ReCon simulation.

Objective Description Unit

rom_revisit ROM revisit time s
gom_coverage
reconfg_time
const_mass

GOM temporal coverage
Reconfiguration time between GOM and ROM

Constellation total mass

%
days
kg

2.3. Simulation Model

The data types discussed so far are input to, exchanged between, or output from modules
consisting the entire simulation. Each module corresponds to one subsystem of a remote sensing
satellite. In general, the following subsystems are of special interest: Optics subsystem for Earth
observation; propulsion subsystem for stationkeeping; and guidance, navigation, and control (GNC)
subsystem for determination of satellite orientation and location. These subsystems correspond to
optics, propulsion, and astrodynamics modules in Figure 2, whose inputs and outputs are summarized
in Table 7.
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Table 7. Inputs and output variables of simulation modules.

Module Input Variables Output Variables

Astrodynamics nk, delta_alt, n_planes, n_sats, regard,
e, walker_phase, inc rgt_alt, rom_revisit, gom_revisit

Optics
Maneuvers
Propulsion

regard, delta_alt, fov, gsd, rgt_alt
prop, delta_alt, life, n_recons, rgt_alt, area

prop, sat_dry_mass, delta_v

optics_mass, aperture
delta_v, reconfig_time

prop_dry_mass, propellant_mass

Constellation n_planes, n_sats, optics_mass, aperture,
prop_dry_mass, propellant_mass sat_dry_mass, const_mass, area

2.3.1. Astrodynamics Module

The astrodynamics module initializes basic orbit parameters first and calculates satellite
trajectories over time. The trajectory of an Earth-orbiting satellite is described using six parameters
or orbital elements: a, e, i, Ω, ω, and ν [1]. The first two elements define the geometry of an
orbit, semi-major axis (a) for size and eccentricity (e) for shape. The next two elements define the
three-dimensional orientation of an orbit. Inclination (i) defines the tilting angle of a satellite’s orbit
plane with respect to Earth’s equator, and the longitude of the ascending node (Ω) defines the direction
of tilting (location of ascending nodes) relative to the vernal equinox position. For an Earth-centered
orbit, the longitude of the ascending node is also referred to as the right ascension of the ascending
node (RAAN). From the ascending node, the argument of perigee (ω) is measured, from which the
satellite’s position is determined with the true anomaly (ν).

One of the popular ways to design circular orbit constellations is the Walker Delta constellation
(termed Walker constellation hereafter), which provides the most symmetry by having similar orbits
amongst satellites. This maximal symmetry not only greatly reduces design space, but also provides
advantages in constellation management because any satellite in a constellation undergoes similar
effects from orbit decaying or other perturbations. The Walker constellation uses a notation of i:T/P/F
where a total of T satellites are evenly distributed in P orbit planes inclined at i degrees and separated
from one another by 360/T × F degrees. Figure 3 shows a Globalstar constellation which uses a 48/8/1
Walker pattern. The phasing parameter F can take integer values from 0 to P−1 [46].
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Figure 3. Walker pattern of Globalstar satellite constellation.

A three-dimensional Earth-centered view is shown in Figure 4a where ROM orbits and GOM
orbits are represented by thin red lines and thick lines, respectively. Figure 4b depicts ground tracks
instead, clearly showing deviation between ROM groundtracks and GOM groundtracks, due to
altitude difference. Because there is no specific target of interest in GOM, the coverage statistics
were gathered over the entire latitude band in the northern hemisphere which can be reached by the
satellites, between the equator and 60◦ N, which is marked by light blue grids in the figure. A target of
interest during ROM has the latitude of 55◦ N as mentioned earlier.
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The RGT orbits considered here repeats after two days at most, so the STK simulations were run
for two days in simulation time. The trajectory calculation considers up to J4 effects in this study.

2.3.2. Optics Module

In remote sensing, ground sample distance (GSD) is used as a metric of image resolution and
refers to the distance between the centers of digital photo pixels projected on the ground. Other terms,
such as ground-projected sample interval (GSI) and ground-projected instantaneous field of view
(GIFOV) may be used interchangeably [47]. This separation requirement for resolving two ground
points can be translated into the satellite aperture diameter if the optics system is limited only by
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diffraction, not by the lens imperfections or the pixel size [48]. Diffraction limit is illustrated as d’ in
Figure 5 where the standard Rayleigh diffraction criterion limits angular resolution to:

θ = 1.22
λ

D
, (4)

The angular resolution (θ) is proportional to the wavelength (λ) and inversely proportional to the
aperture diameter (D). The same angular resolution may also be expressed in term of the radius of the
first Airy ring, i.e., the distance between the first lobes from the center of point spread function:

θ =
d′

2 f
=

x
2Rs

, (5)

where f is the focal length, h is the satellite altitude, and x is the ground sample distance (GSD) when
the satellite is pointing perpendicular to the ground (nadir direction).Sensors 2019, 19, x 9 of 31 
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When the observation payload is oriented at the edge of its field of regard, tilted with an off-nadir
angle η, the satellite-to-ground distance increases to Rs = h/cos(η). Retaining the same resolution
therefore requires a larger aperture than the nadir case, which can be calculated by replacing h with Rs

in Equation (6) [49]:

D = 2.44
λRs

x
= 2.44

λh
xcosη

, (6)

The ground projection of a pixel (x) is also elongated into GSD per relationship x = GSDcos(η):

