
sensors

Article

Joint Optimization for Task Offloading in Edge
Computing: An Evolutionary Game Approach

Chongwu Dong and Wushao Wen *

School of Data and Computer Science, Sun Yat-Sen University, Guangzhou 510006, China;
dongchw@mail2.sysu.edu.cn
* Correspondence: wenwsh@mail.sysu.edu.cn; Tel.: +86-139-2418-3355

Received: 29 December 2018; Accepted: 5 February 2019; Published: 12 February 2019
����������
�������

Abstract: The mobile edge computing (MEC) paradigm provides a promising solution to solve
the resource-insufficiency problem in mobile terminals by offloading computation-intensive and
delay-sensitive tasks to nearby edge nodes. However, limited computation resources in edge nodes
may not be sufficient to serve excessive offloading tasks exceeding the computation capacities of
edge nodes. Therefore, multiple edge clouds with a complementary central cloud coordinated to
serve users is the efficient architecture to satisfy users’ Quality-of-Service (QoS) requirements while
trying to minimize some network service providers’ cost. We study a dynamic, decentralized
resource-allocation strategy based on evolutionary game theory to deal with task offloading
to multiple heterogeneous edge nodes and central clouds among multi-users. In our strategy,
the resource competition among multi-users is modeled by the process of replicator dynamics.
During the process, our strategy can achieve one evolutionary equilibrium, meeting users’ QoS
requirements under resource constraints of edge nodes. The stability and fairness of this strategy is
also proved by mathematical analysis. Illustrative studies show the effectiveness of our proposed
strategy, outperforming other alternative methods.

Keywords: task offloading; mobile edge computing; evolutionary game theory

1. Introduction

Mobile applications with immersive experience are becoming popular and will be killer
applications in 5G networks. According to the work [1], the global market in augmented reality
(AR) and virtual reality (VR) will develop quickly in the future world. Other applications, such as
online games and mobile health care, also developed rapidly in the past few years. Nowadays,
diverse commercial devices, such as Google’s Glass, Facebook’s Oculus, Samsung’s Gear VR,
and HTC’s Vive, are now available to support applications with immersive experience in real time.

However, there are still some problems to enable these new types of applications to support
user mobility. For example, a general VR system, such as HTC’s Vive, captures interactive tracking
from lots of sensors and uploads the tracking into dedicated servers for further processing. Then,
the rendered high-resolution 360-degree video would be streamed back to the headset by high-speed
HDMI cables. Although the wired cables reduce the delay for transferring huge amount of data,
they limit a player’s mobility and affect user experience seriously. To enhance users’ mobility,
an untethered solution, which utilizes high-performance mobile devices, is proposed in the industrial
and academia. However, limited battery life and constrained computation capacity in a mobile device
make this solution non-ideal in practice as a resource-hungery application may include different types
of computation-intensive tasks, such as frame preprocessing, object tracking, and annotation rendering.
According to the measurement in Ref. [2], a high-performance mobile phone can only support up

Sensors 2019, 19, 740; doi:10.3390/s19030740 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9161-0570
https://orcid.org/0000-0003-4819-4679
http://www.mdpi.com/1424-8220/19/3/740?type=check_update&version=1
http://dx.doi.org/10.3390/s19030740
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 740 2 of 23

to 2 h of Pokemon Go, a famous mobile AR game. Depending on the local computation capacity of
mobile terminals, this is far from enough to serve these heavy applications well.

To tackle the problem of limited resources in a mobile device, offloading tasks to clouds is
an efficient way to augment the computation capacity of a mobile device. However, due to the
geographically diverse distance from different mobile users to cloud data centers, it is difficult to
guarantee similar proper response time for all users. Actually, traditional cloud infrastructure may not
satisfy the stringent delay requirements for such mobile applications. To mitigate the problem of latency
constraint for delay-sensitive applications, a new cloud paradigm, named mobile edge computing
(MEC), have been proposed [3]. In the field of academia, MEC is also similar to fog computing [4],
cloudlet [5], small cell cloud [6], and Follow me Cloud [7]. In a MEC cloud platform, a number of small
scale and dedicated servers are deployed at the network edge close to mobile users. Users can run an
immersive application smoothly in their mobile handset by offloading computation-intensive tasks
to edge clouds in close proximity to them. One or more large scale cloud data centers, called central
clouds, to cooperate and synchronize with edge nodes, are also included in a MEC cloud platform.
Figure 1 shows an example of a MEC cloud platform.

In the MEC cloud platform, there still exist some practical challenges for mobile devices to
perform task offloading successfully. First, resources in each individual edge cloud may be insufficient
to serve growing number of mobile devices. One edge cloud cannot undertake all offloaded tasks that
exceeds its computation capacity. Coordinating multiple edge clouds together to serve multi-users
from different regions should be taken into consideration. A central cloud shall also be involved in task
processing for mobile users. Therefore, a task may be offloaded to different target processing places
including a mobile user’s serving MEC node, a nearby MEC node, or a node at a center cloud. Second,
different usage cost may be incurred when tasks are offloaded to different target processing places.
In terms of minimizing the cost of resource procurement, resource provisioning among different edge
clouds for mobile users should be considered carefully. Third, different types of tasks in an application
have their own unique requirement and property. Some types of tasks can only be well handled by
allocating more computing resources than other types. We need to carefully consider the amount of
resources allocated to different types of task. Fourth, the geographical locations of edge clouds are
varied, and mobile users may be dispersed and come into and leave system for service dynamically,
making it hard to collect all users’ information in real time. In this case, centralized optimization
strategies are uneasy to put into practice.

In this paper, we present a decentralized strategy based on an evolutionary game theory to
address the above challenges. The evolutionary game theory is a promising solution for analyzing
the dynamic behaviors of users under bounded-rationality, which has advantages over traditional
game theoretic approaches. Traditional game theoretic approaches to model the interaction between
players assume the complete rationality by maximizing their own payoffs. In addition, the solution
of one traditional game cannot reflect the dynamics of players in the process of strategy adaption.
Compared with classical game theory, evolutionary game theory considers a population instead
of individual players. All players in the evolutionary game competition are divided into several
populations. Players in the same population have the stationary proportion to adopt the same strategy
under the assumption of limited rationality. By jointly considering resource allocation for different
types of tasks and task offloading between different clouds, our decentralized strategy can obtain the
evolutionary equilibrium, not requiring full knowledge of MEC system information. In our strategy,
the cost of resource consumption in the MEC system is also minimized from the perspective of a
mobile application provider. The major contributions of this research can be summarized as follows.

• We jointly formulate the problem of task offloading and resource allocation for mobile users in the
MEC cloud platform as an evolutionary game, by taking account both resource procurement cost
and users’ QoS. The populations of mobile users are modeled as players in the evolutionary game.
The competition among players is to share the limited amount of resources in heterogeneous

Sensors 2019, 19, 740 3 of 23

edge clouds and central clouds. By utilizing the process of replicator dynamics [8], we model the
strategy adaption among different players.

• We design a decentralized strategy based on the evolutionary game theory to solve the problem
of task offloading and resource allocation, following constraints of resource limitation in edge
clouds and quality of experience (QoE) requirements of different tasks. Our strategy can ensure
stability and can achieve an evolutionary equilibrium. We prove the stability and fairness of our
strategy by mathematical analysis. The convergence rate is also analyzed in our work.

• We develop a discrete-event simulator based on OMNeT++ and conduct several trace-driven
experiments. We compare the performance of our proposed strategy with other alternative
methods and show that our method can not only satisfy the QoE requirement for players among
different populations, but can also minimize the resource procurement cost.

The remainder of this paper is organized as follows. Section 2 reviews related works. Section 3
presents our system model and problem formulation. In Section 4, we present the evolutionary game
formulation for task offloading problem. In Section 5, we design a decentralized strategy based on the
evolutionary game theory. The convergence and stability analysis of our strategy is also presented
in Section 5. In Section 6, we conduct several illustrative studies to evaluate the performance of our
strategy. Finally, we conclude this paper and discuss possible future work in Section 7.

4G/5G

Tablet
iPod iPhone

Smartphone

IP Network

4G/5G

Tablet
iPod iPhone

Smartphone

 Edge

Cloud
 Edge

Cloud

Central Cloud

VR Glasses
VR Glasses

Backhaul
Network

Backhaul
Network

User Terminal Equipments User Terminal Equipments

Interactive

Information

Interactive

Information

Interactive

Information

Interactive

Information

Figure 1. An overview of a mobile edge computing (MEC) system.

