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Abstract: Visual tracking performance has long been limited by the lack of better appearance models.
These models fail either where they tend to change rapidly, like in motion-based tracking, or where
accurate information of the object may not be available, like in color camouflage (where background
and foreground colors are similar). This paper proposes a robust, adaptive appearance model
which works accurately in situations of color camouflage, even in the presence of complex natural
objects. The proposed model includes depth as an additional feature in a hierarchical modular
neural framework for online object tracking. The model adapts to the confusing appearance by
identifying the stable property of depth between the target and the surrounding object(s). The depth
complements the existing RGB features in scenarios when RGB features fail to adapt, hence becoming
unstable over a long duration of time. The parameters of the model are learned efficiently in the
Deep network, which consists of three modules: (1) The spatial attention layer, which discards the
majority of the background by selecting a region containing the object of interest; (2) the appearance
attention layer, which extracts appearance and spatial information about the tracked object; and
(3) the state estimation layer, which enables the framework to predict future object appearance
and location. Three different models were trained and tested to analyze the effect of depth along
with RGB information. Also, a model is proposed to utilize only depth as a standalone input
for tracking purposes. The proposed models were also evaluated in real-time using KinectV2
and showed very promising results. The results of our proposed network structures and their
comparison with the state-of-the-art RGB tracking model demonstrate that adding depth significantly
improves the accuracy of tracking in a more challenging environment (i.e., cluttered and camouflaged
environments). Furthermore, the results of depth-based models showed that depth data can provide
enough information for accurate tracking, even without RGB information.

Keywords: computer vision; visual tracking; attention model; RGBD; Kinect; deep network;
convolutional neural network; Long Short-Term Memory

1. Introduction

Despite recent progress in computer vision with the introduction of deep learning, tracking in
a cluttered environment remains a challenging task due to various situations such as illumination
changes, color camouflage, and the presence of other distractions in the scene.
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One of the recent trends in deep learning, attention models, are inspired by the visual perception
and cognition system in humans [1], which helps to reduce the effect of distraction in the scene to
improve tracking accuracy. The human eye has an innate ability to interpret complex scenes with
remarkable accuracy in real time. However, it tends to process only a subset of the entire sensory
information available to it. This reduces the eyes work to analyze complex visual scenarios. This ability
of the eye comes from being able to spatially circumscribe a region of interest [2]. By making a selective
decision about the object of interest, fewer pixels need to be processed and the uninvolved pixels are
ignored, which leads to lower complexity and higher tracking accuracy. As a result, this mechanism
appears to be key in handling clutter, distractions, and occlusions in target tracking.

Illumination changes and color camouflage are two other challenges for tracking algorithms.
The emergence of depth sensors opened new windows to solve these challenges due to their stability
in illumination changes and not being sensitive to the presence of shadow and a similar color profile.
These features make depth information a suitable option to complement RGB information.

In this paper, a RGBD based tracking algorithm has been introduced. In the proposed methods,
a convolutional neural network (CNN) has been utilized to extract two types of feature: Spatial
attention features, which select the part of the scene where the target is presented; and appearance
features—local features related to the target being tracked. We take advantage of the attention model
to select the region of interest (ROI) and extract features. Different models are proposed to select the
ROI based on both depth and RGB. In addition, a model is implemented using only depth as the
resource for tracking, which takes advantage of the same structure. Our work extended the existing
work proposed by Kosiorek et al. [3], which consisted of an RGB-based model that was modified
to supplement depth data in four different ways. We evaluated the efficiency of our trackers using
the RGBD datasets of Princeton [4], and our own data, collected using Kinect V2.0. During the test,
we paid special attention to investigating challenging scenarios, where previous attentive trackers have
failed. The results showed that adding depth can improve the algorithm in two ways: First, it improves
the feature extraction component, resulting in a more efficient approach in extracting appearance
and spatial features; second, it demonstrates a better performance in various challenging scenarios,
such as camouflaged environments. We also showed that using depth could be more beneficial for
tracking purposes.

