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Abstract: This paper presents a novel approach to the automated recognition and localization of 3-D
objects. The proposed approach uses 3-D object segmentation to segment randomly stacked objects
in an unstructured point cloud. Each segmented object is then represented by a regional area-based
descriptor, which measures the distribution of surface area in the oriented bounding box (OBB) of the
segmented object. By comparing the estimated descriptor with the template descriptors stored in the
database, the object can be recognized. With this approach, the detected object can be matched with
the model using the iterative closest point (ICP) algorithm to detect its 3-D location and orientation.
Experiments were performed to verify the feasibility and effectiveness of the approach. With the
measured point clouds having a spatial resolution of 1.05 mm, the proposed method can achieve
both a mean deviation and standard deviation below half of the spatial resolution.

Keywords: Machine vision; 3-D point cloud; object segmentation; object recognition; object
localization; 3-D descriptor

1. Introduction

Nowadays, both 2-D and 3-D machine vision systems are widely integrated with robot
manipulators to enhance the flexibility and versatility of modern manufacturing systems.
These intelligent integrated systems can accelerate manufacturing and produce efficiently customized
products to enhance competitiveness. 2-D machine vision systems [1–4] are still used in most integrated
systems due to their high accuracy and low cost. However, the operation accuracy in these systems is
limited by the viewing angle of optical sensing and is especially sensitive to the alignment precision of
the jig and fixture employed in locating the workpiece. Systems that involve 3-D data processing can
overcome the existing difficulties in 2-D digital imaging by relying on both shape and color information
of the objects. These systems have recently been integrated with automated machine manipulators for
pick and place applications [5–11].

One of the most important tasks in 3-D data processing is to determine the position and orientation
of the target in 3-D space. This task remains challenging in automation because the target can be of any
geometric form and its positioning orientation has six degrees of freedom. Thus, it is difficult to detect
the target with an unstructured data input, such as range point clouds. In recent years, several attempts
have been made to solve this nontrivial problem. According to their characteristics, the proposed
strategies can be divided into graph-based, feature-based, and view-based methods.

Graph-based methods extract the geometric properties of a 3-D shape using a graph,
which represents the type and spatial relations between shape components [6,7,12]. In these approaches,
the topology graph is built using the detected primitive shapes in the scanned scene. The query graph,
which represents the structure of the CAD model and is manually defined by the user, is employed
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to search the target in the topology graph. Fuchs et al. [6] substituted two parallel lines for a pipe.
The distance between two lines is the diameter of the pipe. Skotheim et al. [7] defined a car part as
a graph containing two vertices and an edge. One vertex represents a reference plane and the other
vertex describes a search plane. The edge of the graph is associated with the distance and relative
orientation between the centers of the reference and search planes. More generally, Schnabel et al. [12]
presented the scanned data with a topology graph, in which the vertices of the graph are the detected
shapes (planes, cylinders, spheres, and cones) and the edges of the graph joined the connected shapes.
This technique had been integrated with the service robot for bin picking [10]. Graph-based methods
are pose-independent and the graph-based structure can be used for partial matching. However,
the matching criteria depend on the structure of the 3-D shape and the computation time involved
could be extremely high. Moreover, for graph-based methods, the similarity measure is sensitive to
changes in topology. These methods are commonly used in applications, in which the form of the target
object is composed of a few simple primitive shapes, such as planes, cylinders, spheres, and cones.

Feature-based methods [13–19] discriminate 3-D objects by measuring and comparing the
geometric and topological properties of 3-D shapes. The points that contain sufficient information
to distinguish the shape from others are extracted from the scanned data and defined as feature
points. The local information around feature points is then employed to build the local 3-D descriptor.
The target object is recognized by matching the scene descriptors with model descriptors. Johnson and
Hebert [13] presented the spin image, which was created by projecting the 3-D points into 2-D images
for object matching. Chen and Bhanu [14] investigated the relation between the shape index (SI) and
the dot product of the surface normal to establish a local surface patch descriptor for object recognition.
Zaharescu et al. [15] computed the gradient for each feature point and the histogram of the gradient
(HOG) both spatially at a coarse level and a fine level to obtain the MeshHOG descriptor for mesh
matching. Drost et al. [16] introduced the point pair feature to describe the geometric information,
aligning the model point pairs with the scene point pairs for 3-D object recognition. Rusu et al. [17]
considered the relationships between the points in the k-neighborhood of the feature point and their
estimated surface normals to build the fast point feature histogram (FPFH) descriptor. By encoding
the important statistics between the viewpoint and the surface normals on the object into the extended
FPFH descriptor to perform the viewpoint feature histogram (VHF), the object and its pose can be
simultaneously recognized in the scene point clouds. Salti et al. [18] generated a local histogram
according to the distribution of the normal vector at the feature point. These local histograms are
then categorized together to form the actual descriptor, which is called the signature of histograms of
orientations (SHOT). More recently, geometric information has been used in object recognition [19].
Feature-based maximum-likelihood matching by a simple two-degree-of-freedom analysis of 3D point
cloud data demonstrated effect view-based veness in automated object recognition [20]. However,
feature-based methods are good when only partial data are available. In general, the descriptors are
less discriminative from a global matching point of view. In general, these methods can work best
when having geometric details, but are less efficient in comparison to other methods.