2. Related Work

In recently years, mobile applications, such as VR and AR, which can bring immersive experience
to users by utilizing mobile crowd sensing [9], have attracted great attention from academia and
industry. These mobile applications are changing different aspects of the world, such as online
education, online game, and so on. With the commercialization and popularization of 5G network [10],
mobile applications will have a higher quality network environment in the future. However, there are
still several challenges for these applications to provide high QoS with flexible mobility. One of the
vital challenges is that the computation capacity in mobile handsets will not grow effectively under
the limitation of battery life [11]. Also, the technical advancement of Central Processing Units (CPUs)
generally no longer follows the law of Moore [12]. Insufficient computing resources in a local mobile
terminal will become a more and more challenging for above applications.

Sensors 2019, 19, 740 4 of 23

MEC opens another technical way to augment the computation capacity of mobile handsets.
Previous researches such as [13,14] have done lots of works on the general task offloading and resource
allocation, without distinguishing different types of applications. Cho et al. [15] and Chen et al. [16]
focused on the task offloading for concrete applications, but these works have not considered that tasks
in one application have different types, such as foreground and background rendering [11,17] for face
recognition. These work also assumed that offloaded tasks share resources in a MEC cloud platform
without distinction. Different types of tasks in the same application may have different resource
requirements under delay constraint. It is not proper to allocate the same resources to perform different
types of tasks. Compared with previous researches, our work mainly focuses on the optimization
of one interactive application, considering task differences in the same application. To satisfy the
demands of different types of tasks, we dynamically allocate appropriate amount of resources from
the MEC cloud platform to mobile users.

Several teams proposed some optimizations in the MEC platform on the side of edge cloud,
central cloud, or mobile users. Chen et al [14] and Ma et al. [18] proposed task offloading methods
between one edge cloud and a central cloud. Plachy et al. [19] and Zhang et al. [20] proposed a task
offloading strategy for multi-users among multiple edge clouds in the MEC. These works ignored the
positive effect of the central cloud on edge clouds. Zhang et al. [21] proposed an auction-based service
provider selection, utilizing both multiple edge clouds among multi-users. Compared with Zhang
et al., Samimi et al. [22] proposed one similar task offloading strategy in cloud computing without
considering the edge. But, the shortage of these work is that the interaction between users in one
mobile application may happen among many individuals rather than just only two persons. Instant
information exchange between edge clouds and central clouds is required for mobile interaction.
Compared with these work, our work considers the cooperation of multiple edge clouds and a central
cloud in the real environment and proposes an integrated strategy by considering multiple edge clouds
to cooperate with a central cloud.

In terms of resource allocation and task offloading in a MEC system, different approaches have
been proposed recently. Hou et al. [23] and Xu et al. [24] proposed strategies based on Markov Decision
Process. But the state transition matrix in their proposed strategy sometimes could not be obtained
precisely by historical statistic. Wang et al. [25] proposed a centralized strategy based on s-t graph cut
to solve the maximum flow problem. This strategy should collect the whole system information to get
the optimization results, which is not applicable in the distributed MEC system. Urgaonkar et al. [26]
proposed a strategy based on Lyapunov theory, which focused on the optimization in the long-time
term. However, it is not a practical solution because in each time slot, the QoE of task offloading may
not be ensured. Aryal et al. [27] adopted the centralized genetic algorithm to address the NP-hard
problem about heterogeneous resource allocation in a MEC system. Kuang et al. [28] proposed an
agent-based framework to solve the problem of task offloading by one centralized heuristic strategy.
Different from the above researches, a decentralized method has been exploited for the optimization of
a MEC system. Gu et al. [29] proposed a decentralized task offloading strategy based on matching
theory without considering the central cloud in the MEC cloud platform. Zhang et al. [30] proposed
one coalition-game-based method to optimize the problem of task offloading. Players in this game
should cooperate together to get the optimal strategy. However, mobile users in the real world have
limited rationality. S. Jošilo et al. [31] and Xu et al. [14] proposed two similar game-based strategies
for task offloading to achieve Nash equilibrium among mobile users. Players in these two game
theoretic approaches aimed to maximize their own payoffs by considering other players’ behaviors.
But, the shortage of their work is that even when one player changes his/her strategy, all other players
should consider whether to change their strategies. It means that the Nash equilibrium [32] is unable
to withstand minor disturbances. Different from previous work, based on the evolutionary game
theory, our proposed method only need minimum information exchange from the MEC cloud platform,
which fits greatly in a decentralized manner. In addition, our strategy can obtain the evolutionary
equilibrium during the competition in the game, which can resist minor disturbances among players.

Sensors 2019, 19, 740 5 of 23

To sum up, our work differs from previous works in the following aspects: first, although there
are some existing studies about the optimization for task offloading in the MEC cloud platform,
these studies focused on task offloading without considering dynamic resource allocation between
different types of tasks. Instead, we optimize the problem of task offloading by jointly considering
appropriate resource allocation to each type of task in our strategy. Second, previous works
concentrated on the task offloading optimization independently among one edge cloud and a
central cloud or among multiple edge clouds. Instead, our work proposes an integrated solution
by considering multiple edge clouds to cooperate with a central cloud. Third, compared with other
approaches, our proposed method based on the evolutionary game theory only need minimum
information from a MEC cloud platform, which fits greatly in a decentralized manner. Our algorithm
can be proved by theoretical analysis, to be asymptotically stable and achieve to an evolutionary
equilibrium.

3. Modeling and Formulation

We consider a typical MEC paradigm with multiple edge clouds, as shown in Figure 1.
The paradigm, includes Mobile Users, Edge Cloud, a Central Cloud, and networks connecting them
together. The focus of our study is to provide an optimized solution to offload tasks to appropriate
Edge Clouds with appropriate VM assignment in the MEC platform. We will then introduce the service
utility model and cost model in details in this section.

3.1. System Model

Users and Tasks: Mobile users in different geographical locations may offload their diverse
types of tasks to edge clouds or central clouds on demand. Let U denote the set of all mobile users,
I = {1, 2, 3, ...I} be the set of region, and Ui be set of users in the ith region. Let J be the set of all
offloaded task type, J = {1, 2, 3..., J}. Let Ŵj be the average number of CPU cycles required to complete
a type-j task, similarly as literature [33] does. L̂j is denoted as the size of input and generated data in

the type-j task. Let Uj
i denote the set of users in the ith region, who need to perform the type-j task,

and uj
i be the number of users in the set Uj

i .
Edge Cloud: Edge clouds in the MEC cloud platform are spread over different regions.

Their service capacity are limited by their coverage area and resource. We denote the set of edge
clouds as E = {1, 2, 3..., E}. Let Ce and Be be the capacity of computation and bandwidth for the eth
edge cloud, respectively. In general, the MEC cloud platform fulfills an offloaded task via a set of
virtual machines (VMs) or execution containers (e.g., Docker). To simplify our study without losing
generality, we only consist using VMs. Let Q be the set of VM configuration types, Q = {1, 2, 3...Q}.
In the type-q VM configuration, the computation capacity is set as Aq and the bandwidth capacity is
set as Zq. The cost of resource procurement in different edge clouds are also different, and we set VM
rental cost of different types in different edge clouds as Ve = {v1

e , v2
e , ..., vQ

e }.
Central Cloud: Central clouds in the MEC cloud platform are also involved in task offloading

for mobile users. Let K = {1, 2, 3, .., K} be the set of central clouds in the MEC cloud platform.
Task offloading to a central cloud also incurs a cost of resource consumption similar to edge clouds.
Let Vk = {v1

k , v2
k , ..., ...vQ

k } be different types of VM rental cost in the kth central cloud. An interactive
task need the information of other users as input, and the central cloud can collect and synchronize
user status data with edge clouds. Hence, the central cloud undertakes a vital role in the interaction
between mobile users.

3.2. Service Utility Model

The delay for completing an offloaded task is a vital factor that greatly affects users’ QoS. The delay
is consisted of four parts: (1) The round-trip delay, which is incurred between users and their selected
clouds. This delay can vary greatly due to diverse locations of users. We denote di

e(r) as the round-trip

Sensors 2019, 19, 740 6 of 23

delay between the ith region and eth edge cloud, and di
k(r) as the round-trip delay between the ith

region and kth central cloud. (2) The processing delay, which is incurred by task execution in the VM
with type-q configuration. Let dj

i(p, q) be the processing delay for a task belonging to Uj
i offloaded to

a VM with type-q configuration. (3) The transmission delay, which is incurred by data transmission
between users and their selected clouds. The input data and generated data need to be transferred
between client and server side, in which incurs the transmission delay. Let dj

i(l, q) be the transmission
delay for the task offloaded to a VM with type-q configuration. (4) The status synchronization delay.
Considering user interaction, mobile users should synchronous status information when offloading
tasks to edge clouds. Let do be the sync delay.