The remainder of the paper is divided into four sections. In Section 2, we examine recent progress
and state-of-the-art methods. Methodology and details of our proposed method are explained in
Section 3. The experimental setup and results are reported in Section 4. Finally, the paper is concluded
and discussed in Section 5.

2. Related Works

Establishing a tracking algorithm using RGB video streams has been the subject of much research.
A tracking algorithm usually consists of two different components: A local component, which consists
of the features extracted from the target being tracked; and global features, which determine the
probability of the target’s location.

Using a convolutional neural network (CNN) to extract the features of the target being tracked is
a very common and effective method. This approach mainly focuses on object detection and the local
features of the target to be employed for tracking purposes [5–7]. Qi et al. [5] utilized two different
CNN structures jointly to distinguish the target from other distractors in the scene. Wang et al. [6]
designed a structure which consisted of two distinct parts: A shared part common for all training
videos, and a multi-domain part which classified different videos in the training set. The former part
extracted the common features to be employed for tracking purposes. Fu et al. [7] designed a CNN
based discriminative filter to extract local features.

Recurrent neural networks (RNN) are also well studied to provide the spatial temporal features
to estimate the location of the target in the scene (focusing on the second component of tracking).
For example, Yang et al. [8] fed input images directly to a RNN module to find the features of the
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target. Also, the multiplication layer was replaced by a fully convolutional layer. Long short-term
memory (LSTM) was modified by Kim et al. [9] to extract both local features and spatial temporal
features. They also proposed an augmentation technique to enhance input data for training.

Visual attention method recently gained popularity and are being utilized to extract the local and
global features in a tracking task [10–13]. Donoser et al. [10] proposed a novel method in which
they employed the local maximally stable extremal region (MSER), which integrated backward
tracking. Parameswaran et al. [11] performed spatial configuration of regions by optimizing the
parameters of a set of regions for a given class of objects. However, this optimization needs to
be done off-line. An advanced hierarchical structure was proposed by Kosiorek et al. [3], named
hierarchical attentive recurrent tracking (HART), for single object tracking where attention models
are used. The input of their structure is RGB frames where the appearance and spatial features are
extracted. Although their proposed structure is able to track the object of interest in a sequence of
images in the KITTI dataset [14] and KTH datasets [15] using RGB inputs, their proposed algorithm
failed in more challenging environments (e.g., when there was a similar background and foreground
color). Figure 1 shows one of the scenarios in the KITTI dataset [14] which their structure failed
to address. We were able to improve the accuracy of their algorithm and overcome the challenges
associated with this problem significantly by adding depth.
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Figure 1. The hierarchical attentive recurrent tracking (HART) [3] algorithm failed to track the cyclist
when the color of the background was similar to the foreground in the KITTI dataset [14].