View-based methods recognize the target object according to the principle that two 3-D objects are
only similar when they look similar from all viewing angles [8,11,21]. In these methods, a real range
image acquired from a 3-D scanner can be matched with a set of range images stored in the template
database. The database is generally generated from the 3-D model of the object from all possible
viewing angles. Liu et al. [8] represented scanned data with a depth-edge map. The database of
depth-edge templates is created from a CAD model by detecting the depth discontinuities in the model.
Each template is then compared with the depth-edge map to determine the position and location of
the target object in the scanned scene. Sansoni et al. [11] separated the scanned data into individual
segmented point clouds. Each segmented point cloud is then matched using a commercial software
with a set of 3-D templates, which are acquired from different viewpoints of the real object. In the
approach proposed by Chen, the segmented object is represented by the curvature-based histogram,
which is computed using the shape index value of every point of the segmented object [21]. The target
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object can be recognized by comparing the computed curvature-based histogram with the template
histograms in the database. View-based methods can be applied to almost all kinds of objects. However,
the disadvantage is that the comparison of the database and the acquired data is time-consuming.

From the above review, it can be seen that one of the reasons why the 3-D vision system has not
been widely used in robotic automation is the long computation time required for practical application.
In view of this, a fast and effective method for 3-D object recognition and localization is proposed to
deal with the difficulties existing in this task. The main idea of the approach is that two objects are
similar if the distributions of their surface areas in their oriented bounding boxes (OBBs) are the same.

In this study, the proposed approach for 3D object recognition and localization can deal with
the difficulties existing for practical applications such as robotic automation. The developed method
proposes a new index for 3-D object recognition with a good efficiency in operation and robustness
to illumination variations. In addition, the key solution can recognize stacked objects with arbitrary
orientation. The main idea of the approach starts from the point that two objects are similar if the
distributions of their surface areas in their OBBs are the same. The method comprises two main
stages. In the first stage, the proposed regional area-based descriptors are computed for implementing
the shape-matching algorithm for reliable object recognition. In the second stage, the position and
orientation of the target are initially determined by aligning the OBBs and further refinement by the
iterative closest point (ICP) algorithm.

The rest of this paper is organized as follows. Section 2 presents the proposed method for object
recognition and localization employing regional area-based descriptors. The experimental results and
analysis are shown in Section 3. Section 4 discusses the characteristics and limitations of the developed
method in detail. Finally, the conclusions and further work are summarized in Section 5.

2. Methodology

Given a point cloud that represents the scene of the randomly stacked objects in an unstructured
bin, the task is to recognize and localize the target object in the scene point clouds. To deal with the task,
the proposed approach first separates the scene point clouds into individual object point clouds [22].
Each segmented object can be represented by a feature vector, which is computed according to its
OBB and object surface area. The feature vector is then matched with the feature vectors kept in the
database, which represent the different views of the object model. According to the matching results,
the transformation matrix can be initially computed to align the segmented object with the object
model. Finally, the 3-D position and orientation of the target object in the scene point clouds can be
estimated using the ICP algorithm. The overview and flowchart of the proposed method are shown in
Figures 1 and 2, respectively. In addition, the operation procedure of the proposed method is described
in Algorithm 1.

1 

 

 

Figure 1. Overview of 3-D object recognition and localization.
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In this study, the developed 3-D object segmentation algorithm for randomly stacked  
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farther from the surface boundary of the projected object are more likely to belong to the same object 
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algorithm, the scene point clouds can be clearly separated into smaller individual object point clouds 
(see Figure 3d). The general process of the proposed algorithm is presented in Figure 3. 

 

Figure 2. Flowchart of the proposed 3D object recognition and localization algorithm.

Algorithm 1:

Input: Measured point cloud O and model point cloud M.
Output: Position and Orientation of objects.

• Segmentation: Segment scene point cloud into individual object point clouds (Segmentation) O = {Oj,
j = 0, 1, . . . , n}. (Section 2.1)

• Compute descriptor of each segmented individual object point cloud FVO = {FVOj, j = 0, 1, . . . , n}
(Section 2.2)

• 3D Virtual Camera: Extract m point clouds corresponding to m different views of the model point cloud
using 3D virtual sensor (result: M = {Mi, i = 0, 1, . . . , m}) and compute the descriptors (result: FVM =
{FVMi, i = 0, 1, . . . , m}). (Section 2.3)

• Recognition: Match the descriptors of Oj and M, determine the best matching, and obtain corresponding
points of Oj in M, MOj. (Sections 2.4.1 and 2.4.2)

• Localization: Align the OBB of the point cloud Oj and OBB of the corresponding point cloud MOj.
Obtain the initial transformation matrix, and then apply the Iterative Closest Point (ICP) algorithm for
refinement. (Section 2.4.3)

2.1. Object Segmentation

The point cloud data acquired from the 3-D scanner comprises information of one view of different
objects in the scene. In order to obtain the segmented point clouds corresponding to one view of an
object for a later recognition task, the scene point clouds should be further separated into smaller point
clouds. In recent years, many techniques have been developed to obtain the individual parts from the
point cloud data. The popular techniques are the region growing method [23,24], k-nearest neighbors
clustering algorithm [25,26], and graph theoretic approach [27–29].

In this study, the developed 3-D object segmentation algorithm for randomly stacked
objects [29,30] is employed to obtain the segmented point clouds corresponding to the object in the
scene point clouds. The basic idea of the proposed algorithm is that the points located geometrically
farther from the surface boundary of the projected object are more likely to belong to the same object
than the other points (as shown in Figure 3b). The points far away from the surface boundary can be
used as an internal seed marker for object region growth (as illustrated in Figure 3c). With a flooding
algorithm, the scene point clouds can be clearly separated into smaller individual object point clouds
(see Figure 3d). The general process of the proposed algorithm is presented in Figure 3.
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2.2. Regional Area-based Descriptor

To find the similarity between the point cloud model M and the segmented point cloud O, which is
extracted using the object segmentation algorithm, the feature descriptor of the segmented object is
compared with the feature descriptors of different views of the model. A feature descriptor is normally
defined by two essential elements [30], namely the OBB and surface area of the object. An OBB consists
of a corner and three principle vectors (shown in Figure 4). The surface area of the object defines the
histogram of all the surface areas within the OBB. In general, the total number of subdivided boxes is
k1 × k2 × k3 when the OBB is defined by k1, k2, and k3 (shown in Figure 5). The surface area in each
subdivided box (Vijk) is described as Sv, in which v = kk1k2 + jk1 + i. Let S be the total surface area of
the segmented object in the OBB and fv equal Sv/S. The feature descriptor can be described as follows:

FV = {C, CC1, CC2, CC3, f0, . . . , fv, . . . , fnV}, (1)

where

nV = k1k2k3 − 1;
C: corner vector;
CC1, CC2, and CC3: principle vectors corresponding to the maximum, middle, and minimum
dimensions of the OBB, respectively.