To sum up, when a task belonging to Uj
i is offloaded to a VM with type-q configuration in the eth

edge cloud, the total delay to finish this task is as below:

dj
i(e, q) = do + dj

i(p, q) + di
e(r) + dj

i(l, q) (1)

Similarly, when this task is offloaded to a VM of type-q configuration in the kth central cloud,
the total delay is as below:

dj
i(k, q) = dj

i(p, q) + dj
i(l, q) + di

k(r) (2)

According to the work [17], the task processing delay is not only related to allocated computation
resource for the task, but also the load on the serving edge cloud or central cloud. When a task
belonging to Uj

i is offloaded to the eth edge cloud, the processing delay can be expressed as follows:

dj
i(p, q) =

r

hAq−Ŵj
dp (3)

where dp is the task processing latency when the selected cloud is fully loaded, h represents the
relationship between task computation demand and VM configuration, and r denote the current load
in the selected cloud.

The transmission delay is related to the assignment of VM configuration, which can be computed
as below:

dj
i(l, q) =

L̂j

Zq
(4)

3.3. Cost Model

From the perspective of mobile-service providers, the cost of completing an offloaded task varies
greatly. The reasons are as follows: First, the unit cost of resource procurement in different edge clouds
and central clouds are diverse. Second, different types of tasks are not assigned to the same type of
VM configuration. The total costs of maintaining the mobile service for all users are consisted of two
parts: VM rental cost in edge clouds and in central clouds. The total operational costs incurred in the
eth edge cloud are as follows:

coste =
I

∑
i=1

J

∑
j=1

Q

∑
q=1

nj
i(e, q)vq

e uj
i (5)

where nj
i(e, q) indicates the radio of users belonging to Uj

i that are routed to the VM with type-q
configuration in the eth edge cloud.

Sensors 2019, 19, 740 7 of 23

Similarly, the total operational costs incurred in the kth central cloud are described as follows:

costk =
I

∑
i=1

J

∑
j=1

Q

∑
q=1

nj
i(k, q)vq

kuj
i (6)

where nj
i(k, q) indicates the radio of users in the set Uj

i and all these users have been routed to the VM
with type-q configuration in the kth central cloud.

Therefore, the total operational costs for the mobile service provider are as follows:

costa =
K

∑
k=1

costk +
E

∑
e=1

coste (7)

Without considering cost saving and resource limitation, the optimal strategy for offloaded tasks
is obvious: each nearby edge cloud is selected by mobile users to assign the highest-configuration
VM to serve tasks. However, the resource constraint in each edge cloud may limit the number of
tasks to get response timely from the same edge cloud. An edge cloud may become overloaded when
over-demanded tasks are offloaded to it, resulting in high task-processing delay. In addition, assigning
all types of tasks to the same high configuration VM is not necessary and over-provisioning. Actually,
an appropriate type configured VM is sufficient to ensure the delay requirement of a task. In our
work, when offloading tasks between different clouds, we also consider assigning appropriate VM
configuration to each type of task.

3.4. Joint Optimization Problem

Figure 2 depicts the problem of task offloading to different clouds and VM configuration
assignment for different types of task, while jointly considering the delay constraint and resource
procurement cost. The joint optimization problem is formulated as below:

P1. min
K

∑
k=1

costk +
E

∑
e=1

coste (8)

subject to:

K

∑
k=1

Q

∑
q=1

nj
i(k, q) +

E

∑
e=1

Q

∑
q=1

nj
i(e, q) = 1 (9)

0 ≤ nj
i(e, q) ≤ 1, ∀i ∈ I, ∀j ∈ J, ∀e ∈ E, ∀q ∈ Q (10)

0 ≤ nj
i(k, q) ≤ 1, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀q ∈ Q (11)

dj
i(e, q) ≤ ξ, dj

i(k, q) ≤ ξ (12)
I

∑
i=1

J

∑
j=1

Q

∑
q=1

nj
i(e, q)uj

i Aq ≤ Ce, ∀e ∈ E (13)

I

∑
i=1

J

∑
j=1

Q

∑
q=1

nj
i(e, q)uj

i Zq ≤ Be, ∀e ∈ E (14)

where constraint (9) indicates that, each user belonging to Uj
i should offload his/her task to an edge

cloud or a central cloud, and VM with one configuration must be assigned to undertake the task
process. The constraint (10) is similar with the constraint (11), which describes that the radio of users
should be positive, no matter which clouds they choose to offload. The constraints (12) guarantees
the delay requirement of tasks offloaded into edge clouds and central clouds. ξ is denoted as the
maximum tolerant delay of tasks. To simplify the problem complexity, we only consider the same

Sensors 2019, 19, 740 8 of 23

maximum delay tolerance for all types of tasks. The constraints (13) and (14) specify that the total
amount of resources that users require from each edge cloud should not exceed the capacity of each
edge cloud, including the computation resource and bandwidth resource.

VM VMVMVM

Operating System

Configuration

small

Configuration

large

Configuration

medium

Configuration

xlarge

Edge Cloud

Edge Cloud

Central Cloud

User Region

Figure 2. Task offloading and resource allocation in the MEC cloud platform.

To derive the problem P1 with the above constraints, we can design a centralized strategy by
applying the dual decomposition [34] to transform the above constrained problem to an equivalent,
unconstrained Lagrangian. However, the dual decomposition converges slowly owing to its huge
variable space, and should collect the information of all users. Furthermore, due to the heterogeneity
and dynamics join and leave behaviors of mobile users, this centralized optimization strategy based
on all user information is inefficient and impractical. In the next section, we develop a decentralized
approach based on evolutionary game theory to solve the problem of dynamic task offloading and
resource provisioning.

4. Evolutionary Game Theoretic Strategy

In this section, we first give the evolutionary game formulation for the problem of task offloading
and VM configuration assignment in the MEC cloud platform. Due to the limitation of computation
resource and bandwidth resource in each edge cloud, mobile users in different regions should compete
for resources in clouds. Based on the replicator dynamics, we design an evolutionary stable strategy
(ESS) to adapt strategies among users. The stability and equilibrium of our strategy is analyzed.

4.1. Evolutionary Game Formulation

A normal game includes three factors: the player set, the strategy set, and the payoff function
of every player when choosing a strategy. In the context of an evolutionary game, the population is
utilized to represent the group of players with the same properties. We introduce the formulation of
the evolutionary game as below:

Set of Players: Mobile users in diverse geographical locations are denoted as players in the game.

Sensors 2019, 19, 740 9 of 23

Set of Strategies: An individual should offload his/her task to an edge cloud or a central cloud
with an assignment of VM configuration. The combination set of cloud selection and VM configuration
assignment is defined as the strategy space for players. If a central cloud is chosen, we treat it as a
special edge cloud with a great amount of resources. Accordingly, let S be the action set for all players.
The number of strategies that each player can choose is (E + K)Q in total. Hence, we can simply
represent a strategy s as {s = (e, q)|e ∈ E, q ∈ Q} or {s = (k, q)|k ∈ K, q ∈ Q}.

Populations: Players are grouped into different populations by task types and geographical
locations. We denote the set of population as {U1

1,U2
1,U2

2, ...,UJ
I}. Players in each population are all

located in the same geographical region. All players in the same population have the same type of
task for offloading. We denote uj

i(s) as the number of players selecting strategy s for the population Uj
i .

The population share of adopting strategy s in the population Uj
i is given as:

nj
i(s) =

uj
i(s)

uj
i

, (15)

Payoff: The utility of a player in this game is mainly decided by task processing time and
resource procurement cost. The cloud selection and VM configuration assignment would both affect
the completion process of offloaded tasks.

When a task is offloaded into an edge cloud, the workload of the edge cloud is given:

re =
∑I

i=1 ∑J
j=1 ∑Q

q=1 nj
i(e, q)(uj

i Aq)

Ce
(16)

Then, we can give the QoE gain of users, which can reflect the delay of completing a task belonging
to Uj

i(e, q) as below. In this QoE expression, players can obtain a higher value, when the delay of
completing a task is smaller.

QoEj
i (e, q) = ξ − (do +

re

hAq−Ŵj
de + di

e(r) + dj
i(l, q)) (17)

In the utility function of a player, a player is set to receive a penalty for the VM rental cost,
by considering the problem of resource over-provisioning. Furthermore, to show the importance of
scarce resources in edge clouds, the penalty function shown below is defined to follow the idea that a
thing is valued more if it is rare.