There are shown in many situations where only RGB information fails to address accurate tracking
in the state-of-the-art algorithms [16,17]. One way to overcome RGB flaws is to complement it with
depth for improved accuracy and robustness. The emergence of depth sensors, such as Microsoft
Kinect, has gained a lot of popularity both because of the increased affordability and their possible
uses. These depth sensors make depth acquisition very reliable and easy, and provide valuable
additional information to significantly improve computer vision tasks in different fields such as object
detection [18], pose detection [19–21] and tracking (by handling occlusion, illumination changes, color
changes, and appearance changes). Luber et al. [22] showed the advantage of using depth, especially in
scenarios of target appearance changes, such as rotation, deformation, color camouflage and occlusion.
Extracted features from depth provide valuable information which complements the existing models
in visual tracking. On the other hand, in RGB trackers, the deformations lead to various false positives
and it becomes difficult to overcome this issue, since the model continues getting updated erroneously.
With a reliable detection mechanism in place, this model will accurately detect the target and will
be updated correctly, making the system robust. A survey of the RGBD tracking algorithm was
published by Camplani et al. [23], in which different approaches of using depth to complement the
RGB information were compared. They classified the use of depth into three groups: Region of interest
(ROI) selection, where depth is used to find the region of interest [24,25]; human detection, where depth
data were utilized to detect a human body [26]; and finally, RGBD matching, where RGB and depth
information were both employed to extract tracking features [27,28]. Li et al. [27] employed LSTM,
where the input of LSTM was the concatenation of depth and the RGB frame. Gao et al. [28] used the
graph representation for tracking purposes, where targets were represented as nodes of the graph
and extracted features of RGBD were represented as the edges of the graph. They utilized a heuristic
switched labeling algorithm to label each target to be tracked in an occluded environment. Depth data
provide easier background subtraction, leading to more accurate tracking. In addition, discontinuities
in depth data are robust to variation in light conditions and shadows, which improves the performance
of tracking task compared to RGB trackers. Doliotis et. al. [29] employed this feature of Kinect to
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propose a novel combination of depth video motion analysis and scene distance information. Also,
depth can provide the real location of the target in the scene. Nanda et al. [30] took advantage of this
feature of depth to propose a hand localization and tracking method.Their proposed method not only
returned x, y coordinates of the target, but also provided an estimation of the target’s depth. They used
this feature to handle partial and complete occlusions with the least amount of human intervention.

However, adding depth introduces some additional challenges, such as missing points, noise, and
outliers. For instance, in the approach explained by Nguyen et al. [31], first the depth data is denoised
through a learning phase and the background is detected based on the Gaussian mixture model (GMM).
Following this, the foreground segmentation is accomplished by combining the data extracted from
both depth and RGB. In another approach, authors use a Gaussian filter to smooth the depth frame
and then create a cost map. In the end, they use a threshold to update the background. Changing color
space is also a common approach used to increase the stability of the system. For example, in one
approach, color channels are first transferred to chromaticity space to avoid the effect of shadow and
then kernel density estimation (KDE) was applied on color channels and the depth channel [32]. Unlike
the color channels, which updated background frequently, no background update was necessary on the
depth channel due to its stability against illumination changes. In their method, they considered the
missing depth points and estimated the probability of each missing point to be part of the foreground.
Depth data were used to provide extra information to compensate for the artifacts of background
estimation methods based on RGB information. Differences in the depth value of two frames have
been utilized to detect the ghost effect in the RGB background subtraction algorithm (i.e., when a
moving object is detected in the scene while there is no corresponding real object). Changing color
space and transforming three RGB channels to two channels was a method utilized by Zhou et al. [33].
This method gave them flexibility to add depth information as the third channel. Consequently, they
applied the new three channels to feed to a common RGB background subtraction method.

Though there have been multiple attempts in using RGB and depth together, using the robustness
of depth data by itself has also shown tremendous results. Even in the absence of RGB, depth features
are still very distinguishable, making them an important feature which can complement existing visual
tracking models. Additionally, using depth by itself has a lot of merits for cases where privacy is
important and when one needs to reconstruct the shape and posture of people in the environment. For
many applications, providing a tracking method based on only depth can protect the privacy of the
target and hence this can be more desirable. Several studies have focused on using only depth data
to analyze its strength: Chen et al. [34] employed only depth data for hand tracking; Izadi et al. [35]
proposed ‘KinectFusion’, which utilized full depth maps acquired from the Kinect sensors for scene
reconstruction; and recently Sridhar et al. [36] presented a fast and reliable hand-tracking system using
a single depth camera. In all these cases, the system avoided any reliance on the RGB data, thereby
proving that depth by itself can produce robust tracking benchmarks. Haque [37] presented a novel
method of person reidentification and identification using attention models, from depth images.