Sensors 2019, 19, 764 6 of 22

Sensors 2018, 18, x FOR PEER REVIEW  5 of 21 

 

  
(a) (b) 

  
(c) (d) 

Figure 3. Principle of the proposed 3-D object segmentation method. (a) Measured point clouds. (b) 
Distance map. (c) Generated markers. (d) Segmentation result of 3-D point clouds. 

2.2. Regional Area-based Descriptor 

To find the similarity between the point cloud model M and the segmented point cloud O, which 
is extracted using the object segmentation algorithm, the feature descriptor of the segmented object 
is compared with the feature descriptors of different views of the model. A feature descriptor is 
normally defined by two essential elements [30], namely the OBB and surface area of the object. An 
OBB consists of a corner and three principle vectors (shown in Figure 4). The surface area of the object 
defines the histogram of all the surface areas within the OBB. In general, the total number of 
subdivided boxes is k1 x k2 x k3 when the OBB is defined by k1, k2, and k3 (shown in Figure 5). The 
surface area in each subdivided box (Vijk) is described as Sv, in which v = kk1k2 + jk1 + i. Let S be the 
total surface area of the segmented object in the OBB and fv equal Sv/S. The feature descriptor can be 
described as follows: 

 },...,,...,,,,,{ 0321 Vnv fffCCCCCCCFV= , (1) 

where nV = k1k2k3 – 1; 
C: corner vector; 
CC1, CC2, and CC3: principle vectors corresponding to the maximum, middle, and minimum 

dimensions of the OBB, respectively. 

 
Figure 4. Oriented bounding box of segmented point clouds. Figure 4. Oriented bounding box of segmented point clouds.

Sensors 2018, 18, x FOR PEER REVIEW  6 of 21 

 

 

 

Figure 5. OBB of object subdivided into n (= k1 × k2 × k3) sub-boxes. 

Finally, according to Sv, the regional area-based descriptor can be built as shown in Figure 6. In 
this example, the OBB of the object point clouds is subdivided into eight sub-boxes. In addition, three 
parameters k1, k2, and k3 are set to equal 2. 

  
(a) (b) 

Figure 6. Regional area-based descriptor. (a) Object point clouds. (b) Regional area-based descriptor 
of the object. 

The proposed descriptor utilizes the distribution of the object’s surface area inside the OBB of 
the object to represent the object in 3D space. The OBB regional area-based descriptor is invariable to 
arbitrary poses of the objects, because the surface area is an intrinsic property that is completely 
independent of object positions and orientations in space. Furthermore, the developed approach is 
robust to numerous variations of surface sampling density and noise generated from the 
measurement process. In order to match the model point cloud and the segmented point cloud 
extracted using the object segmentation algorithm, the feature descriptor of the segmented object is 
compared with the feature descriptors of various views of the model in the database using 
normalized cross-correlation (NCC). 

The total number (n) of subdivided boxes in the OBB is an important parameter for computation 
efficiency. When the OBB contains more subdivided boxes, matching normally takes more time and 
the matching accuracy is thus increased. To shorten the matching procedure, fewer subdivided boxes 
are preferable. However, to ensure matching accuracy, the number of subdivided boxes should be 
adequately set to achieve meaningful matching. Figure 7 illustrates three examples of the regional 

Figure 5. OBB of object subdivided into n (= k1 × k2 × k3) sub-boxes.

Finally, according to Sv, the regional area-based descriptor can be built as shown in Figure 6.
In this example, the OBB of the object point clouds is subdivided into eight sub-boxes. In addition,
three parameters k1, k2, and k3 are set to equal 2.
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The proposed descriptor utilizes the distribution of the object’s surface area inside the OBB
of the object to represent the object in 3D space. The OBB regional area-based descriptor is
invariable to arbitrary poses of the objects, because the surface area is an intrinsic property that
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is completely independent of object positions and orientations in space. Furthermore, the developed
approach is robust to numerous variations of surface sampling density and noise generated from
the measurement process. In order to match the model point cloud and the segmented point cloud
extracted using the object segmentation algorithm, the feature descriptor of the segmented object is
compared with the feature descriptors of various views of the model in the database using normalized
cross-correlation (NCC).

The total number (n) of subdivided boxes in the OBB is an important parameter for computation
efficiency. When the OBB contains more subdivided boxes, matching normally takes more time and
the matching accuracy is thus increased. To shorten the matching procedure, fewer subdivided boxes
are preferable. However, to ensure matching accuracy, the number of subdivided boxes should be
adequately set to achieve meaningful matching. Figure 7 illustrates three examples of the regional
area-based descriptors of an L-shape object with three different types of segments, in which n (= k1 ×
k2 × k3) is computed as 5 × 5 × 1, 5 × 4 × 3, and 5 × 5 × 4, respectively, with the running time being
0.15, 0.35, and 0.65 s, respectively.
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2.2.1. Estimation of Oriented Bounding Box

The OBB of an object is a rectangular bounding box that covers all object point clouds.
The orientation of an OBB can be determined using the covariance matrix [31]. The associated
algorithm is described in the following steps:

Calculate the center p of the point cloud P;
Compute the covariance matrix:

COV =
1
n

n

∑
i=1

(pi − p)(pi − p)T ; (2)
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Extract the eigenvectors {v1, v2, v3} from the covariance matrix;
Determine the dimensions of the object defined in each eigenvector using the distances between

the nearest and farthest projected points.
The corner C(xC, yC, zC) farthest from the center p will be chosen from eight corners of the OBB.