D = 2.44
λh

GSDcos2η
, (7)

where GSD = 1 m and λ = 500 nm. This aperture diameter is used to calculate the mass of the sensor
payload, including the primary mirror, optical telescope assembly (OTA), imagers, and supporting
mechanical and electronic components. The mass calculation is done by considering an empirical
relationship between the payload mass and the aperture size, as shown in Equation (8) where the
mass is in kilograms and the aperture diameter is in meters. Similarly, Equation (9) describes the
relationship between the aperture size and the non-sensor platform mass of a satellite. Unlike mdry,optics
which increases super-linearly (exponent greater than 1) with aperture in Equation (7), mdry,non-optics
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increases almost linearly (exponent close to 1) with aperture. The data used to derive the power law
relationship is provided in Appendix B [50].

msensor_payload = mdry,optic = 418D1.37[kg] , (8)

mplat f orm = mdry,non−optic = 754D1.03[kg] , (9)

2.3.3. Maneuvers Module

The maneuvers module calculates reconfiguration time which is one of the multiple objectives in
ReCon optimization. It is defined as a time elapse from the identification of a target (Figure 6a) until
the alignment of GOM and ROM groundtracks (Figure 6b). Once aligned, the satellite is ready for
switching observation modes; the time required for trajectory switching through a Hohmann transfer
(less than an hour) is negligible compared to the waiting time for groundtracks to be naturally aligned
(several days).Sensors 2019, 19, x 10 of 31 
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Figure 6. Reconfiguration time: (a) Target identification at t = T0 (satellite not aligned with repeat
groundtracks); (b) Orbit transfer from GOM to ROM at t = T0 + TR (satellite aligned with repeat
groundtracks).

Given a ROM altitude of h and a GOM altitude of h + ∆h, their orbital periods differ by:

∆T = 2π

√ (RE + h + ∆h)3

µE
−

√
(RE + h)3

µE

 , (10)

If ∆h > 0, a satellite in GOM will take a longer time to complete one revolution than a satellite
in ROM. This lagging causes a westward drift of the NRGTs relative to the ground-fixed RGTs. The
distance by which NRGTs deviate from RGTs at equator after one orbit is [13]:

∆d =
(

ωE −
.

Ω
)

RE∆T , (11)
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If a satellite in ROM orbits the Earth Np times in Nd days (RGT ratio Np/Nd), the deviation
distance along the equator in is Np∆d in Nd days, or Np∆d/Nd per day. Finally, the reconfiguration
time measured in days for separation distance d or separation angle ϕ is:

TR =
Ndd

Ns∆d
=

NdRE∆ϕ

Ns

(
ωE −

.
Ω
)

RE∆T
[day] , (12)

Finally, ∆h is also used in this module to calculate delta-v (metric of fuel consumption). In Equation
(12), the reconfiguration term grows if ∆h is increased. The expressions for the reconfiguration term
and others are provided in Appendix C [51].

∆V = ∆Vcommisioning + ∆Vrecon f ig + ∆Vstationkeeping + ∆Vdecommisioning[day] . (13)

2.3.4. Propulsion and Constellation Modules

Because a ReCon is intended for highly agile Earth observation, its satellite mass is largely broken
down into the propulsive part and the non-propulsive part. First, the propulsive mass comprises
the propellant mass (propellant_mass) and the propulsion subsystem mass (prop_dry_mass), which are
calculated by the Propulsion Module in Table 2, Figure 2, and Table 6. The propulsion subsystem
mass is further broken down into the tankage mass (mtank) and the valve and nozzle mass (εmp)
which is proportional to the propellant mass (mp) as depicted in Figure 7. Second, the non-propulsive
mass (mdry,non-optics) is calculated by the Constellation Module. It consists of the optics subsystem and
the non-optics subsystem; the term “non-optics” here collectively refer to parts for communications,
electric power management, etc.
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The empirical relationship between mtank and mp are given in Equations (14) and (15) for two
propellant types, cold gas and monopropellant respectively. The dataset and fitting lines are provided
in Appendix B. It is also notable that the exponent value of 0.59 is close to 0.67 = 2/3 indicating
that the mass of propellant tank, basically a thin shell, grows a two-dimensionally while its volume
grows three-dimensionally.

mtank(cold) = 61.7Vtank
0.594 = 61.7

(
mp

ρp

)0.594

[kg], (14)

mtank(mono) = 38.7Vtank
0.592 = 38.7

(
mp

ρp

)0.592

[kg], (15)
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With the aforementioned terms, the satellite mass can be calculated using the Tsiolkovsky rocket
equation, as shown in Equation (16). Solving the equation requires numerical iterations, such as
the Newton-Rapshon method, indicative of tight coupling between the Propulsion Module and
Constellation Module.

mdry,optics + mdry,non−optics + mtank + (ε + 1)mp

mdry,optics + mdry,non−optics + mtank + εmp
= eg∆V/Isp , (16)

3. Preliminary Sampling and Analysis

With aforementioned subsystem modules, the ReCon simulation for agile Earth observation may
now be used in combination with optimization algorithms, as depicted in Figure 8. Optimization
algorithms are located at a feedback loop to evaluate the current objectives vector and to decide the
next design vector.Sensors 2019, 19, x 12 of 31 
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Figure 8. ReCon optimization framework.

Latin hypercube sampling (LHS) is a technique that can reduce the number of sampling while
maintaining overall coverage. LHS divides the design space into l divisions (levels of value) for each
of n factors (variables), combining them randomly. A square grid containing samples is called a Latin
square if and only if there is only one sample in each row and each column (Figure 9).
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Figure 9. Latin hypercubes: (a) Two factors (A, B) and four levels; (b) three factors (A, B, C) and
four levels.