In this paper, we modified the HART structure proposed by Kosiorek et al. [3] to develop three
different methods which included depth data. In the first, three channels of RGB were reduced to
two by changing chromaticity space, and depth was fed to the structure as the third channel. For the
second, we improved our first model by adding one convolution layer, combining depth and RGB
inputs and feeding that to the rest of the network. In the third method, two distinct layers were used to
extract the attention features for each of the depth and RGB inputs to select the most dominant features
as a feedforward component. Finally, we proposed a CNN to extract both spatial and appearance
features by feeding only a depth map to the structure. We evaluated the efficiency of our proposed
trackers using the Princeton dataset [4] and our data, collected using Kinect V2.0. During our tests,
we focused the investigation on challenging scenarios where previous recurrent attentive trackers
have failed.
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3. Methodology

The structure of the tracking module for RGB input is shown in Figure 2, RGBD models are
presented in Figure 3, and the depth-only model is presented in Figure 4. The input is the RGB frame
(xi), i ∈ {1, . . . , f } and/or depth frame (di) , i ∈ {1, . . . , f }, where f is the number of frames.
The spatial attention extracts the glimpse (gt) from these data as the part of the frame where the object
of interest is probably located. The features of the object are extracted from the glimpse using a CNN.
Two types of feature can be extracted from the glimpse ventral and dorsal stream. The ventral stream
extracts appearance-based features vt, while the dorsal stream aims to compute the foreground and
background segmentation st. These features are then fed to a LSTM network and the Multi-Layer
Perceptron (MLP). The output ot is a bounding box correction ∆b̂t, and is then fed back to the spatial
attention section (at+1) to compute the new glimpse and appearance at+1, in order to improve the
object detection and foreground segmentation. Below, we explain each part in more detail.
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long short-term memory (LSTM).
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tracker model.



Sensors 2019, 19, 750 6 of 14
Sensors 2019, 19, x FOR PEER REVIEW 6 of 14 

 

 
Figure 4. Depth tracker model. The glimpse is selected in spatial attention module, then using a CNN 
the appearance feature spatial feature is extracted and fed to LSTM from depth only. 

Spatial Attention: The spatial attention mechanism applied here was similar to that of Kosiorek et 
al. [3]. Two matrices, 𝐴௧௫ ∈ 𝑅௪௫ௐ and 𝐴௧௬ ∈ 𝑅௛௫ு, were created from a given input image, 𝑥௧ ∈ 𝑅௪௫ௐ. 
These matrices consisted of a Gaussian in each row, whose positions and widths decided which part 
of the given image was to be extracted for attention glimpse. 

 The glimpse can then be defined as 𝑔௧ =  𝐴௧௫ 𝑥௧ (𝐴௧௫)் ∶ 𝑔௧  ∈ 𝑅௛௫௪ .  The attention was 
determined by the center of the gaussians (𝜇), their variance, 𝜎 and the stride between gaussians. 
The glimpse size was varied as per the requirements of the experiment. 

Appearance Attention: This module converts the attention glimpse (𝑔௧ ) i.e., 𝑔௧ =  𝐴௧௫ 𝑥௧ (𝐴௧௫)் ∶𝑔௧  ∈ 𝑅௛௫௪ into a fixed-dimensional vector, 𝑣௧, which was defined with the help of appearance and 
spatial information about the tracked target (see Equation (1)). 𝑉1 =  𝑅௛௫௪  →  𝑅௛ೡ ௫ ௪ೡ ௫ ௖ೡ (1) 

This processing splits into the ventral and dorsal stream. The ventral stream was implemented 
as a CNN, while the dorsal stream was implemented as a DFN (dynamic filter network)[38]. The 
former is responsible for handling visual features and outputs feature maps 𝑣௧ , while the latter 
handles spatial relationships. 