Penj
i(e, q) = revq

e (18)

The expected utility of a player offloading his/her task to an edge cloud is denoted as the QoE
gain minus the cost penalty as below:

π
j
i (e, q) = γ1QoEj

i (e, q)− γ2Penj
i(e, q), (19)

where γ1 and γ2 are the weight between QoE gain of users and penalty for costs.
When a task is offloaded to a central cloud, the workload of the central cloud is assumed to be

unchanged, due to the large scale of resource in central clouds. Therefore, the workload in each central
cloud is set to be close to a constant δ as below:

rk = δ (20)

Sensors 2019, 19, 740 10 of 23

The QoE gain of a task offloaded into the kth central cloud is similar to that into the edge cloud:

QoEj
i (k, q) = ξ − (

rk

hAq−Ŵj
dk + di

k(r) + dj
i(l, q)) (21)

The penalty of a task offloaded into a central cloud is:

Penj
i(k, q) = vq

k (22)

The utility of a player offloading his/her task to a central cloud is:

π
j
i (k, q) = γ1QoEj

i (k, q)− γ2Penj
i(k, q) (23)

4.2. Evolutionary Stable Strategy

In a traditional game theory, all players can achieve a stable state where no player can further
obtain extra benefit by unilaterally changing its strategy. Such a state is called Nash equilibrium.
In the next equation, we call the game Γ as the game of cloud selection and VM configuration
assignment, U as the player set, S as the strategy set of all players, and Π as the set of payoff function.
Let s−u = {s1, ..., su−1, su+1, ...sU} be a strategy profile of all players except player u, and π(s−u, su) is
set to be the payoff function of player u when this player selects the strategy su while others select s−u.
Then, we give the precise definition of Nash equilibrium as below.

Definition 1. A Nash equilibrium (NE) of the resource allocation game Γ =< U,S, Π > is a strategy profile
S∗ = {s∗1 , s∗2 , ..., s∗U} such that π(s∗−u, su) ≤ π(s∗−u, s∗u), ∀su ∈ S.

The Nash equilibrium has a property of self-reinforcement that each player has no motivation to
deviate from this equilibrium. The general solution to obtain the Nash equilibrium is on the assumption
of complete rationality among all players. However, with a small perturbation, all players may change
their strategies to reach another Nash equilibrium. In an evolutionary game theory, an equilibrium
strategy is adopted among players with bounded rationality, which can resist small disturbances.
This equilibrium strategy is called ESS and is defined as below.

Definition 2. A strategy profile S∗ = {s∗1 , s∗2 , ..., s∗U} is an ESS if and only if, ∀su /∈ S∗ and s−u 6= s∗−u:

1. π(s∗−u, su) ≤ π(s∗−u, s∗u).
2. if π(s∗−u, su) = π(s∗−u, s∗u), π(s−u, su) < π(s−u, s∗u).

Compared with Nash equilibrium, the condition (1) of Definition 2 ensures that ESS is a Nash
equilibrium (NE). The condition (2) of Definition 2 ensures the stability of the game process. During the
process of strategy evolution, players using mutation strategy will decrease until all players in the
population asymptotically approach to the ESS.

In our problem, mobile users adapt their strategies among a finite set of strategies to get a better
payoff. In each time, each mobile user can have his/her own strategy set and the information of
average payoff in the same population. Each mobile user can repeatedly evolve his/her strategy
over time for the cloud selection and VM configuration assignment. After sufficient repetitive stages,
all mobile users’ strategy profile approaches to an ESS. The process of this strategy replication can be
modeled by replicator dynamics, which is described in the next section.

4.3. Replicator Dynamics

In a dynamic evolutionary game, an individual in a population would adapt his/her strategy by
comparing his/her payoff with average payoff in the same population. The individual would adapt to

Sensors 2019, 19, 740 11 of 23

another strategy that if his/her payoff is lower than the average payoff. Then, the population share
that adopts different strategies will evolve over time until each player in the same population achieves
the same payoff. The process of strategy selection for different populations can be modeled as ordinary
differential equations, called replicator dynamics. It is given as below:

ṅj
i(s) = σnj

i(s)(π
j
i (s)− π(i, j)) (24)

where σ is used to control the convergence speed of strategy adaption for players in the same
population. π(i, j) is the average payoff in the population of Uj

i , which can be computed from

π(i, j) = ∑S
s=1 nj

i(s)π
j
i (s).

Based on the replicator dynamics of strategy selection in the population Uj
i , the number of mobile

users that choose the strategy s has a positive growth trend in the population if their payoff is above
the average payoff in the same population. Through setting ṅj

i(s) = 0, we can get the fixed point of the
replicator dynamics, in which the population state will not change and no player is willing to change
its strategy since all players in the same population have the same payoff. The expression in (24) can
be transformed as below:

ṅj
i(s) = σnj

i(s)(π
j
i (s)−

S

∑
s=1

nj
i(s)π

j
i (s)) = 0 (25)

According to Definition 1, we can prove that all solutions to the above algebraic equations
belong to the Nash equilibrium. In some literature such as Ref. [35], they are also called evolutionary
equilibrium for the evolutionary game. The number of solutions to (25) can be proved to be at least
one above. We show this in the following remark.

Remark 1. The evolutionary game of cloud selection and VM configuration assignment has at least one
evolutionary equilibrium.

Proof. When all mobile users in the same population choose the same cloud, nj
i(x) ∈ {0, 1}, ∀x ∈ S.

And, nj
i(x) can be proved to satisfy Expression (25). In this situation, we name this type of solution to

Equation (25) as bounded evolutionary equilibrium.
When nj

i(x) ∈ (0, 1), ∃x ∈ S, we can simplify Expression (25) as π
j
i (s) − ∑S

s=1 nj
i(s)π

j
i (s) = 0.

Due to ∑S
s=1 nj

i(s) = 1, we can obtain that ∑S
s∗=1 nj

i(s
∗)(π

j
i (s)− π

j
i (s
∗)) = 0, ∀s ∈ S. If there exists

one solution that can satisfy π
j
i (s)− π

j
i (s
∗) = 0, ∀s ∈ S, we can deduce that this solution is one of

evolutionary equilibrium, which is equivalent to the solution of Equation (26). We call this solution as
interior evolutionary equilibrium.

π
j
i (s)− π

j
i (s
∗) = 0

∀s ∈ S
∑S

s=1 nj
i(s) = 1

(26)

We can prove that there exists one solution to (26). π
j
i (s) = γ1QoEj

i (s)− γ2Penj
i(s) is related to

the load of an edge cloud. When the number of mobile users is large, π
j
i (s) would decrease a lot if

mobile users offload huge amount of tasks to the same edge cloud beyond its computation capacity.
Mobile users can get better payoff if they choose another edge cloud. nj

i(x) can be balanced during
the strategy adaption in the evolutionary game. In summary, we can find at least one evolutionary
equilibrium for the evolutionary game of cloud selection and VM configuration assignment.

Through analyzing the algebraic Equation (25), we can obtain two types of evolutionary
equilibrium, namely, bounded evolutionary equilibrium and interior evolutionary equilibrium.

Sensors 2019, 19, 740 12 of 23

According to Definition 2, the ESS can be obtained by solving the asymptotically stable equilibrium of
the replicator dynamics. The bounded evolutionary equilibrium, which does not satisfy condition (2) of
the ESS definition, cannot resist the invasion of small perturbation to the equilibrium state. The interior
evolutionary equilibrium has the property of stability in the evolutionary game. We show this
conclusion in the following theorem.

Theorem 1. For the cloud selection and VM configuration assignment, the interior evolutionary equilibrium in
our game is asymptotically stable.

Proof. We denote an interior evolutionary equilibrium by n̂(i, j) = {n̂j
i(1), n̂j

i(2), ...n̂j
i(S)}. Define the

tracking error function ej
i(s) = n̂j

i(s)− nj
i(s), and the Lyapunov function of the above system is defined

as V j
i (s) =

(ej
i (s))

2

2 . We can get V j
i (s) ≥ 0 all the time.

The time derivative of V j
i (s) is presented as below:

V j
i(s) =

∂((ej
i(s))

2/2)
∂t

= ej
i(s)

∂(ej
i(s))
∂t

= −ej
i(s)

∂(nj
i(s))
∂t

=−σ(n̂j
i(s)− nj

i(s))n
j
i(s)(π

j
i (s)− π(i, j))

=−σ(n̂j
i(s)− nj

i(s))n
j
i(s)(π

j
i (s)−

S

∑
s=1

nj
i(s)π

j
i (s)) (27)

When the utility function π
j
i (s) > π(i, j), the population of players Uj

i that adopts the strategy

s is in a number of growth stage. Due to nj
i(s) 6= 0, nj

i(s) will increase according to expressions (24)

and (25), which means that nj
i(s) < n̂j

i(s). So, we can prove that the time derivative of V j
i (s) is

negative. Based on the Lyapunov stability theory [36], the dynamic strategy selection of mobile users is
asymptotically stable. Therefore, the replicator dynamics of mobile users choosing different strategies
will converge to the interior evolutionary equilibrium, which belongs to an ESS.