In ReCon, five factors were used because the sixth variable, propellant type, had been fixed as a
monopropellant. Table 8 shows the factors and levels used for the experiment: Four levels for n/k ratio
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(N), number of planes (P), and number of satellites per plane (S); eight levels for the Walker altitude
difference (A) and FoR (R).

Table 8. Factors and Levels used in Latin Hypercube Sampling.

Design
Variable Description Factor #Levels Units

nk RGT ratio N 4 -
delta_alt
n_planes

n_sats
regard

Altitude difference between Walker and RGT
Number of orbit planes

Number of satellites per plane
Field of regard

A
P
S
R

8
4
4
8

km
-
-
◦

A Latin hypercube sample of 100 design points was created using a MATLAB built-in function,
lhsdesign. At each point, the following four figures of merit are compared to their corresponding
100-point average: ROM revisit time, GOM revisit time, constellation mass, and reconfiguration
time. LHS reduced the total of 4096 combinations down to 100 design points via LHS to evaluate the
following figures of merit: ROM revisit time, GOM revisit time, constellation mass, and reconfiguration
time. Table 9 shows the main effects of the levels of each factor, where blue boxes and red boxes
indicate the level of a given factor that has the greatest effect in a positive direction and in a negative
direction, respectively. Note that all metrics are better if their values are smaller. The following trends
can be observed from the LHS results:

• As the RGT ratio decreases, the mass of the entire constellation increases because more propellant
is required (i) to raise the altitude of satellites from the parking orbit to higher altitudes at the
beginning of life and (ii) to lower the altitude to the disposal orbit. Reconfiguration time also
increases with the RGT ratio because there are fewer locations where reconfiguration can occur.

• High altitude difference increases both ROM revisit time and GOM revisit time because a
satellite has to orbit along a longer trajectory with a lower orbit velocity, which leads to a longer
orbit period. The constellation mass decreases as altitude difference increases, mainly, due to
lower atmospheric drag and subsequent reduction in propellant mass. The reconfiguration time
decreases as the absolute value of altitude difference increases because a greater deviation from
the Walker altitude makes the orbit plane drift faster.

• Both ROM revisit time and GOM revisit time (to a lesser extent) decrease when the number of
planes decreases and the number of satellites per plane increases.

• Increasing the FoR decreases the constellation mass.

From which the following is recommended regarding a starting point for optimization algorithms:

• The number of revolutions per day should be large.
• The altitude difference from the Walker constellation should be large.
• The satellites should be distributed in a small number of orbit planes.
• The FoR should be large.

Table 9. Main effects from Latin Hypercube Sampling with 100 design points.

Factor/Level Value of Level
[Unit]

4ROM
Revisit [sec]

4GOM Revisit
[sec]

4Constellation Mass
[kg]

4Reconfig Time
[day]

N1
N2
N3
N4

31/2
15/1
29/2
14/1

−667
−1658
+2739
+317

−7800
−479

+11,797
−1969

−2444
−246
+1005
+2962

−0.1
−3.4
+0.8
+2.1
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Table 9. Cont.

Factor/Level Value of Level
[Unit]

4ROM
Revisit [sec]

4GOM Revisit
[sec]

4Constellation Mass
[kg]

4Reconfig Time
[day]

A1
A2
A3
A4
A5
A6
A7
A8

−40 km
−30 km
−20 km
−10 km
10 km
20 km
30 km
40 km

−3522
−3625
−858
+561

+1021
+565

+1080
+8243

−22,931
−25,629
−332
+6831
+5863
+6457
+8794

+37,467

+6775
+2482
−262
−424
−1462
−1953
−323
−4216

−6.7
−5.2
−0.4
+10.9
+8.6
−1.5
−5.5
−7.0

P1
P2
P3
P4

1 plane
2 planes
3 planes
4 planes

+428
−489
+1098
−598

−5662
−7380
+7839
+6207

−912
+479
+217
+162

−0.2
−0.4
−1.4
+1.4

S1
S2
S3
S4

2 sats
3 sats
4 sats
5 sats

+3956
−924
−1423
+1584

+19,599
−3003
−6482
−10,062

−4722
+448
+1052
+2239

3.2
−2.7
−1.6
+0.4

R1
R2
R3
R4
R5
R6
R7
R8

5◦

10◦

15◦

20◦

25◦

30◦

35◦

40◦

+5072
+1798
−734
+1205
−1122
−1971
−1648
−2995

+44,821
+7602
+368

+9709
−14,134
−17,839
−16,690
−20,366

+491
+2281
+738
−2154
+1518
−681
−972
498

+2.7
+6.2
+0.5
−2.4
−4.0
−2.3
+0.9
−1.1

By satisfying these initial conditions, the starting point could be located as close to optima as
possible to save computation time and improve the quality of solutions.

4. Simulated Annealing

Simulated Annealing (SA) is an optimization algorithm named and inspired by an annealing
treatment in metallurgy. Originally, annealing is a cooling technique that increases the crystal sizes
and reduces their defects by letting atoms settle down to a minimum energy state. SA attempts to
computationally mimic this physical phenomenon through perturbing the existing configuration and
accepting the new configuration with a probability dependent upon both energy difference and the
system temperature. It is the Metropolis-Hastings algorithm that determines whether or not to accept a
new configuration. A lower-energy configuration is always accepted at each step, while a higher-energy
configuration is accepted only if the acceptance probability P = exp(−dE/T) is greater than a random
number between 0 and 1, as illustrated in Figure 10 [52–54]. Even if the new configuration has higher
energy (dEj > 0), it is likely to be accepted in early iterations, owing to the high system temperature.
As a cooling schedule decreases the system temperature in a controlled way (linearly or exponentially
for example), the acceptance probability becomes lower and higher-energy states will seldom be
accepted. In summary, SA initially searches a wide design space by allowing configurations that
appear inferior at first glance, but it behaves like a steepest-gradient method in the end to narrow
down to a local minimum. Through this transforming progress in SA, the initial ReCon configuration
settles down to optimal configurations with minimum energy (fitness).