 The output of both streams was then combined in the MLP module (Equation (2)). 𝑣௧ = 𝑀𝐿𝑃 (𝑣𝑒𝑐 (𝑣௧ ⊙ 𝑠௧)) (2) 

where ⊙ is the Hadamard product. 
State estimation: In the proposed method, LSTM was used for state estimation. It was used as 

working memory, hence protecting it from the sudden changes brought about by occlusions and 
appearance changes.  𝑜௧, ℎ௧ = 𝐿𝑆𝑇𝑀 (𝑣௧, ℎ௧ିଵ) (3) 𝛼௧ାଵ , ∆𝑎௧ାଵ, ∆𝑏௧෢ = 𝑀𝐿𝑃 (𝑜௧, 𝑣𝑒𝑐(𝑠௧)) (4) 𝑎௧ାଵ = 𝑎௧ ൅ tanh(𝑐)∆𝑎௧ାଵ (5) 𝑏௧෡ = 𝑎௧ ൅ ∆𝑏௧෡  (6) 

Equations (3–6) describe the state updates where 𝑐 is a learnable parameter. In order to train 
our network, we have minimized the loss function, which in turn contains a tracking loss term, a set 
of terms for auxiliary tasks, and L2 regularization terms. Our loss function contains three main 
components, namely, tracking (LSTM), appearance attention, and spatial attention (CNN).  

The purpose of the tracking part was to increase the tracking success rate as well as the 
intersection over union (IoU). The negative log of IoU was utilized to train the LSTM network, similar 
to the approach introduced by Yu et al [39]. 

The appearance attention was employed to improve the tracking by skipping pixels which do 
not belong to the target; hence, we define the glimpse mask as 1 where the attention box overlapped 
the bounding box and zero wherever else. The attention loss function was defined as the cross-
entropy of the bounding box and attention box, similar to the approach adopted by Kosiorek, et al 
[3].  
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Spatial Attention: The spatial attention mechanism applied here was similar to that of
Kosiorek et al. [3]. Two matrices, Ax

t ∈ RwxW and Ay
t ∈ RhxH , were created from a given input

image, xt ∈ RwxW . These matrices consisted of a Gaussian in each row, whose positions and widths
decided which part of the given image was to be extracted for attention glimpse.

The glimpse can then be defined as gt = Ax
t xt (Ax

t )
T : gt ∈ Rhxw. The attention was determined

by the center of the gaussians (µ), their variance, σ and the stride between gaussians. The glimpse size
was varied as per the requirements of the experiment.

Appearance Attention: This module converts the attention glimpse (gt) i.e., gt = Ax
t xt (Ax

t )
T :

gt ∈ Rhxw into a fixed-dimensional vector, vt, which was defined with the help of appearance and
spatial information about the tracked target (see Equation (1)).

V1 = Rhxw → Rhv x wv x cv (1)

This processing splits into the ventral and dorsal stream. The ventral stream was implemented as a
CNN, while the dorsal stream was implemented as a DFN (dynamic filter network) [38]. The former
is responsible for handling visual features and outputs feature maps vt, while the latter handles
spatial relationships.

The output of both streams was then combined in the MLP module (Equation (2)).

vt = MLP (vec (vt � st)) (2)

where � is the Hadamard product.
State estimation: In the proposed method, LSTM was used for state estimation. It was used as

working memory, hence protecting it from the sudden changes brought about by occlusions and
appearance changes.

ot, ht = LSTM (vt, ht−1) (3)

αt+1 , ∆at+1, ∆̂bt = MLP (ot, vec(st)) (4)

at+1 = at + tanh(c)∆at+1 (5)

b̂t = at + ∆b̂t (6)

Equations (3)–(6) describe the state updates where c is a learnable parameter. In order to train
our network, we have minimized the loss function, which in turn contains a tracking loss term, a set
of terms for auxiliary tasks, and L2 regularization terms. Our loss function contains three main
components, namely, tracking (LSTM), appearance attention, and spatial attention (CNN).

The purpose of the tracking part was to increase the tracking success rate as well as the intersection
over union (IoU). The negative log of IoU was utilized to train the LSTM network, similar to the
approach introduced by Yu et al. [39].