4.4. Delay in Replicator Dynamics

In the previous description of replicator dynamics, each mobile user decides on cloud selection and
VM configuration assignment based on average payoff in the same population. In fact, each mobile user
may not get the average payoff instantly. The delay may be incurred by mobile network transmission
latency. Under this situation, players in the evolutionary game could only utilize the historical
information to make the optimal decisions. In this case, we assume that the delay of information
updating in the evolutionary game is set to be τ. The delayed replicator dynamics can be modified
as below:

ṅs
i,j(t) = σns

i,j(t− τ)(πs
i,j(t− τ)− πi,j(t− τ)), (28)

where a mobile user makes decisions at the time slot t, based on the historical information at the time
slot t− τ. To investigate the impact of delay in the replicator dynamics, we also analyze and prove the
convergence of delayed replicator dynamics by using the Lyapunov method [37] as below.

Theorem 2. The convergence of delayed replicator dynamics can be guaranteed in the evolutionary game of task
offloading by dynamic cloud selection and VM configuration assignment.

Proof. Similar with the proof processing of theorem (1), we set one Lyapunov function Vs
i,j(t) =

(es
i,j(t))

2

2 ,
where es

i,j(t) = n̂s
i,j(t)− ns

i,j(t).

Sensors 2019, 19, 740 13 of 23

The time derivative of Vs
i,j(t) is presented as below:

Vs
i,j(t) =

∂((es
i,j(t))

2/2)

∂t
= −es

i,j(t)
∂(ns

i,j(t))

∂t
=−σ(n̂j

i(s)−nj
i(s))n

s
i,j(t−τ)(πs

i,j(t− τ)− πi,j(t− τ)) (29)

When the payoff is less than the average payoff meaning that πs
i,j(t − τ) − πi,j(t − τ) < 0 in

the time slot t − τ, the number of players adopting the strategy s will decrease at the time slot t.
So, the time derivative of Vs

i,j(t) is negative. Based on the Lyapunov method, we can conclude that the
delayed replicator dynamics would finally converge to the interior evolutionary equilibrium.

We also explore the impact of delay on the stability of delayed replicator dynamics by conducting
simulations in Section 6, to confirm the robustness of our theory.

5. Iterative Algorithm Design and Analysis

In this section, we show the implementation of an iterative algorithm based on the replicator
dynamics to help task offloading for mobile users by dynamic cloud selection and flexible VM
configuration assignment. The performance of our algorithm is also analyzed in this section.

5.1. Online Algorithm Implement

In our iterative algorithm implement, most mobile users select their optimal strategies at the
initial stage. A few mobile users randomly choose their strategies. The MEC cloud platform would
calculate the average payoff in each population and send the information of the load in the MEC
cloud platform and average payoff in each population back to mobile users. Then, mobile users can
decision in their own terminals about task offloading by utilizing this information to get a higher
payoff. After many iterations, mobile users would dynamically adapt their strategies iteratively until
their payoff are close to the average payoff in the same population.

At each iteration, the strategy adaption processing can be described as one iterative replicator:

ns
i,j(t)=ns

i,j(t−τ)+σns
i,j(t−τ)(πs

i,j(t− τ)− πi,j(t− τ)), (30)

where σ is used to control the iterative step size. The iteration’s terminating criterion is set as follows:

∣∣∣πs
i,j(t)− πi,j(t)

∣∣∣ < ε, (31)

where ε is a small positive parameter, and τ is the delay of information update during the strategy
adaption in our game. The detail of the iterative algorithm is summarized in the Algorithm 1, which is
named as IASVA for short.

Algorithm 1 Iterative Algorithm on Cloud Selection and VM Configuration Assignment (IASVA)

1: Initialization: For most mobile users, task offloading strategies are selected to maximize their own
utility; Several mobile users select strategies by random.

2:
3: while the condition (31) is not satisfied do
4:
5: Each mobile user offloads his/her task to an assigned VM in the selected edge cloud. Then,

the edge cloud collect the payoff information of each mobile user πs
i,j(t) to the central cloud.

6:
7: The central cloud compute the average payoff π(i, j), and send back to each edge cloud.
8:
9: Mobile users change their strategies with probability σ, when their payoff is less than the

average payoff in the same population.
10:
11: Update t = t + τ.
12:
13: end while

Sensors 2019, 19, 740 14 of 23

5.2. Performance Analysis

From the perspective of the mobile service provider, the objective is to cost-effectively allocate
limited resources to mobile users, while considering fairness and utility gain among mobile users.
We analyze the performance of our strategy on the side of utility gain, time efficiency, and fairness.

We will show that our iterative strategy can obtain the Pareto-optimal utility gain when our
strategy has only one ESS. For different strategies of task offloading, the Pareto-optimal strategy
profile [38] has the following feature:

Definition 3. A strategy profile X = {x1, x2, ...xU} is Pareto-optimal if there does not exist any strategy
profile X ′ = {x′1, x′2, ...x′U} such that πu(x′u) ≥ πu(xu), ∀u ∈ U, with at least one strict inequality.

We will analyze and prove this property by using the method of contradiction as below.

Theorem 3. Our iterative strategy of task offloading for mobile users in the MEC platform is Pareto-optimal
when converging to the ESS that bring the maximal social welfare among all the ESSes, and is local Pareto-optimal
when converging to another ESS.

Proof. When our evolutionary game has only one ESS, this strategy is Pareto-optimal. We show this
by contradiction. Assume this sole evolutionary strategy X is not Pareto-optimal. Then, there exists
a Pareto-optimal allocation X′ such that πu(x′u) ≥ πu(xu), ∀u ∈ U. According to the definition of
ESS, the small disturbance of strategy adaption would not change the dominant strategy of users.
So, πu(x′u) ≥ πu(xu), ∀u ∈ U cannot occur in the evolutionary game. Thus, the sole ESS in our
evolutionary game is Pareto-optimal.

If a system has multiple evolutionary stable strategies, the strategy that can generate the greatest
utility, has the property of Pareto-optimal. We can prove that this strategy reach the strong Nash
equilibrium, which is both Pareto optimum and Nash equilibrium of the stage game according to
Ref. [39]. Other evolutionary stable strategies have the property of local Pareto-optimal, which achieves
the Pareto-optimal within the range of the ESS.

Considering the property of time efficiency, our proposed iterative algorithm IASVA can be
deployed efficiently in the real distributed environment. At each iteration, the time complexity of our
distributed algorithm focuses on step 3 and step 4, which can be completed in a small constant time.
The iteration number of our algorithm is related to the parameter σ and initial state. It can roughly be

estimated as
∣∣∣∣ ns

i,j(0)−n̂s
i,j

σ

∣∣∣∣, where ns
i,j(0) is the initial stage of mobile users selecting different strategies

and n̂s
i,j is the stable evolutionary equilibrium of mobile users. To evaluate the performance of our

algorithm, we analyze the convergence speed of our iterative strategy in detail as below.
First, we denote an interior evolutionary equilibrium by n̂s

i,j = {n̂
1
i,j, n̂2

i,j, ...n̂s
i,j}. We construct a

gap function Gs
i,j = (ns

i,j − n̂s
i,j)u

j
i , n̂s

i,j 6= 0 between the number of current mobile users and the stable
fixed point that decide the strategy s.

Let Es
i,j(t) denote the number of mobile users in the population Uj

i to change their strategies at
time t, and we have

Es
i,j(t) = δns

i,j(t− τ)uj
i , Gs

i,j(t− τ) > 0 (32)

where δ is denoted as the mutation probability.
In the case of Gs

i,j(t− τ) > 0, at time t, we can get that Gs
i,j(t) = Xs

i,j(t)− n̂s
i,ju

j
i , where Xs

i,j(t) is

the current number of user in the population Uj
i adopting strategy s. Xs

i,j(t) satisfies that Xs
i,j(t) =

Xs
i,j(t− τ)− Es

i,j(t).
To evaluate the convergence speed of our iterative algorithm, we define one expression as below:

Sensors 2019, 19, 740 15 of 23

β = |
Gs

i,j(t)

Gs
i,j(t− τ)

| = |
Xs

i,j(t− τ)− δns
i,j(t− τ)uj

i − n̂s
i,ju

j
i

Xs
i,j(t− τ)− n̂s

i,ju
j
i

| (33)

According to the rate of convergence [40], 0 < β < 1 can be utilized to prove that our algorithm
is linearly convergent to the interior evolutionary equilibrium. So, our iterative algorithm would be
linearly convergent to the interior evolutionary equilibrium if we select one mutation probability small
enough that satisfies the above inequality.

6. Illustrative Studies

To evaluate the performance of our iterative algorithm, we develop a discrete-event simulator
based on the OMNeT++ [41] to simulate the environment of MEC cloud platform and behaviors of
mobile users. We conduct a set of experiments on the customized simulator to show the advantages of
our strategy over other alternative strategies.