The allowable range of each variable and its initial value are listed in Table 10. The initial values
were chosen in accordance with intuition obtained from the design of experiments (DOE) using LHS:
The minimum height, the lowest altitude difference, smallest number of planes and satellites, and the
greatest FoR. This initial configuration of x0 = [31/2, −200, 2, 1, 50] is used at the first step in Figure 10.
The optimization process begins from the melted state, which crystallizes as temperature decreases
exponentially by a factor of 10. Freezing happens when no or very few new configurations emerge
for a consecutive number of iterations, less than five new configurations in three consecutive trials in
this setting.
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Table 10. Range and initial value of design variables in SA. 

Design  
Variable 

Description Range Initial 
Value 

Type 

nk RGT ratio [13/1, 31/2] 31/2 Discrete 
delta_alt 
n_planes 
n_sats 
regard 
prop 
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Figure 10. Simulated Annealing (SA) algorithm.

Table 10. Range and initial value of design variables in SA.

Design
Variable Description Range Initial

Value Type

nk RGT ratio [13/1, 31/2] 31/2 Discrete
delta_alt
n_planes

n_sats
regard
prop

Altitude difference
Number of orbital planes

Number of satellites per plane
Field of regard (FoR)

Propellant Type

[−200, 200]
[2, 9]
[1, 5]
[5, 50]

Monopropellant

−200 km
2
1

50◦

-

Continuous
Integer
Integer

Continuous
-

With this setup, the single-objective fitness function (J) is defined as a linear combination of figures
of merit (F’s) and penalty terms (h’s) that are functions of the input design vector (x).

J(x) =
4

∑
i=1

wisiFi(x) + g
5

∑
j=1

cjhj(x), (17)

such that violating constraints will yield positive h values and increase the total fitness F. Even if the
weighted sum of F’s may be small, large constraint violations will increase the total fitness which is
deemed undesirable from optimization perspectives. Amongst four figures of merit in Table 11, only F1

has a negative sign in its definition because coverage should be maximized, and the other figures of
merit should be minimized. Each figure of merit is multiplied by a corresponding scaling factor (si)
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and a weight (wi). Scaling factors are used to prevent any figure of merit from dominating the others,
and weights balance the relative importance of the four objectives. Similarly, each constraint term is
multiplied by a relative scale factor (cj), and the sum of their linear combination is again multiplied by
a global gain g, as summarized in Table 12.

Table 11. Figures of merit, scaling and weighting factors in single-objective optimization.

Figure of Merit Definition Typical
Value

Scaling
(si)

Weighting
(wi)

F1
F2
F3
F4

(−1) × GOM coverage (%)
ROM revisit time (s)

Constellation mass (kg)
Reconfiguration time (day)

−5
1000

10,000
2

0.5
0.001

0.0001
1

0.25
0.25
0.30
0.20

Table 12. Constraints, scaling factors, and gains in single-objective optimization.

Constraint Definition Typical
Value

Scaling
(si)

Gain
(wi)

h1
h2
h3
h4

Minimum altitude (km)
Maximum altitude (km)
Maximum aperture (m)

Max propellant mass fraction

350
1200
1.8
0.3

0.5
0.001

0.0001
1

0.1

Figure 11 reports the time history of fitness where several SA runs were run with different penalty
gains. As the gain grows, the optimizer tries to avoid constraint violation because any nonzero penalty
will be amplified significantly. The lowest fitness was achieved with g = 0.001, but a penalty from
constraint violation was non-zero. Therefore, g = 1000 was chosen for optimization which had the
second lowest fitness and incurred no penalty.
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Figure 11. SA convergence history.

Tables 13 and 14 summarize two types of optimal ReCon configuration obtained using SA.
They differ in the number of orbital planes and the sign of delta_alt, but the magnitude of delta_alt and
the field of regard are similar. The 3-plane solution has superior GOM coverage and ROM revisit time
to the 5-plane solution, but its requirement of heavier constellation launch mass has resulted in a lower
score (higher value of J).
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Table 13. SA optimal solution (3 planes).

Type Symbol Description Optimum

Design
variable

nk
delta_alt
n_planes

n_sats
regard

RGT ratio
Altitude difference

Number of orbital planes
Number of satellites per plane

Field of regard

15/1
−42.9 km

3
5

47.8◦

Performance
metrics

F1
F2
F3
F4
J

GOM area coverage
ROM revisit time

Constellation mass
Reconfiguration time

Objective function

3.32 %
1018 sec
32,796 kg
3.13 day

1.570

Table 14. SA optimal solution (5 planes).