The appearance attention was employed to improve the tracking by skipping pixels which do not
belong to the target; hence, we define the glimpse mask as 1 where the attention box overlapped the
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bounding box and zero wherever else. The attention loss function was defined as the cross-entropy of
the bounding box and attention box, similar to the approach adopted by Kosiorek, et al. [3].

The spatial attention determines the target in the scene; thus, the bounding box and the attention
box should overlap to make sure that the target is located on the attention box. Meanwhile, the attention
box should be as small as possible, hence we minimized the glimpse size while increasing its overlap
with the bounding box. Based on intersection over union (IoU), we limited the number of hyper
parameters by automatically learning loss weighting for the spatial attention and appearance attention.

To add depth information to complement the RGB information, we have proposed three different
structures. In the following sections, more details are provided for each of these methods.

3.1. RGD-Based Model

To add depth information in this method, first we separated the RGB channels and transformed
them into two channel spaces. Given the device’s three color channels (R, G, and B), the chromaticity
coordinates r, g and b can be defied as: r = R− B, g = G− B, b = B− B = 0. Thus, the last channel
does not contain any information and can be easily skipped. Therefore, in our model, the r and g
channels are utilized as the first two channels and the third channel is replaced by depth information.
In this method, we did not change the original architecture of the RGB model; instead, the inputs
were changed to convey more information without increasing the complexity of the model. Figure 3a
demonstrates the structure of this approach.

3.2. RGBD Combined Model

In this model, the depth map and RGB information were fed to an extended CNN using one layer of
one-by-one convolution layer, whose output was then fed into the object detection model. The structure
is shown in Figure 3b. In this method, the depth data were combined with RGB information using three
one-by-one convolution layers to decrease the dimensionality from four channels (RGBD) to three.

This model allows the feature extraction CNN to learn features that contain information from all
four channels available. Also, since the number of learnable parameters is not significantly increased,
a simpler architecture can be obtained.

3.3. RGBD Parallel Model

In the last RGBD proposed model, we employed two distinct parallel CNN to extract features
from the depth channel and RGB channels, respectively (Figure 3c). The extracted features from depth
and RGB were later concatenated. Afterwards, using max pooling the most dominant features were
selected. Since the nature of depth information is different to color information, having two different
models to extract features for each of the channels seems to be the most accurate model. However,
using this method increases the number of learnable parameters significantly.

3.4. Depth Model (DHART)

Until now, three methods have been discussed to utilize depth data along with RGB information.
In this section, a tracking model was discussed to use only depth data for tracking. To extract features
of depth information, four convolution layers were utilized, and similar to the previous method,
the extracted features were fed into LSTM to track the target through time. The structure of this model
is depicted in Figure 4.

4. Results and Discussions

In this section, we compare and discuss the four approaches proposed, along with the method
proposed in [3]. The Princeton RGBD tracking dataset [4] was utilized to train and evaluate all models.
The dataset divided the captured sequences into two sets of validation (for training) and evaluation
(for testing) sets. In addition, we utilized our own captured videos by a single Kinect V2.0 sensor to
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evaluate the performance of each model on real-world scenarios. The first three layers of AlexNet [40]
were modified (the first two max pooled layers were skipped) to extract features. For the DHART
model, we utilized the same weight as AlexNet [40] for three middle layers. Considering the higher
resolution of images taken from the Princeton dataset [4], the size of glimpse was set to 76× 76 pixels,
resulting in 19× 19 features for both depth and RGB frames. For training, ten sequences from the
Princeton RGBD tracking dataset [4] were selected, where each of the sequences had an average length
of 150 frames and total frames of 1769 sequences in total. Training was performed on an Nvidia
Geforce GTX 1060 GPU with 3GB of GRAM. The testing sets were selected from the dataset testing
sequences, in which their main target was human, including 12 sequences with an average length of
120 frames each, and a total of 1500 frames. The models trained on the Princeton dataset were also
tested on our own collected frames, which were grouped into five different sequences, with an average
length of 70 on each sequence. Each collected sequence focused on one of the challenges of tracking,
including color camouflage, depth camouflage, and depth-color camouflage.