Then, the vectors CCi=1–3 can be established from the largest, medium, and smallest dimensions of the
OBB, respectively. However, the distances between the corners and the center point are sometimes
indistinguishable or the dimensions of the OBB along CCi=1–3 are similar. In these circumstances,
all possibilities have to be taken into account to determine the best choice using NCC mentioned in
Section 2.4.2.

2.2.2. Simplified Regional Area-based Descriptor

The normalized surface area in each subdivided box can be calculated as follows:

fv =
Sv

S
≈ ∑m

i=1 Si

S
≈ ns

nt
, (3)

where nt is the number of triangles in the triangle mesh and ns is the number of triangles that are
inside the subdivided box.

In order to reduce the computation time for the regional area-based descriptor, the number of
triangles inside the subdivided box can be replaced by the number of points inside the subdivided box.
In addition, the number of triangles in the triangle mesh can be substituted by the number of points in
the point clouds, as expressed below:

fv =
Sv

S
≈ np

v
n

= f p
v , (4)

where np
v is the number of points inside the vth subdivided box and n is the number of points in the

object point clouds.
By applying Equation (4), a new form of the regional area-based descriptor can be expressed

as follows:
FV =

{
C, CC1, CC2, CC3, f p

0 , . . . , f p
v , . . . , f p

nV

}
. (5)

Equation (5) is the simplified regional area-based descriptor. The descriptor captures less precise
information included in the surface area-based descriptor, but it still retains most of the discriminative
power of the surface area-based descriptor. The regional area-based descriptor and its simplification
are shown in Figure 8b. As can be seen, the distribution of the surface area inside the OBB of the object
in this case is almost the same as the distribution of points inside the OBB. Furthermore, the efficiency
of simplification is demonstrated by six tests in Figure 9.
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2.3. D Virtual Camera

A virtual sensor is developed to extract the template point clouds corresponding to various views
of the model. The virtual sensor with the same internal properties as the real one is located at the
origin of the world coordinate system. The central axis of the virtual camera is defined as the z-axis.
The CAD model of the object is positioned on the z-axis. The working distance, tz, is shown in Figure 10.
The reference point clouds are generated by rotating the model around the x-axis with every increment
θx and around the y-axis with every increment θy. For each rotation, a set of point clouds is created
corresponding to one view of the model. Figure 11 shows the different views of the CAD model in
Figure 10.
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2.4. Feature Matching

Given a feature vector FVO that represents the object point clouds O, the matched feature vector
FVM that represents a view of the model needs to be estimated. The feature vector FVM is built
through the database generation process in the offline phase. The feature vector FV comprises
the OBB parameters and the regional area-based descriptor. In the first step, the OBB parameters
between the object point clouds and the object model are compared for best matching from a series of
viewpoints [30]. When the OBB matching result satisfies the preset condition, the regional area-based
descriptor between the object point clouds is then matched with the object model defined from the
viewpoint. The general process for matching the object point clouds with the model is shown in
Figure 12.
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2.4.1. OBB Matching

The OBB matching process determines the views of the object model comprising the same
dimensions as the object point clouds. The OBB of each template point cloud is represented by three
vectors, including CCM1(xMmax, yMmax, zMmax), CCM2(xMmid, yMmid, zMmid), and CCM3(xMmin, yMmin,
zMmin), while the OBB of the object point clouds is denoted by CC1(xmax, ymax, zmax), CC2(xmid, ymid, zmid),
and CC3(xmin, ymin, zmin), respectively. These two OBBs should be satisfied by the following equation:

dcorr =
1
3

(
‖CCM1 −CC1‖
‖CCM1‖

+
‖CCM2 −CC2‖
‖CCM2‖

+
‖CCM3 −CC3‖
‖CCM3‖

)
< dthresh, (6)

where dthresh is the given adequate threshold.

2.4.2. Matching Criteria for Regional Area-based Descriptor

The regional area-based descriptor presents the histogram of the surface area of the object.
The resemblance between the object and model descriptors is measured using NCC. Let FO = {fv, v = 0,
. . . , nV} be the regional area-based descriptor of the object point clouds and FM = {fMv, v = 0, . . . , nV}
be the regional area-based descriptor of the template point clouds. The NCC between FO and FM is
computed as follows:

C(FO, FM) =

nV
∑

v=0

(
fv − f

)(
fMv − f M

)
√

nV
∑

v=0

(
fv − f

)2
·

nV
∑

v=0

(
fMv − f M

)2
, (7)

where f = 1
nV+1

nV
∑

v=0
fv and f M = 1

nV+1

nV
∑

v=0
fMv .

If the coefficient C(FO, FM) is larger than a given threshold, the matching result is good and the
two feature vectors FVO and FVM can be adopted to estimate the initial transformation matrix between
the object point clouds and the model.