Type Symbol Description Optimum

Design
variable

nk
delta_alt
n_planes

n_sats
regard

RGT ratio
Altitude difference

Number of orbital planes
Number of satellites per plane

Field of regard

15/1
49.6 km

5
2

46.8◦

Performance
metrics

F1
F2
F3
F4
J

GOM area coverage
ROM revisit time

Constellation mass
Reconfiguration time

Objective function

2.89 %
1609 sec
26,276 kg
3.17 days

1.463

5. Genetic Algorithm

Evolutionary optimization mimics natural selection processes where individuals compete for
survival in the population. Only the fittest can survive and reproduce, improving the entire population
over generations. There are many algorithms falling into this category, depending on the forms which
individuals may take: Genetic algorithm (gene sequences), genetic programming (solver programs),
differential evolution (numeric vectors), neuroevolution (neural net weights), learning classifier system
(rules or conditions) and so forth [55]. This study employs a genetic algorithm (GA) which is the most
widely used amongst evolutionary optimization methods. Figure 12 explains the GA steps where
randomized initial design variables of each individual are encoded into Boolean alleles for genetic
operations (selection, crossover, mutation, and insertion) and decoded back for fitness evaluation
prior to the next step or termination. Note that an initially diverse population reaches an equilibrium
where the fittest (lowest fitness score) individuals with homogeneous characteristics constitute the
final population.

In genotypes, each individual design is represented by a schema which is a template consisting
of 0’s and 1’s [56]. The schema is a concatenation of binary forms of design variables, which are
given a varying number of bits according to their values and required accuracy. Table 15 summarizes
design variables and the number of bits to quantities them. Discrete variables don’t incur quantization
errors in encoding or decoding, whereas continuous variables have quantization errors of (maximum
− minimum)/2bits each time. Note also that the range of each variable has been modified from that
used in SA such that GA can find an optimal solution faster. The genetic operation parameters are set
up and tuned as follows. The selection process uses a roulette wheel selection scheme. A crossover
rate of 0.95 and a mutation rate of 0.001 are used along with a population of 50. Experimentation
has shown that higher mutation rates often lead to poor convergence because new, mutated species
are continually injected into the population; on the other hand, lower mutation rates with a small
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population yield sub-optimal solutions as well because the whole population prematurely converges
homogeneously to a sub-optimal solution.Sensors 2019, 19, x 18 of 31 

 

 

Figure 12. Genetic algorithm (GA) for ReCon optimization. 

In genotypes, each individual design is represented by a schema which is a template consisting 
of 0’s and 1’s [56]. The schema is a concatenation of binary forms of design variables, which are given 
a varying number of bits according to their values and required accuracy. Table 15 summarizes 
design variables and the number of bits to quantities them. Discrete variables don’t incur 
quantization errors in encoding or decoding, whereas continuous variables have quantization errors 
of (maximum – minimum)/2bits each time. Note also that the range of each variable has been modified 
from that used in SA such that GA can find an optimal solution faster. The genetic operation 
parameters are set up and tuned as follows. The selection process uses a roulette wheel selection 
scheme. A crossover rate of 0.95 and a mutation rate of 0.001 are used along with a population of 50. 
Experimentation has shown that higher mutation rates often lead to poor convergence because new, 
mutated species are continually injected into the population; on the other hand, lower mutation rates 
with a small population yield sub-optimal solutions as well because the whole population 
prematurely converges homogeneously to a sub-optimal solution. 

Table 15. Range and initial value of design variables in GA. 

Design Variable Range Bits Type 
RGT ratio [13/2, 14/1] 4 Discrete 

Altitude difference 
Number of orbital planes 

Number of satellites per plane 
Field of regard (FoR) 

Propellant Type 

[−100, 100] 
[2, 7] 
[1, 7] 
[5, 60] 

- 

12 
4 
4 

12 
- 

Continuous 
Integer 
Integer 

Continuous 
Fixed 

Using the settings in Tables 11 and 12, the same objective function as in SA (Equation 15) is to 
be minimized. Figure 13 shows the convergence history of the population mean fitness and the fitness 
of the best individual, respectively. If the constraint gain is too small (0.001), the constraint violation 
is discounted, and the resultant solution is sub-optimal. If the gain is too high (10 and 1000), the 
solution is also sub-optimal, so the most optimal solution is found to be 0.1. 

Figure 12. Genetic algorithm (GA) for ReCon optimization.

Table 15. Range and initial value of design variables in GA.

Design Variable Range Bits Type

RGT ratio [13/2, 14/1] 4 Discrete
Altitude difference

Number of orbital planes
Number of satellites per plane

Field of regard (FoR)
Propellant Type

[−100, 100]
[2, 7]
[1, 7]

[5, 60]
-

12
4
4

12
-

Continuous
Integer
Integer

Continuous
Fixed

Using the settings in Tables 11 and 12, the same objective function as in SA (Equation 15) is to be
minimized. Figure 13 shows the convergence history of the population mean fitness and the fitness of
the best individual, respectively. If the constraint gain is too small (0.001), the constraint violation is
discounted, and the resultant solution is sub-optimal. If the gain is too high (10 and 1000), the solution
is also sub-optimal, so the most optimal solution is found to be 0.1.

Tables 16 and 17 show similar GA trends, as already shown in SA, reaching either 3-plane or
5-plane optima in multiple runs. Overall GA achieves better score (lower J) by maintaining fine
balances between performance and cost (mass). For example, the 3-plane GA solution has a negative
delta_alt, resulting in a lower launch mass compared to the 3-plane SA solution with a positive delta_alt.
The 5-plane GA solution has three satellites per plane, which also reduces the constellation launch
mass compared to the 5-plane SA solution with four satellites per plane. In both cases, degradation
in coverage or revisit performance is justified by savings in launch mass. The two GA solutions
have nearly identical J score although the 5-plane solution is marginally better than the 3-plane
solution. In either case, the individual satellite weighs 2 ton and the aperture has a diameter of
1.2 m, not significantly exceeding the ranges in the Earth-observation satellite database (Table A1 and
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Figure A1). The physical feasibility is thus verified, and the performance-to-cost (mass) analysis is
conducted in the next section.
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Table 16. GA optimal solution (3 planes).