An example tracking scenario and the predicted bounding box with each model is demonstrated
in Figure 5; Figure 6, where Figure 5 is a selected sequence from the Princeton dataset and Figure 6 is a
selected sequence from our collected data. It was observed that adding depth significantly improved the
tracking results, especially when the foreground and background colors were similar. In Figure 5, the depth
data were used to provide a tighter bounding box, giving a better accuracy. Figure 5 demonstrates a more
challenging scenario with occlusion and color camouflage. When the tracking target was occluded by
another person wearing a similar color (a color camouflaged scenario), the bounding box for the HART
model becomes larger, as it assumes that the two humans are the same target. However, adding depth
helps to distinguish the target better even than if the RGB profiles are similar. It was also shown that the
RGBD Parallel structure is the most accurate tracking model. We also observed that depth information in
itself shows a better result compared to RGB, RGBD combined, and RGD methods.
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Figure 5. The object tracking model results with the Princeton dataset [4] (blue box—bounding box,
green box—attention area): RGB, RGD, RGBD-combined, RGBD-parallel, and depth methods, from
top to bottom, respectively. Each method successfully detected the target and tracked it. However,
by using depth, the predicted bounding box was tighter.
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RGB, RGD, RGBD-combined, RGBD-parallel, and depth methods, respectively, from top to bottom.
As can be seen, the color of the target, the background, and the occlusion are similar, and hence the
HART algorithm was not successful tracking the target; however, the RGBD parallel model could track
the target using extra depth features. Additionally, having only depth information performs better
compared to having only RGB data.

4.1. Results of the Princeton Dataset

The Princeton RGBD tracking dataset [4] provides a benchmark to compare different methods
using four different metrics, that is, success rate, type I, type II, and type III errors. Type I and type III
errors are defined as the rejection of a true null hypothesis (also known as a “false positive” finding).
More specifically, type I error indicates the situation where the tracker estimates the bounding box
far away from the target (Equation (9)) while the type III occurs when the tracker fails to indicate
disappearance of the target in the scene (Equation (11)). On the other hand, type II error represents
failing to reject a false null hypothesis (also known as a “false negative” finding) (Equation (10)).

More formally, we classify the error types as follows. The ratio of overlap between the predicted
and ground truth bounding boxes ri is defined as follows [4]:

ri = {
IOU

(
ROITi , ROIGi

)
=

area(ROITi
∩ROIGi )

area(ROITi
∪ROIGi )

ROITi 6= ∅ and ROIGi 6= ∅

1 ROITi = ROIGi = ∅
−1 otherwise

(7)

where ROITi is the predicted bounding box in the frame number “i” (i.e., xi or di) in the sequence,
ROIGi is the ground truth bounding box, and IOU

(
ROITi , ROIGi

)
is the intersection of the union.
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We set overlapping area rt to the minimum so that we could calculate the average success rate R for
each tracker, as defined below [4]:

R =
1
N

N

∑
i=1

ui where ui =

{
1 ri > rt

0 otherwise
(8)

where ui indicates whether the bounding box predicted by the tracker for the frame number “i” is
acceptable or not, N is the total number of frames, and rt, as defined above, is the minimum overlap
ratio to decide whether the prediction is correct or not. Finally, we can classify three types of error for
the tracker as follows [4]:

Type I : ROITi 6= null and ROIGi 6= null and ri < rt (9)

Type II : ROITi 6= null and ROIGi 6= null (10)

Type III : ROITi = null and ROIGi = null (11)

The average success rate for our human tracking experiment, tested on the benchmark, is shown
in Table 1. The success rate for tracking humans in the original HART model was only 29%. We were
able to improve it to 46% using the RGD approach. In addition, the result of success rate for the RGBD
combined approach and RGBD parallel approach was 39% and 48%, respectively.