2.4.3. Transformation Estimation and Refinement

Through the matching step, the correspondence feature vectors FVO and FVM are obtained.
According to these feature vectors, the initial transformation matrix Tinitial between the object point
clouds and the model can be estimated by aligning the frame {CM, vM1, vM2, vM3} that represents the
model to the frame {C, v1, v2, v3} that represents the object point clouds.
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xC xC + v11 xC + v21 xC + v31

yC yC + v12 yC + v22 yC + v32

zC zC + v13 zC + v23 zC + v33

1 1 1 1

 = Tinitial


xMC xMC + vM11 xMC + vM21 xMC + vM31

yMC yMC + vM12 yMC + vM22 yMC + vM32

zMC zMC + vM13 zMC + vM23 zMC + vM33

1 1 1 1

 (8)

The accuracy of initial pose estimation is limited by the set of templates in the database.
Each template describes only one view of the object and the number of templates is restricted; hence,
the matched template may not be exactly the same as the detected object. For example, some small
parts of the detected object are missed from the template. Hence, the estimated 3-D pose may be
incorrect. Additionally, the measurement data can lose some high-frequency information (such as
the edges of the object) owing to limitation of the measurement system. The measurement errors
can reduce the accuracy of the initial 3-D pose estimation. Therefore, it is necessary to refine the
estimated initial 3-D pose. The algorithm often performed to obtain the refined transformation is the
ICP algorithm [32,33]. The ICP algorithm is a matching process that minimizes the fitting deviation
between two matching point clouds, and iteratively refines the transformation through minimizing the
distance between the points of the object point clouds and the model. The steps of the ICP algorithm
are described as follows:

• For each point p ∈ O, find the closest point q ∈M;
• Estimate the rotation matrix R and translation vector t that minimize the root mean

squared distance;
• Transform Ok+1 ← Q(Ok) using the estimated parameters;
• Terminate the iteration when the change in error falls below the preset threshold.

3. Experimental Results and Analysis

The feasibility of the proposed methodology is verified by comparing simulated and actual data
obtained from experiments on industrial objects. Figure 13 shows the experimental setup for the robot
pick and place application that involves the regional area-based descriptor. The developed 3-D scanner
has been integrated with the robotic arm to acquire the 3-D point clouds that represent the randomly
stacked objects in the scene. The measurement volume of the 3-D scanner is approximately 147 × 110
× 80 mm3. The simulation data provided by Industrial Technology Research Institute (ITRI) comprise
the database of six different work parts. The dimensions of each object in the ITRI database are shown
in Table 1. The resolution of the scene point clouds in the database is greater than 0.5 mm. Actual
data are measured using the developed 3-D optical scanner according to the random speckle pattern
projection principle and the triangulation theory. The depth resolution of the measured data is about
0.3 mm and the spatial resolution is 1.05 mm. In the experiment, the datasets are processed on a
computer with a Core i5 processor (3.40 GHz and 4 GB RAM).

Sensors 2018, 18, x FOR PEER REVIEW  12 of 21 

 

 
Figure 13. System setup for pick and place application using regional area-based descriptor. 

Table 1. Dimensions of objects in ITRI database. 

Model Dimensions (mm) 
Name 3-D representation Length Width Height 

Brazo control 

 

86 53 30 

Cylinder 

 

35 35 35 

Finefood 

 

41 40 33 

Hammerhead 

 

110 35.5 22 

Figure 13. System setup for pick and place application using regional area-based descriptor.



Sensors 2019, 19, 764 13 of 22

Table 1. Dimensions of objects in ITRI database.

Model Dimensions (mm)

Name 3-D representation Length Width Height

Brazo control

Sensors 2018, 18, x FOR PEER REVIEW  12 of 21 

 

 
Figure 13. System setup for pick and place application using regional area-based descriptor. 

Table 1. Dimensions of objects in ITRI database. 

Model Dimensions (mm) 
Name 3-D representation Length Width Height 

Brazo control 

 

86 53 30 

Cylinder 

 

35 35 35 

Finefood 

 

41 40 33 

Hammerhead 

 

110 35.5 22 

86 53 30

Cylinder

Sensors 2018, 18, x FOR PEER REVIEW  12 of 21 

 

 
Figure 13. System setup for pick and place application using regional area-based descriptor. 

Table 1. Dimensions of objects in ITRI database. 

Model Dimensions (mm) 
Name 3-D representation Length Width Height 

Brazo control 

 

86 53 30 

Cylinder 

 

35 35 35 

Finefood 

 

41 40 33 

Hammerhead 

 

110 35.5 22 

35 35 35

Finefood

Sensors 2018, 18, x FOR PEER REVIEW  12 of 21 

 

 
Figure 13. System setup for pick and place application using regional area-based descriptor. 

Table 1. Dimensions of objects in ITRI database. 

Model Dimensions (mm) 
Name 3-D representation Length Width Height 

Brazo control 

 

86 53 30 

Cylinder 

 

35 35 35 

Finefood 

 

41 40 33 

Hammerhead 

 

110 35.5 22 

41 40 33

Hammerhead

Sensors 2018, 18, x FOR PEER REVIEW  12 of 21 

 

 
Figure 13. System setup for pick and place application using regional area-based descriptor. 

Table 1. Dimensions of objects in ITRI database. 

Model Dimensions (mm) 
Name 3-D representation Length Width Height 

Brazo control 

 

86 53 30 

Cylinder 

 

35 35 35 

Finefood 

 

41 40 33 

Hammerhead 

 

110 35.5 22 110 35.5 22

Socket

Sensors 2018, 18, x FOR PEER REVIEW  13 of 21 

 

Socket 

 

45 35 35 

Wrench 

 

154 65 13.2 

 
A viewpoint is defined as a set of six parameters, with three position parameters (x, y, z) defining 

the spatial position of the 3-D sensor, and three orientation parameters (Rx, Ry, Rz) defining the 
direction of the sensor. The accuracy of a point cloud in the measurement using the 3-D sensor 
depends on the angle of incidence of the sensor on the surface. The ideal angle is π/2; that is, the 
closer the angle of incidence of the sensor is to the normal surface direction, the more accurate the 
measured points. To ensure quality of the measured data, a quality criterion is included in the 
experimental system. This criterion states that acquired point clouds detected using local normal 
vectors should satisfy a uniform distribution condition. Therefore, the simplified regional area-based 
descriptor is utilized for all tested data. 