6.1. Experiment Setting

In the simulator, the MEC cloud platform has a central cloud and multiple edge clouds. Similar to
Ref. [42], the MEC platform is deployed in a network environment with hexagonal cellular structures.
In the simulated MEC platform, we assume that there are three base stations (eNodeB), which are
distributed evenly in a square area with dimensions of 3 km × 3 km. We partition the area into three
regions of the same size. Each region is well covered by one eNodeB. An edge cloud is deployed in
each region close to one eNodeB. According to the LTE-Advanced network [43], we set the channel
band to be 20 MHz. The transmission power of each eNodeB is set to be 50 dBm, so every eNodeB can
cover each region of mobile users even considering the pass loss factor. The background noise is set to
be −100 dBm [33] for each mobile user. Each Mobile user in one region can share up to 100 Million
bits per second (Mbps) for the down-link channel bandwidth, and up to 50 Mbps for the up-link
channel bandwidth.

Round-trip delay between a user in one region and an edge cloud is a function of the distance
between them. We set a round-trip delay between a mobile user and an edge cloud to be in the
range of [10 ms, 20 ms] at the same region, to be in the range of [100 ms, 200 ms] at different
regions. The round-trip delay between mobile users and the central cloud is set to be in the range of
[200 ms, 500 ms]. The computation resources in each edge cloud can be described as the number of
CPU cycle [14,33]. We set the CPU computation capacity of each edge cloud to be one from the set
{2× 102 GHz, 2.5× 102 GHz, 3× 102 GHz}, and the CPU computation capacity of the central cloud
is set to be 3× 104 GHz [44]. We assume that each cloud has three types of VM configurations for
handling offloaded tasks. The computing capacity for each VM configuration is assumed to be one
from the set {1 GHz, 2 GHz, 3 GHz}. The bandwidth configuration of VM is assumed to be from the
set {2 Mbps, 4 Mbps, 8 Mbps}. The unit VM rental cost of different configurations in each edge cloud
and central cloud is assumed to in the range of (0, 1) dollar per hour.

Mobile users in our experiments may generate different types of tasks dynamically. All tasks are
grouped into three types, which is set to consume the number of CPU cycle in the set {10 Megacycles,
20 Megacycles, 30 Megacycles}. Each task can be completed satisfactorily if a right corresponding
configured VM is assigned for it. The generated data from these three types of tasks are consumed to
be in the set {200 KB, 400 KB, 800 KB} [33].

6.2. Methodology

We also simulate some other alternative strategies to verify the superior of our proposed strategy
in terms of QoE performance and cost saving. One optimal centralized method with delay constraint
is introduced for comparison, which is also shown in the formulation of problem P1. The optimal
centralized method considers solving the constrained problem P1 based on the dual decomposition,

Sensors 2019, 19, 740 16 of 23

which is named as Central in our comparison. Two greedy methods, namely Cost-Only and Delay-Only,
are also used to evaluate the performance boundary of our strategy. The Cost-Only method is aimed at
saving the overall operational costs for the mobile service provider where his or her tasks are offloaded
to an edge cloud with lowest operational costs. The Delay-Only method considers improving the
QoE of a mobile user with no upper-bound budget where tasks are offloaded to a cloud that can
process tasks the fastest. To enhance the evaluation of our strategy, we also introduce one decentralized
method [33] based on Nash equilibrium, called Nash-based, which treats tasks equally without
considering dynamically allocating computation resources to different types.

6.3. Experiment Results and Analysis

6.3.1. Performance Comparison

We evaluate the performance by comparing the operational cost and task completion time
obtained from our strategy with those from other alternatives vs. the number of offloaded task.

Figure 3 shows the cumulative operational costs of five strategies. We observe that the cumulative
costs incurred by our strategy IASVA are lower than Cost-Only and Central strategy. The operational
costs incurred by the Nash-based strategy is higher than that incurred by our strategy. This is because
our strategy can dynamically allocate resources to different types of tasks under the delay constraint.
The Nash-based strategy sometimes would lead to the problem of resource over-provisioning for tasks.
The gap between the overall cost of our strategy and that of the optimal solution is also presented in
Figure 3. The optimal strategy is a centralized strategy, which need collect the whole information of
all mobile users. Although the optimal strategy can save more operational costs, our decentralized
strategy can be more suitable to the practical environment.

0 2000 4000 6000 8000 10000 12000

Offloading Task Number

0

0.01

0.02

0.03

0.04

0.05

0.06

C
u

m
u

la
ti
v
e
 O

p
e
ra

ti
o

n
a
l
C

o
s
ts

 (
$
)

IASVA

Delay-Only

Cost-Only

Central

Nash-based

Figure 3. Cumulative operational costs of five strategies.

Figure 4 shows the cumulative distribution function (CDF) of task-completion time of different
strategies. From this figure we can observe that, in most cases, the task-completion time incurred by
our strategy is close to that incurred by the Central strategy. The Nash-based strategy would achieve
higher task completion time than that incurred by our strategy. This is because our strategy would
allocate higher configuration VM to tasks, when task processing time affect the user’s QoS. The central
strategy can obviously obtain the lower task processing time than ours. However, in the practical
environment, collecting all information of users in the central strategy would incur additional delay,
which would aggressively affect user’s QoS.

Sensors 2019, 19, 740 17 of 23

0 30 60 90 120 150 180 210 240 270 300

Task Completion Time (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
IASVA

Delay-Only

Cost-Only

Central

Nash-based

Figure 4. Task-completion time of four strategies.

6.3.2. Fairness Evaluation

To show the fairness, we also compare the user utility among different regions. Figure 5 depicts
the cumulative user utility in different regions when our strategy is used. We can observe that the
cumulative utility obtained from these three regions are close to each other, clearly confirming that our
decentralized strategy can maintain fairness among users of different regions.

0 20 40 60 80 100 120

Simulation Time (s)

0

1

2

3

4

5

6

7

8

9

10

N
o
rm

a
liz

e
d

 C
u

m
u
la

ti
v
e

 U
s
e
r

U
ti
lit

y

103

region1

region2

region3

Figure 5. Cumulative user utility in different regions.

6.3.3. Stability of Our Proposed Strategy

Figure 6 shows the adaption of cloud selection radio among mobile users in the same region
along with iterative number. Figure 6a–c presents the cloud selection radio among mobile users who
offload three different types of tasks, separately. We can observe that the proportion of cloud selection
between edge clouds and the central cloud gradually converge in the three sub-figure, respectively.
The adaption of cloud selection among mobile users in the same region can show the stability of
our strategy.

Sensors 2019, 19, 740 18 of 23

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EdgeCloud1

EdgeCloud2

EdgeCloud3

Central Cloud

(a) The First Type of Task

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EdgeCloud1

EdgeCloud2

EdgeCloud3

Central Cloud

(b) The Second Type of Task

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EdgeCloud1

EdgeCloud2

EdgeCloud3

Central Cloud

(c) The Third Type of Task

Figure 6. Dynamic Cloud Selection for Mobile Users in the Same Region.

Figure 7 shows the trajectories of three types of task completion time in the same region.
The change trend of average completion time for the same type of task in Figure 7 is also shown.
In Figure 7a, mobile users, who all upload the first type of tasks, would eventually experience the
stable task completion time, just as the same with Figure 7b,c.

0 20 40 60 80 100 120 140 160 180 200

Simulation time (s)

0

50

100

150

200

250

300

350

T
a

s
k
 C

o
m

p
le

ti
o

n
 T

im
e

 (
m

s
)

trajectory

average

(a) The first type of task

0 20 40 60 80 100 120 140 160 180 200

Simulation time (s)

0

50

100

150

200

250

300

350

T
a

s
k
 C

o
m

p
le

ti
o

n
 T

im
e

 (
m

s
)

trajectory
average

(b) The second type of task

Figure 7. Cont.

Sensors 2019, 19, 740 19 of 23

0 20 40 60 80 100 120 140 160 180 200

Simulation time (s)

0

50

100

150

200

250

T
a

s
k
 C

o
m

p
le

ti
o

n
 T

im
e

 (
m

s
)

trajectory

average

(c) The third type of task

Figure 7. Different types of task completion time in the same region.

To sum up, we can observe that the system converges to the asymptotically stable status after
several simulation time.