Type Symbol Description Optimum

Design
variable

nk
delta_alt
n_planes

n_sats
regard

RGT ratio
Altitude difference

Number of orbital planes
Number of satellites per plane

Field of regard

15/1
−53.9 km

3
4

46.8◦

Performance
metrics

F1
F2
F3
F4
J

GOM area coverage
ROM revisit time

Constellation mass
Reconfiguration time

Objective function

1.95 %
1346 sec
25,187 kg
2.92 days

1.385

Table 17. GA optimal solution (5 planes).

Type Symbol Description Optimum

Design
variable

nk
delta_alt
n_planes

n_sats
regard

RGT ratio
Altitude difference

Number of orbital planes
Number of satellites per plane

Field of regard

15/1
−54.7 km

5
2

47.1◦

Performance
metrics

F1
F2
F3
F4
J

GOM area coverage
ROM revisit time

Constellation mass
Reconfiguration time

Objective function

1.95 %
1602 sec
21,318 kg
2.93 days

1.382
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6. Discussion

Both SA and GA produce very similar optimal solutions; both ReCon configurations have 5 orbit
planes, 2 satellites per plane, and a field of regard of 47◦. Only the altitude difference differs in sign,
but the magnitudes are very close to each other. The quality of the GA solution is slightly better
than the SA solution at the expense of greater computation time. A gradient-based optimization is
also attempted and compared with SA and GA solutions via the time analysis. The sensitivity of the
optimal solution and a case of Sun-synchronous orbits are also discussed.

6.1. Gradient-Based Optimization

In addition to the heuristic algorithm, ReCon optimization was also attempted using
gradient-based methods. This was a significant challenge, given the fact that design space is a mixture
of integer variables (n/k ratio, number of planes, number of satellites per plane) and continuous
variables (Walker altitude difference, field of regard), making the problem inherently poorly suited
to gradient-based methods. An approximation to the gradient was calculated via finite differences,
as illustrated by vector d in Figure 14. There is generally no guarantee that the search direction will
pass through grid points in the design space. Therefore, discrete variables were allowed to move
in only one direction at a step, replacing d with d2 in Figure 14, which has a larger projection than
d1. The algorithm can be considered a type of “pseudo-steepest descent” in which the general trend
of the approximate gradient is followed in a step-wise manner to be compatible with the discrete
design space. Because the line search step leads to “city block” style movements through the design
space, methods like conjugate gradient would not help to provide a more direct trajectory. This simple
version of steepest descent also makes a fair comparison against the heuristic algorithms (SA, GA)
used in this study in their simplest form.Sensors 2019, 19, x 21 of 31 
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Figure 14. Illustration of modified step size calculation for discrete design variables.

Tables 18 and 19 show the optimal solutions from the steepest descent (SD) method. The 2-plane
SD solution has a score comparable to the 3-plane SA solution, and the 3-plane SD solution is a
slightly better score than the 3-plane SA solution. However, these SD solutions could be obtained by
starting from the optimal results of SA. Because the ReCon problem is extremely poorly conditioned for
gradient-based methods, even the solution convergence itself was rarely achieved when LHS results or
random initialization were used as starting points. Figure 15 illustrates a snapshot of objective space
for coarsely sampled discrete points similar to Figure 14. Even in converged cases, the scores of SD
solutions were still worse (higher J) than GA solutions.
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Table 18. SD optimal solution (3 planes).

Type Symbol Description Optimum

Design
variable

nk
delta_alt
n_planes

n_sats
regard

RGT ratio
Altitude difference

Number of orbital planes
Number of satellites per plane

Field of regard

15/1
−100 km

3
4

30◦

Performance J Objective function 1.565

Table 19. SD optimal solution (2 planes).

Type Symbol Description Optimum

Design
variable

nk
delta_alt
n_planes

n_sats
regard

RGT ratio
Altitude difference

Number of orbital planes
Number of satellites per plane

Field of regard

15/1
−90 km

2
5

37◦

Performance J Objective function 1.570Sensors 2019, 19, x 22 of 31 
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Figure 16 is a representation of time versus quality analysis for solutions obtained by LHS
(Section 3), SD (Section 6.1), SA (Section 4), and GA (Section 5) methods [57]. A desktop with Intel®

Core™ i7-2600 CPU (3.40 GHz) and 16.0 GB RAM was used in the experiments. LHS orthogonally
sampled 100 designs, resulting in the lowest quality (highest J) among the four but taking the shortest
time. SA shows a considerable improvement in solution quality compared to the LHS solution while
taking less than twice the time required by LHS. SD took a longer time than SA and yielded an inferior
solution because gradient-based methods are ill-suited to the ReCon problem. The GA solution is
slightly (4%) more optimal than the SA solution in terms of the J value. However, GA required 7 times
longer computation time than SA because GA performs optimization over a population whereas SA
optimizes a single design point. With SD solution dominated by the rest, the other three methods
constitute a non-dominated Pareto front whose time-quality tradeoff may be utilized throughout a
design project from its early prototyping to final refinement stages. Future work could employ other
population-based methods (e.g. ant colony optimization) as candidates to achieve similar performance
as GA while reducing computation time.
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Table 20 and Figure 17 show that the RGT ratio has the largest impact (highest sensitivity), 
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Direct comparison with static satellite constellations is not straightforward because they cannot
adopt the “choice and concentration” observation strategy of a ReCon; a static constellation cannot
lock its satellite orbits after a ground event occurs, and the orbits will keep on approaching and drifting
away from the target of interest. Continuing our discussion anyway, LandSat has a revisit time of
one to two weeks, so a reconfiguration (lock-on) time of 3 days would require doubling the number
of ReCon’s orbit planes in Table 16 for a static constellation. The number of satellites, and hence the
total constellation mass is doubled. Using the objective computation formula, a static constellation
would have a J score of 2 at least. It is thus shown that the performance-to-cost (mass) analysis favors
a ReCon over a satellite constellation.