3.1. Case Study on Simulated Data 

In testing the simulation data, Gaussian random noise is added to the object point clouds with 
increasing standard deviation on σ from 0.001 to 1.0. Following this, the object descriptor is compared 
with the descriptors of the templates to determine the correlation coefficient using Equation (7). For 
each model, the correlation coefficient corresponding to each Gaussian noise level is the average of 
30 values, which measure the similarity between 30 different object point clouds with the model. The 
accuracy of the proposed method is evaluated by determining the root mean squares (RMS), 
translation, and rotation errors. In addition, the computation time of the object recognition and 
localization process is measured to evaluate the efficiency of the proposed method. 

Figure 14 shows examples of input object point clouds with different Gaussian noise levels. The 
effect of Gaussian noise on matching between the object descriptor and model descriptor is illustrated 
in Figure 15. In this experiment, the correlation coefficients obtained can exceed 0.8 with a noise level 
of σ below 1.0. 

   
(a) σ = 0.001 (b) σ = 0.05 (c) σ = 1.0 

Figure 14. Object point clouds with Gaussian noise added and standard deviation of 0.001, 0.05, and 
1.0. 

45 35 35

Wrench

Sensors 2018, 18, x FOR PEER REVIEW  13 of 21 

 

Socket 

 

45 35 35 

Wrench 

 

154 65 13.2 

 
A viewpoint is defined as a set of six parameters, with three position parameters (x, y, z) defining 

the spatial position of the 3-D sensor, and three orientation parameters (Rx, Ry, Rz) defining the 
direction of the sensor. The accuracy of a point cloud in the measurement using the 3-D sensor 
depends on the angle of incidence of the sensor on the surface. The ideal angle is π/2; that is, the 
closer the angle of incidence of the sensor is to the normal surface direction, the more accurate the 
measured points. To ensure quality of the measured data, a quality criterion is included in the 
experimental system. This criterion states that acquired point clouds detected using local normal 
vectors should satisfy a uniform distribution condition. Therefore, the simplified regional area-based 
descriptor is utilized for all tested data. 

3.1. Case Study on Simulated Data 

In testing the simulation data, Gaussian random noise is added to the object point clouds with 
increasing standard deviation on σ from 0.001 to 1.0. Following this, the object descriptor is compared 
with the descriptors of the templates to determine the correlation coefficient using Equation (7). For 
each model, the correlation coefficient corresponding to each Gaussian noise level is the average of 
30 values, which measure the similarity between 30 different object point clouds with the model. The 
accuracy of the proposed method is evaluated by determining the root mean squares (RMS), 
translation, and rotation errors. In addition, the computation time of the object recognition and 
localization process is measured to evaluate the efficiency of the proposed method. 

Figure 14 shows examples of input object point clouds with different Gaussian noise levels. The 
effect of Gaussian noise on matching between the object descriptor and model descriptor is illustrated 
in Figure 15. In this experiment, the correlation coefficients obtained can exceed 0.8 with a noise level 
of σ below 1.0. 

   
(a) σ = 0.001 (b) σ = 0.05 (c) σ = 1.0 
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1.0. 

154 65 13.2

A viewpoint is defined as a set of six parameters, with three position parameters (x, y, z) defining
the spatial position of the 3-D sensor, and three orientation parameters (Rx, Ry, Rz) defining the
direction of the sensor. The accuracy of a point cloud in the measurement using the 3-D sensor depends
on the angle of incidence of the sensor on the surface. The ideal angle is π/2; that is, the closer the
angle of incidence of the sensor is to the normal surface direction, the more accurate the measured
points. To ensure quality of the measured data, a quality criterion is included in the experimental
system. This criterion states that acquired point clouds detected using local normal vectors should
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satisfy a uniform distribution condition. Therefore, the simplified regional area-based descriptor is
utilized for all tested data.

3.1. Case Study on Simulated Data

In testing the simulation data, Gaussian random noise is added to the object point clouds with
increasing standard deviation on σ from 0.001 to 1.0. Following this, the object descriptor is compared
with the descriptors of the templates to determine the correlation coefficient using Equation (7).
For each model, the correlation coefficient corresponding to each Gaussian noise level is the average
of 30 values, which measure the similarity between 30 different object point clouds with the model.
The accuracy of the proposed method is evaluated by determining the root mean squares (RMS),
translation, and rotation errors. In addition, the computation time of the object recognition and
localization process is measured to evaluate the efficiency of the proposed method.

Figure 14 shows examples of input object point clouds with different Gaussian noise levels.
The effect of Gaussian noise on matching between the object descriptor and model descriptor is
illustrated in Figure 15. In this experiment, the correlation coefficients obtained can exceed 0.8 with a
noise level of σ below 1.0.
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The accuracy of the 3-D object recognition and localization algorithm can be evaluated by
RMS, translation, and rotation errors. The RMS error is calculated using the distance between
corresponding points in the CAD model (pitrue) and transformed point clouds (pialg) under the
estimated transformation matrix. Translation error (Terr) is the absolute difference between the true and
computed translation vectors (Ttrue and Talg). Rotation error (qerr) is the absolute difference between the
true and computed unit quaternions (qtrue and qalg) representing the rotations of objects in 3-D space.

Terr = ‖Talg − Ttrue‖, (9)
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qerr = ‖qalg − qtrue‖, (10)

RMSerr =

√√√√√ n
∑

i=1

(
pialg − pitrue

)2

n
. (11)

Figures 16–18 show the RMS, translation, and rotation errors, respectively, of six different types
of objects in the ITRI (Industrial Technology Research Institute) database. The maximum RMS error is
smaller than 0.15 mm. The translation errors do not exceed 0.06 mm. In addition, the rotation errors
are smaller than 0.005◦.