6.3.4. Adaptiveness of Our Proposed Strategy

To evaluate the adaptability of our algorithm to the dynamics of a practical environment,
we conduct experiments to show the process of strategy evolution for relative sufficiently operation
time: (1) the load in different edge clouds and the central cloud; (2) dynamic VM Assignments for
different types of tasks in the same region. Figure 8 describes the change of load in the edge clouds and
the central cloud. In our iterative strategy, three edge clouds finally get the same load. The load in edge
clouds is related to the division between allocated computation resources and edge cloud’s processing
capacity. Our iterative algorithm can dynamically allocate computation resources to different types of
tasks. When the load in an edge cloud is high, mobile users would apply lower computation resources
in this edge cloud to perform his/her offloading tasks or select other clouds for task offloading so
that the load can be controlled. So, our strategy can adaptively decide the number of offloading tasks
and resource allocation according to the computation capacity of edge clouds. Figure 9 shows the
dynamic VM Assignments for different types of tasks in the same region. Based on the simulation
results, our strategy can help a mobile user to adaptively decide VM assignment when the load of
edge cloud is high. As a result, the loads of edge clouds decrease and the idle resources in the central
cloud are utilized as well by the joint optimization of cloud selection and VM assignment.

0 20 40 60 80 100 120

Simulation time (s)

0

1

2

3

4

5

6

7

N
o

rm
a

liz
e

d
 C

lo
u

d
 L

o
a

d edge1

edge2

edge3

(a) The load of edge clouds

0 20 40 60 80 100 120

Simulation time (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

N
o

rm
a

liz
e

d
 C

lo
u

d
 L

o
a

d

Central Cloud

(b) The load of central cloud

Figure 8. The normalized load of clouds along with simulation time.

Sensors 2019, 19, 740 20 of 23

0 20 40 60 80 100 120

Simulation time (min)

VM1

VM2

VM3

S
tr

a
te

g
y
 S

e
le

c
ti
o
n

strategy11

(a) The first type of task

0 20 40 60 80 100 120

Simulation time (min)

VM1

VM2

VM3

S
tr

a
te

g
y
 S

e
le

c
ti
o
n

strategy12

(b) The second type of task

0 20 40 60 80 100 120

Simulation time (min)

VM1

VM2

VM3

S
tr

a
te

g
y
 S

e
le

c
ti
o
n

strategy13

(c) The third type of task

Figure 9. Dynamic VM Assignment for Different Types of Task in the Same Region.

6.3.5. Impact of Delay in Information Exchange

To evaluate the impact of information exchange delay, we utilize the load of edge cloud to show
the convergence speed of our strategy. Figure 10 shows the normalized load of different edge clouds
under different information exchange delay. It shows that the convergence speed of our strategy is
related to the information exchange delays, at a lower convergent speed when the delay increases.

0 20 40 60 80 100 120 140 160 180 200

Simulation time (s)

0

1

2

3

4

5

6

N
o

rm
a

liz
e

d
 C

lo
u

d
 L

o
a

d edge1

edge2

edge3

(a) The exchange delay of 1.5 s

0 20 40 60 80 100 120 140 160 180 200

Simulation time (s)

0

1

2

3

4

5

6

N
o

rm
a

liz
e

d
 C

lo
u

d
 L

o
a

d edge1

edge2

edge3

(b) The exchange delay of 2.5 s

Figure 10. Cont.

Sensors 2019, 19, 740 21 of 23

0 20 40 60 80 100 120 140 160 180 200

Simulation time (s)

0

1

2

3

4

5

6

7

N
o

rm
a

liz
e

d
 C

lo
u

d
 L

o
a

d

edge1

edge2

edge3

(c) The exchange delay of 3.5 s

Figure 10. The convergence speed incurred by information exchange delay.

7. Conclusions

We investigated the problem of task offloading in the MEC cloud platform. To overcome the
unsustainable power-consumption requirement and shortage of computation resources in mobile
terminals, optimally offloading tasks to the MEC cloud platform effectively and efficiently is a
promising approach to derive it. To meet QoS for users and extend battery life, we proposed a
decentralized and iterative algorithm to help mobile users optimally offload their tasks in the MEC
cloud platform based on evolutionary game theory. Our proposed iterative strategy can properly
decide, for each mobile user, a proper edge cloud to serve with right VM configuration. Through a
series theoretical analysis, we demonstrated that our strategy is asymptotically stable and can converge
to an ESS in several iterations.

To validate the theoretical analysis and evaluate the effectiveness of the strategy, we conducted
illustrative studies using a trace-driven simulations based on OMNet++ with a MEC cloud platform
similar to the practical environment, and simulated dynamical behaviors of mobile users. From these
illustrative studies, we confirmed that our strategy achieves closely to the minimal operational cost
within a small difference, while ensuring the QoE of mobile users.

In our future work, we plan to consider the different preferences of mobile users at a live MEC
cloud environment.

Author Contributions: Conceptualization, C.D. and W.W.; Methodology, C.D.; Validation, C.D.; Formal analysis,
C.D.; Investigation, C.D. and W.W.; Writing–original draft preparation, C.D.; Writing–review and editing, C.D. and
W.W.; Project administration, W.W.; funding acquisition, W.W.

Funding: This research has been supported by the Guangdong science and technology plan project of China
(Grant No. 2015B010108004) and by the National Key R&D of China (Grant No. 2017YFB1001603).

Acknowledgments: The authors thanks the laboratory of Institute of Advanced Network and Computing System.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Billinghurst, M.; Clark, A.; Lee, G. A survey of augmented reality. Found. Trends Hum.–Comput. Interact.
2015, 8, 73–272. [CrossRef]

2. Shea, R.; Fu, D.; Sun, A.; Cai, C.; Ma, X.; Fan, X.; Gong, W.; Liu, J. Location-Based Augmented Reality with
Pervasive Smartphone Sensors: Inside and Beyond Pokemon Go! IEEE Access 2017, 5, 9619–9631. [CrossRef]

3. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading.
IEEE Commun. Surv. Tutor. 2017, 19, 1628–1656. [CrossRef]

4. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and Its Role in the Internet of Things. In Proceedings
of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; pp. 13–16.

5. Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The Case for VM-Based Cloudlets in Mobile Computing.
IEEE Pervasive Comput. 2009, 8, 14–23. [CrossRef]

6. Lobillo, F.; Becvar, Z.; Puente, M.A.; Mach, P.; Presti, F.L.; Gambetti, F.; Goldhamer, M.; Vidal, J.;
Widiawan, A.K.; Calvanesse, E. An architecture for mobile computation offloading on cloud-enabled
LTE small cells. In Proceedings of the 2014 IEEE Wireless Communications and Networking Conference
Workshops (WCNCW), Istanbul, Turkey, 6–9 April 2014; pp. 1–6.

http://dx.doi.org/10.1561/1100000049
http://dx.doi.org/10.1109/ACCESS.2017.2696953
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/MPRV.2009.82

Sensors 2019, 19, 740 22 of 23

7. Taleb, T.; Ksentini, A.; Frangoudis, P. Follow-Me Cloud: When Cloud Services Follow Mobile Users.
IEEE Trans. Cloud Comput. 2017. [CrossRef]

8. Taylor, P.D.; Jonker, L.B. Evolutionary stable strategies and game dynamics. Math. Biosci. 1978, 40, 145–156.
[CrossRef]

9. Zhou, Z.; Liao, H.; Gu, B.; Huq, K.M.S.; Mumtaz, S.; Rodriguez, J. Robust Mobile Crowd Sensing: When
Deep Learning Meets Edge Computing. IEEE Netw. 2018, 32, 54–60. [CrossRef]

10. Agiwal, M.; Roy, A.; Saxena, N. Next Generation 5G Wireless Networks: A Comprehensive Survey.
IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [CrossRef]

11. Lai, Z.; Hu, Y.C.; Cui, Y.; Sun, L.; Dai, N. Furion: Engineering High-Quality Immersive Virtual Reality on
Today’s Mobile Devices. In Proceedings of the 23rd Annual International Conference on Mobile Computing
and Networking (MobiCom ’17), Snowbird, UT, USA, 16–20 October 2017; pp. 409–421.

12. Eeckhout, L. Is Moore’s Law Slowing Down? What’s Next? IEEE MICRO 2017, 37, 4–5. [CrossRef]
13. Wang, S.; Urgaonkar, R.; He, T.; Chan, K.; Zafer, M.; Leung, K.K. Dynamic Service Placement for Mobile

Micro-Clouds with Predicted Future Costs. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 1002–1016. [CrossRef]
14. Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient Multi-User Computation Offloading for Mobile-Edge Cloud

Computing. IEEE/ACM Trans. Netw. 2016, 24, 2795–2808. [CrossRef]
15. Cho, J.; Sundaresan, K.; Mahindra, R.; Van der Merwe, J.; Rangarajan, S. ACACIA: Context-Aware Edge

Computing for Continuous Interactive Applications over Mobile Networks. In Proceedings of the 12th
International on Conference on Emerging Networking EXperiments and Technologies (CoNEXT ’16), Irvine,
CA, USA, 12–15 December 2016; pp. 375–389.