6.2. Sensitivity Analysis

A sensitivity analysis is conducted at the optimal design from GA, x* = (15/1, −54.7, 5, 2, 47.1),
where the local gradient is obtained at the optimal point followed by normalization. As shown in
Equation (18), the local gradient vector of fitness, ∇J, is obtained by incrementing one design variable
at a time and dividing fitness difference by that increment. The local gradient vector is normalized
through entrywise multiplication (◦) with a scaled vector, x* divided by fitness at x* [9].

∇J = x∗
J(x∗) ◦ ∇J = 1

J(x∗)


N
A
P
S
R


∗

◦


∂J/∂N
∂J/∂A
∂J/∂P
∂J/∂S
∂J/∂R


∗

= 1
J(x∗)


N∂J/∂N
A∂J/∂A
P∂J/∂P
S∂J/∂S
R∂J/∂R


∗

where


∂J/∂N
∂J/∂A
∂J/∂P
∂J/∂S
∂J/∂R


∗

∼=


(J(N∗ + ∆N, A∗, P, S∗, R∗)− J(N∗, A∗, P∗, S∗, R∗))/∆N
(J(N∗, A∗ + ∆A, P∗, S∗, R∗)− J(N∗, A∗, P∗, S∗, R∗))/∆A
(J(N∗, A∗, P + ∆P, S∗, R∗)− J(N∗, A∗, P∗, S∗, R∗))/∆P
(J(N∗, A∗, P∗, S∗ + ∆S, R∗)− J(N∗, A∗, P∗, S∗, R∗))/∆S
(J(N∗, A∗, P, S∗, R∗ + ∆R)− J(N∗, A∗, P∗, S∗, R∗))/∆R



(18)

Table 20 and Figure 17 show that the RGT ratio has the largest impact (highest sensitivity),
followed by the number of planes. Because both variables have positive values, increasing these
variables will reduce the optimality of a ReCon. In fact, increasing the RGT ratio by 0.5 decreases
the RGT altitude by 100 km approximately, which increases fuel consumption to compensate for
atmospheric drag and to keep satellites in place. Due to a similar reason, it makes intuitive sense that
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the number of satellites in the constellation would drive the objective function. The sensitivity of the
altitude difference was negative at this design point, which means that increasing this variable will
improve the optimality.

Table 20. Sensitivity at the optimal design point.

Design Variable
x

Step
Size
4x

Optimal
Fitness

J(x*)

Perturbed
Fitness

J(x* + 4x)

Partial
Derivative

∂J/∂x

Normalized
Sensitivity

5J(x*)x*/J(x*)

RGT ratio 0.5

1.382

2.343 1.922 20.87
Altitude difference

Number of orbital planes
Number of satellites per plane

Field of regard (FoR)

10 km
1
1
5◦

1.498
1.681
1.428
1.423

0.012
0.299
0.046
0.008

−0.458
1.083
0.067
0.284Sensors 2019, 19, x 24 of 31 
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from 2 to 3 because a wider latitude band needs to be covered with near-polar SSOs. This has also 
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Figure 18 shows a relationship between the GA problem size and computation time. The problem
size equals the number of generations times the number of individuals within a population. It can
be inferred that computation time linearly increases with the problem size. As for parameter setting,
the mutation rate of 0.001 was increased to 0.002 and 0.004, leading to increased average J scores of
1.73 and 2.30 with a statistically significant p-value at 0.0 (significance level 0.05).
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6.3. Sun-Synchronous Orbits

Now that SA and GA have been shown to produce very similar results, either method may be
used per usage: SA for fast-prototyping and GA for fine-tuning, for example. Most traditional Earth
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observation satellites have been using Sun-synchrnous orbits (SSOs), although small-satellite swarms
released from International Space Station have non-SSOs. Advances in image processing technologies
also help the correction of nonhomogeneous solar illumination of satellite imagery provided by this
type of swarms. One embodiment of the ReCon framework employs SSOs, and the SA results are
summarized in Table 21. The number of planes is the same, but the satellite per plane has increased
from 2 to 3 because a wider latitude band needs to be covered with near-polar SSOs. This has also
resulted in higher altitudes than non-SSOs, as can been seen from the RGT altitude of 720 km in ROM
and at the Walker altitude of 740 km (= 720 − ( − 20)) in GOM. The optimizer achieved high GOM
area coverage and short ROM revisit intervals at the expense of heavy constellation mass and long
reconfiguration time. Weights of performance metrics may be adjusted to improve this ReCon design
in terms of mass and reconfiguration time.

Table 21. Sun-synchronous orbits (SSO) ReCon optimization (SA).

Symbol Description

Design
variable

nk
delta_alt
n_planes

n_sats
regard

RGT ratio
Altitude difference

Number of orbital planes
Number of satellites per plane

Field of regard

29/2
−19.9 km

5
3

41.4◦

Performance
metrics

J1
J2
J3
J4

GOM area coverage
ROM revisit time

Constellation mass
Reconfiguration time

4.71 %
1173 sec
41796 kg
13.6 days

7. Conclusions

This paper proposes a reconfigurable satellite constellation (ReCon) for Earth observation.
Its physical feasibility is demonstrated using the payload aperture and chemical propellant database
from past missions. On top of that, a ReCon is shown to provide better performance-to-mass ratios than
static constellations for uncertain ground targets. Its high responsiveness can be useful in particular,
for example, to observe extreme weather events now occurring more often and unexpectedly across
the globe. Its complexity in constellation management is currently overcome by active research in
academia and industry [19–21].