Sensors 2018, 18, x FOR PEER REVIEW  14 of 21 

 

 
Figure 15. Effect of Gaussian noise on matching between object descriptor and model descriptor. 

The accuracy of the 3-D object recognition and localization algorithm can be evaluated by RMS, 
translation, and rotation errors. The RMS error is calculated using the distance between 
corresponding points in the CAD model (pitrue) and transformed point clouds (pialg) under the 
estimated transformation matrix. Translation error (Terr) is the absolute difference between the true 
and computed translation vectors (Ttrue and Talg). Rotation error (qerr) is the absolute difference between 
the true and computed unit quaternions (qtrue and qalg) representing the rotations of objects in  
3-D space. 

 truealgerrT TT −= , (9) 

 truealgerrq qq −= , (10) 

 ( )
n

RMS

n

i
itrueialg

err


=

−
= 1

2pp
. (11) 

Figures 16, 17, and 18 show the RMS, translation, and rotation errors, respectively, of six different 
types of objects in the ITRI (Industrial Technology Research Institute) database. The maximum RMS 
error is smaller than 0.15 mm. The translation errors do not exceed 0.06 mm. In addition, the rotation 
errors are smaller than 0.005°. 

 
Figure 16. RMS errors obtained using the proposed algorithm for different types of objects in ITRI 
database. 
Figure 16. RMS errors obtained using the proposed algorithm for different types of objects in
ITRI database.Sensors 2018, 18, x FOR PEER REVIEW  15 of 21 

 

 
Figure 17. Translation errors obtained using the proposed algorithm for different types of objects in 
ITRI database. 

 
Figure 18. Rotation errors obtained using the proposed algorithm for different types of objects in ITRI 
database. 

To evaluate the efficiency of the proposed recognition and localization algorithm, the simplified 
regional area-based descriptor is employed. This descriptor captures less precise information 
included in the surface area-based descriptor, but it retains most of the discriminative power of the 
regional area-based descriptor. The computation time of the object recognition and localization tasks 
is summarized in Figure 19. The average time required to recognize and localize the object is less than 
0.3 s for all tested objects. 

 
Figure 19. Time consumed for 3-D object recognition and localization using the proposed algorithm. 

The comparison of performances between the proposed approach and existing methods is 
reported in Table 2. As can be seen, the developed method outperforms in pose estimation accuracy 

Figure 17. Translation errors obtained using the proposed algorithm for different types of objects in
ITRI database.



Sensors 2019, 19, 764 16 of 22

Sensors 2018, 18, x FOR PEER REVIEW  15 of 21 

 

 
Figure 17. Translation errors obtained using the proposed algorithm for different types of objects in 
ITRI database. 

 
Figure 18. Rotation errors obtained using the proposed algorithm for different types of objects in ITRI 
database. 

To evaluate the efficiency of the proposed recognition and localization algorithm, the simplified 
regional area-based descriptor is employed. This descriptor captures less precise information 
included in the surface area-based descriptor, but it retains most of the discriminative power of the 
regional area-based descriptor. The computation time of the object recognition and localization tasks 
is summarized in Figure 19. The average time required to recognize and localize the object is less than 
0.3 s for all tested objects. 

 
Figure 19. Time consumed for 3-D object recognition and localization using the proposed algorithm. 

The comparison of performances between the proposed approach and existing methods is 
reported in Table 2. As can be seen, the developed method outperforms in pose estimation accuracy 

Figure 18. Rotation errors obtained using the proposed algorithm for different types of objects in
ITRI database.

To evaluate the efficiency of the proposed recognition and localization algorithm, the simplified
regional area-based descriptor is employed. This descriptor captures less precise information included
in the surface area-based descriptor, but it retains most of the discriminative power of the regional
area-based descriptor. The computation time of the object recognition and localization tasks is
summarized in Figure 19. The average time required to recognize and localize the object is less
than 0.3 s for all tested objects.
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The comparison of performances between the proposed approach and existing methods is
reported in Table 2. As can be seen, the developed method outperforms in pose estimation accuracy
and computation cost. In terms of computational efficiency, it is worth noting that the benefits of speed
offered by the proposed method outweigh the others. Thus, regional area-based object recognition
and the localization algorithm can achieve a real-time and accurate pose estimation of 3D objects in
cluttered range images.
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Table 2. A comparison of performances obtained by the proposed method and existing methods on
simulated data.

Models Method Translation Error
(mm)

Rotation Error
(10−3 rad) Time (s)

Fine food

Graph-based 0.869 0.103 2.537
Feature-based 0.412 0.072 1.453

View-based 0.036 0.087 7.521
Proposed 0.019 0.068 0.160

Cylinder

Graph-based 0.435 0.145 4.896
Feature-based 0.132 0.768 2.902

View-based 0.038 0.108 8.247
Proposed 0.022 0.061 0.182

Wrench

Graph-based 0.213 0.315 4.184
Feature-based 0.896 0.979 3.262

View-based 0.078 0.113 9.163
Proposed 0.017 0.081 0.150

3.2. Case Study on Measured Data

In the experiments with the measured data, different types of objects were selected to test the
effectiveness of the proposed algorithm. The samples are randomly stacked on the table to ensure
randomness in their positions and orientations. The performance of object matching can be evaluated
by judging the distance from each point in the measured cloud to the closest point in the model [34].
Denote di as the distance between a point (pi) in the measured cloud and its closest point (qi) in the
model (shown in Figure 20). Then, the mean distance, µ, and standard deviation, σ, can be computed
to evaluate the matching condition as follows:

µ =
1
n

n

∑
i=1

di, (12)

σ =

√√√√√ n
∑

i=1
(di − µ)2

n− 1
, (13)

where n is the number of points in the measured point clouds.
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various parts are contained in each case, respectively, for object recognition and localization. The 
correlation coefficients in the matching process are higher than 0.9. For all tested data, the localization 

Figure 20. Query point pi in measured point clouds and its nearest point, qi, in the model.