Table 1. Comparison between HART and our three different approaches.

Model Type I Error Type II Error Type III Error Success Rate

HART 0.80 0.073 0 0.29
RGD 0.60 0.069 0 0.46

RGBD Combined 0.73 0.069 0 0.39
RGBD Parallel 0.62 0.069 0 0.48

DHART 0.61 0.069 0 0.46

Using the Princeton dataset benchmark, we were able to reduce type I error from 0.80 in the HART
model to 0.73 in the RGBD-combined approach, and reduce it further to 0.62 in the RGBD parallel
approach (Table 1).

We define precision of the tracking as follows:

pi =
area

(
ROITi ∩ ROIGi

)
area

(
ROITi

) (12)

Hence, the average precision for each sequence, similar to Equation (8), is as follows:

P =
1
N

N

∑
i=1

pi (13)

Figure 7 demonstrates the mean average precision of our four approaches in comparison to the
original RGB tracker (HART). The improvement in precision for the RGBD-parallel, RGBD-combined,
RGD, and DHART models over the HART model are 15.04%, 5.28%, 0.5%, and 4.4%, respectively.
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Figure 7. The comparison of mean average precision between HART and our four different approaches.
The best approach is the RGBD-parallel model, which demonstrated an improvement of 15% over the
original mean average precision of the HART model.

Figure 8b shows the average IoU curves on 48 timestamps in Princeton. To create these graphs
for the Princeton dataset, the evaluation sets regarding human tracking were manually annotated.
The results for the RGD, RGBD-parallel and DHART models are similar and have better performance
than the HART model.
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Figure 8. IoU curves on frames over 48 timesteps (higher is better). (a) Results for images captured by
Kinect V2.0 in challenging environments containing color camouflage and occlusion. (b) Results for
the Princeton Dataset. The results show that adding depth in all three methods improves the IoU, and
using just depth also has a better performance on both real-word data and the Princeton dataset.

4.2. Kinect V2.0 Real-World Data

We captured real-world data using a Kinect v2.0 sensor to evaluate the proposed approaches
compared to the one proposed by Kosiorek et al. [3]. The employed metric is the IoU (Equation (7)).
The results are shown in Figure 8a for our own evaluation sequences. As expected, by increasing
the sequence length the IoU ratio dropped due to possible movements of the target and occlusions
in the sequence. It is shown in Figure 8 that the IoU for RGBD-parallel and DHART yields the best
results in both our evaluation dataset and the Princeton dataset. The IoU ratio stays over 0.5 even
after 30 sequence frames for these methods, whereas it has a sharp decrease in the lower sequence
lengths for the RGB based HART model. The RGBD-combined and RGD demonstrated a very similar
performance in this plot, since their structures are very similar. The DHART model tends to have a
better performance than the RGD and RGBD models.
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5. Conclusions and Future Work

In this paper, inspired by the RGB-based tracking model [3], we proposed three different
RGBD-based tracking models, namely RGD, RGBD-combined, and RGBD-parallel, and one depth-only
tracking model, namely, DHART. We showed that adding depth increases accuracy, especially in more
challenging environments (i.e., in the presence of occlusion and color camouflage). To evaluate the
proposed models, the Princeton tracking dataset was employed. The results of the benchmark showed
that the success rate of the RGBD and DHART methods were 65% and 58% more than that of the RGB
method, respectively. We also evaluated our models with real-world data, captured by Kinect v2.0
in more challenging environments. The results showed a significant improvement of the tracking
accuracy when the depth is fed into the model. The results for the RGD and RGBD-combined models
were similar. However, the RGBD-parallel and DHART model results demonstrated that these models
are more efficient in object tracking compared to the other models. In future, the proposed approach
can be extended to track multiple targets using the tracker for each of the objects in turn.
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