Systems engineering approaches with heuristic optimization methods are exploited,
whose procedures and results are discussed in detail. The optimization goal is to balance coverage,
response time, and constellation mass which is a proxy of cost. Genetic algorithm yields more
optimal solutions than simulated annealing and steepest gradient methods, due to the nonlinearity of
the problem.

To realize a ReCon which is a complex federated satellite system, political and policy aspects must
also be considered [58–60]. Multi-sensor satellite constellations may be integrated by multinational
agencies (A-Train) or operated by several entities (Disaster Monitoring Constellation) [61]. Future work
will address these issues in addition to the technical expansion of the current ReCon framework.
Areas of further technical research includes, but not limited to, investigation of low-thrust (electric
propulsion), radar observation and GPS radio occultation, and satellite constellations for planetary
observation [62,63].
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Appendix A. Repeat Ground Tracks

A satellite’s angular speed and its orbit orientation is a function of time and orbit parameters
describing the orbit shape and size. The time derivatives of the satellite speed and the orbit orientation
are used to define the repeat ground track (RGT) ratio, as shown in Equation (A1).

τ =
NS
ND

=
TG
TS

=
2π/

(
ωE −

.
Ω
)

2π/
( .

M +
.

ω
) =

.
M +

.
ω

ωE −
.

Ω
=

n + ∆n +
.

ω

ωE −
.

Ω
(A1)

where ND is the repeating cycle length in days, Ns is the number of satellite revolutions made the
during that repeating cycle, TG is the nodal period of Greenwich, Ts is the orbital period of a satellite.
The orbital rates are defined as follows: n is the mean motion of a satellite, dM/dt ( = n + ∆n) is
the perturbed mean motion, dω/dt is the drift rate of the argument of perigee, due to perturbations,
ωE is the rotation rate of the Earth, and dΩ/dt is the nodal regression rate. Based on the definition of
n = (µ/a)1/2, these orbital rates are represented as the sum of a periodic term and a secular term each:
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where s = sin, s = sin i, p, and e’ = (1−e2)1/2. The symbol O represents higher-order terms depending on
e4 and J4/J2

2 which may be omitted for near-circular, Earth-centric orbits. Also, the second terms in the
above equations negligible compared to the first terms for short-duration missions.

Appendix B. Satellite Aperture and Tank Mass Data

This appendix provides charted data of sensor payload mass and propellant tank mass as functions
of aperture diameter. First, Figure A1 plots the relationship between aperture diameter and payload
mass (Equation (8)). The aperture diameter and mass are summarized in Table A1.
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Table A1. Figures of merit, scaling and weighting factors in single-objective optimization.

Mission Payload Vendor Aperture
(m)

Payload
Mass (kg)

RapidEye
TopSat

OrbView-3
Quickbird

WorldView-1
Ikonos

GeoEye-1

REIS
RALCam 1

OHRIS
BHRC 60

WV 60
OSA
GIS

Jena-Optronik
MDA

Northrop Grumman
ITT Exelis
ITT Exelis

Kodak
ITT Exelis

0.145
0.2
0.45
0.6
0.6
0.7
1.1

43
32
66

380
380
171
452

Figure A2 present the relationship between tank mass and tank volume for cold gas (Equation (14)).
A very similar relation is obtained for monopropellant as well (Equation (15)).Sensors 2019, 19, x 27 of 31 
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Appendix C. Fuel (“Delta-V”) Budget

This appendix explains how delta-v, a measure of fuel consumption from satellite maneuvers, is
budgeted in a ReCon framework. First, Equation (A1) calculates delta-v for the deployment stage from
a parking orbit to a GOM orbit.

∆Vc =
∣∣∣√ µE

RE+hRGT+∆h −
√

2µE
RE+hRGT+∆h −

2µE
(RE+hRGT+∆h)+(RE+hP)

∣∣∣
+
∣∣∣√ µE

RE+hP
−
√

2µE
RE+hRGT

− 2µE
(RE+hRGT+∆h)+(RE+hP)

∣∣∣, (A5)

The delta-v for reconfiguration is obtained by multiplying the delta-v per maneuver and the
number of reconfiguration maneuvers between GOM and ROM:

∆Vr = Nr

∣∣∣√ µE
RE+hRGT+∆h −

√
2µE

RE+hRGT+∆h −
2µE

2(RE+hRGT)+∆h

∣∣∣+ ∣∣∣√ µE
RE+hRGT

−√
2µE

RE+hRGT
− 2µE

2(RE+hRGT)+∆h

∣∣∣, (A6)

Stationkeeping delta-v consists of an atmospheric drag term and a solar radiation pressure term,
both of which are proportional to lifetime.

∆Vs = ∆Vatm + ∆Vsolar = Nyear

(
πCD A

m
ρatmav

365× 24× 60× 60
T

+ 30
)

, (A7)
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Lastly, Equation (A4) defines the delta-v for decommissioning at the end of a satellite’s life.

∆Vd =

∣∣∣∣∣
√

µE
RE + hRGT + ∆h

−
√

2µE
RE + hRGT + ∆h

− 2µE

(RE + hRGT + ∆h) + (RE + hD)

∣∣∣∣∣ (A8)
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