As seen in Figure 21, the location and orientation of all objects can be effectively detected by using
the developed method. Three experimental cases are shown, in which three, seven, and two various
parts are contained in each case, respectively, for object recognition and localization. The correlation
coefficients in the matching process are higher than 0.9. For all tested data, the localization of each
part can be completed within 0.5 s. In addition, the mean deviation ranges between 0.180 mm and
0.469 mm and the standard deviation ranges between 0.168 mm and 0.484 mm (shown in Table 3).
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Figure 21. Object recognition and localization results for different types of objects: (a) three parts
randomly stacked; (b) seven parts randomly stacked and (c) two parts randomly stacked.

Table 3. Matching performance for objects in Figure 21.

Case study Object Matching Score
(%)

Mean Deviation µ
(mm)

Standard
Deviation σ (mm)

1
Red 89.74 0.320 0.392

Magenta 90.12 0.389 0.426
Cyan 85.55 0.469 0.484

2

Red 98.77 0.249 0.313
Yellow 99.23 0.187 0.242

Magenta 97.55 0.247 0.316
Cyan 92.88 0.351 0.431

Purple 91.74 0.329 0.394
Gold 98.55 0.231 0.305

Spring
green 94.57 0.313 0.372

3
Red 98.31 0.266 0.264

Yellow 99.26 0.180 0.168

Average: 94.69 0.294 0.342

In Figure 22, two cases were further tested for the verification of handling more complexity. Case 1
has five parts with an objective to detect a connector, while Case 2 has five parts with an objective
to detect a 3D-printed hammer. By using the developed method, two connectors were effectively
detected with part orientation determined in Case 1. In Case 2, the 3D-printing hammer, which is
partly overlapped by a toy model, can also be detected effectively with its orientation localized.
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4. Discussion

The proposed methods have been implemented and tested on non-overlapping, multiple
overlapping, and stacked objects in 3-D scene point clouds. In this section, the advantages and
limitations of object recognition and localization are discussed. The developed method represents the
object in 3-D space based on the distribution of the object’s surface area inside the OBB. Surface area
is an intrinsic surface property and independent of surface sampling; hence, the developed feature
descriptor is invariant to arbitrary rotations and translations of the object. In addition, the feature
descriptor is less sensitive to surface sampling and noise. As illustrated in Figure 15, the correlation
coefficients exceed 0.8 with a noise level σ equal to 1.0.

The effectiveness and accuracy of the proposed 3-D object recognition and localization have been
tested on both simulated and measured data. The accuracy of the proposed method in the experiment
with simulated data is evaluated in terms of RMS, translation, and rotation errors, which were found
to be below 0.15 mm, 0.06 mm, and 0.005◦, respectively.

The proposed algorithm employs a point-to-point ICP algorithm to match the scene point clouds
with the model; hence, the accuracy can be affected by the resolution of the scene point clouds, which is
about 0.5 mm in the experiment. Therefore, some important features of the object located in the small
surface regions are only represented by a small number of measured points, thus causing errors when
estimating the position and orientation of the target object. For example, the scene nos. 19 and 28 of
the finefood object shown in Figure 23, respectively, are only represented by a rather small number of
point clouds. Due to this reason, the RMS and rotation errors of scene nos. 19 and 28 of the finefood
object shown in Figure 16 (in Page 15) and Figure 18 (in Page 16), respectively, are larger than those of
the other scenes.
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Errors in the initial transformation estimation process depend considerably on the rotation
increments θx and θy of templates generated by the virtual camera. To enhance the matching accuracy,
the rotation increment is controlled to be smaller. However, a smaller increment can easily generate a
significant increase in the runtime of the operation process. Take for instance an experiment having
10,000 points, such as Wrench shown in Table 2; its computation time in the case θx = θx = 0.157 (rad)
was 3 s, which is much longer than that in the case θx = θx = 0.785 0.157 (rad), at merely 0.15 s.

In the experiment with the actual measurement data, the accuracy of the proposed method
is estimated according to the matching deviation between the object point clouds and the model.
The performance of object matching is evaluated using the mean distance and its standard deviation.
With the measured point clouds having a depth resolution of 0.3 mm and spatial resolution of
1.05 × 1.05 mm2, the proposed method can achieve a mean deviation below 0.47 mm and standard
deviation below 0.49 mm. To increase the accuracy of the developed algorithm, the best way is to
improve the quality and resolution of the measured point clouds.

The efficiency of the 3-D object recognition and localization algorithm is a very important
parameter for the 3-D vision system in practical applications. In the experiment, for a set of more
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than 16k points in one 3-D image map, the proposed method requires only 0.5 s for each recognized
object using a common PC, and it can be reduced to 0.1 s by simplification. To substitute it for a
regional area-based descriptor, the measured point cloud is required to have a certain level of density
and uniform distribution. The computation cost of the algorithm is proved to be efficient for in-line
industrial automation.

5. Conclusions

In this study, a new method for automated 3-D object recognition and localization has been
developed using 3-D point clouds. Experimental results indicate the effectiveness of the proposed
method. In addition, the developed approach can accurately detect the position and orientation of the
target objects, which are randomly stacked in an unstructured bin. The detection accuracy is affected
by the spatial and depth resolution of the measured point cloud. The proposed method can achieve
a localization accuracy better than half of the spatial resolution of the point cloud. The developed
algorithm would be particularly useful for the automation of workpiece manipulation and handling in
manufacturing sectors. Enhancement of computational efficiency of the object recognition process is
achievable by further employing parallel computing techniques.
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