16. Chen, X.; Shi, Q.; Yang, L.; Xu, J. ThriftyEdge: Resource-Efficient Edge Computing for Intelligent IoT
Applications. IEEE Netw. 2018, 32, 61–65. [CrossRef]

17. Wang, H.; Li, T.; Shea, R.; Ma, X.; Wang, F.; Liu, J.; Xu, K. Toward Cloud-Based Distributed Interactive
Applications: Measurement, Modeling, and Analysis. IEEE/ACM Trans. Netw. 2018, 26, 3–16. [CrossRef]

18. Ma, X.; Zhang, S.; Li, W.; Zhang, P.; Lin, C.; Shen, X. Cost-efficient workload scheduling in Cloud Assisted
Mobile Edge Computing. In Proceedings of the 2017 IEEE/ACM 25th International Symposium on Quality
of Service (IWQoS), Vilanova i la Geltru, Spain, 14–16 June 2017; pp. 1–10.

19. Plachy, J.; Becvar, Z.; Mach, P. Path selection enabling user mobility and efficient distribution of data for
computation at the edge of mobile network. Comput. Netw. 2016, 108, 357–370. [CrossRef]

20. Zhang, Y.; Niyato, D.; Wang, P. Offloading in Mobile Cloudlet Systems with Intermittent Connectivity. IEEE
Trans. Mob. Comput. 2015, 14, 2516–2529. [CrossRef]

21. Zhang, H.; Guo, F.; Ji, H.; Zhu, C. Combinational auction-based service provider selection in mobile edge
computing networks. IEEE Access 2017, 5, 13455–13464. [CrossRef]

22. Samimi, P.; Teimouri, Y.; Mukhtar, M. A combinatorial double auction resource allocation model in cloud
computing. Inf. Sci. 2016, 357, 201–216. [CrossRef]

23. Hou, L.; Zheng, K.; Chatzimisios, P.; Feng, Y. A Continuous-Time Markov decision process-based resource
allocation scheme in vehicular cloud for mobile video services. Comput. Commun. 2018, 118, 140–147.
[CrossRef]

24. Xu, J.; Chen, L.; Ren, S. Online Learning for Offloading and Autoscaling in Energy Harvesting Mobile Edge
Computing. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 361–373. [CrossRef]

25. Wang, L.; Jiao, L.; He, T.; Li, J.; Mühlhäuser, M. Service Entity Placement for Social Virtual Reality
Applications in Edge Computing. In Proceedings of the IEEE Conference on Computer Communications,
Honolulu, HI, USA, 15–19 April 2018.

26. Urgaonkar, R.; Wang, S.; He, T.; Zafer, M.; Chan, K.; Leung, K.K. Dynamic Service Migration and Workload
Scheduling in Edge-clouds. Perform. Eval. 2015, 91, 205–228. [CrossRef]

27. Aryal, R.G.; Altmann, J. Dynamic application deployment in federations of clouds and edge resources using
a multiobjective optimization AI algorithm. In Proceedings of the 2018 Third International Conference on
Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April 2018; pp. 147–154.

28. Kuang, Z.; Guo, S.; Liu, J.; Yang, Y. A quick-response framework for multi-user computation offloading in
mobile cloud computing. Future Gener. Comput. Syst. 2018, 81, 166–176. [CrossRef]

29. Gu, B.; Chen. Y.; Liao, H.; Zhou, Z.; Zhang, D. A Distributed and Context-Aware Task Assignment
Mechanism for Collaborative Mobile Edge Computing. Sensors 2018, 18, 2423. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TCC.2016.2525987
http://dx.doi.org/10.1016/0025-5564(78)90077-9
http://dx.doi.org/10.1109/MNET.2018.1700442
http://dx.doi.org/10.1109/COMST.2016.2532458
http://dx.doi.org/10.1109/MM.2017.3211123
http://dx.doi.org/10.1109/TPDS.2016.2604814
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/MNET.2018.1700145
http://dx.doi.org/10.1109/TNET.2017.2765246
http://dx.doi.org/10.1016/j.comnet.2016.09.005
http://dx.doi.org/10.1109/TMC.2015.2405539
http://dx.doi.org/10.1109/ACCESS.2017.2721957
http://dx.doi.org/10.1016/j.ins.2014.02.008
http://dx.doi.org/10.1016/j.comcom.2017.10.011
http://dx.doi.org/10.1109/TCCN.2017.2725277
http://dx.doi.org/10.1016/j.peva.2015.06.013
http://dx.doi.org/10.1016/j.future.2017.10.034
http://dx.doi.org/10.3390/s18082423
http://www.ncbi.nlm.nih.gov/pubmed/30046025

Sensors 2019, 19, 740 23 of 23

30. Zhang, T. Data Offloading in Mobile Edge Computing: A Coalition and Pricing Based Approach. IEEE Access
2018, 6, 2760–2767. [CrossRef]

31. Jošilo, S.; Dan, G. Selfish Decentralized Computation Offloading for Mobile Cloud Computing in Dense
Wireless Networks. IEEE Trans. Mob. Comput. 2019, 18, 207–220. [CrossRef]

32. Osborne, M.J.; Rubinstein, A. A Course in Game Theory; MIT Press: Cambridge, MA, USA, 1994.
33. Chen, X. Decentralized Computation Offloading Game for Mobile Cloud Computing. IEEE Trans. Parallel

Distrib. Syst. 2015, 26, 974–983. [CrossRef]
34. Dong, C.; Jia, Y.; Peng, H.; Yang, X.; Wen, W. A Novel Distribution Service Policy for Crowdsourced Live

Streaming in Cloud Platform. IEEE Trans. Netw. Serv. Manag. 2018, 15, 679–692. [CrossRef]
35. Semasinghe, P.; Hossain, E.; Zhu, K. An evolutionary game for distributed resource allocation in

self-organizing small cells. IEEE Trans. Mob. Comput. 2015, 14, 274–287. [CrossRef]
36. Merkin, D.R. Introduction to the Theory of Stability; Springer Science & Business Media: New York, NY, USA,

2012; Volume 24.
37. Mazenc, F.; Niculescu, S.I. Lyapunov stability analysis for nonlinear delay systems. Syst. Control Lett. 2001,

42, 245–251. [CrossRef]
38. Hu, H.; Wen, Y.; Niyato, D. Public cloud storage-assisted mobile social video sharing: A supermodular game

approach. IEEE J. Sel. Areas Commun. 2017, 35, 545–556. [CrossRef]
39. Cressman, R. Evolutionary Dynamics and Extensive Form Games; MIT Press: Cambridge, MA, USA, 2003;

Volume 5.
40. Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers; McGraw-Hill Higher Education: Boston, MA,

USA, 2010.
41. Varga, A.; Hornig, R. An overview of the OMNeT++ simulation environment. In Proceedings of the 1st

International Conference on Simulation Tools and Techniques for Communications, Networks and Systems
& Workshops, Marseille, France, 3–7 March 2008; p. 60.

42. Oueis, J.; Calvanese-Strinati, E.; Domenico, A.D.; Barbarossa, S. On the impact of backhaul network on
distributed cloud computing. In Proceedings of the 2014 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW), Istanbul, Turkey, 6–9 April 2014; pp. 12–17.

43. Ghosh, A.; Ratasuk, R.; Mondal, B.; Mangalvedhe, N.; Thomas, T. LTE-advanced: Next-generation wireless
broadband technology. IEEE Wirel. Commun. 2010, 17, 10–22. [CrossRef]

44. Soyata, T.; Muraleedharan, R.; Funai, C.; Kwon, M.; Heinzelman, W. Cloud-vision: Real-time face recognition
using a mobile-cloudlet-cloud acceleration architecture. In Proceedings of the 2012 IEEE Symposium on
Computers and Communications (ISCC), Cappadocia, Turkey, 1–4 July 2012; pp. 000059–000066.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2017.2785265
http://dx.doi.org/10.1109/TMC.2018.2829874
http://dx.doi.org/10.1109/TPDS.2014.2316834
http://dx.doi.org/10.1109/TNSM.2018.2800751
http://dx.doi.org/10.1109/TMC.2014.2318700
http://dx.doi.org/10.1016/S0167-6911(00)00093-1
http://dx.doi.org/10.1109/JSAC.2017.2659478
http://dx.doi.org/10.1109/MWC.2010.5490974
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Modeling and Formulation
	System Model
	Service Utility Model
	Cost Model
	Joint Optimization Problem

	Evolutionary Game Theoretic Strategy
	Evolutionary Game Formulation
	Evolutionary Stable Strategy
	Replicator Dynamics
	Delay in Replicator Dynamics

	Iterative Algorithm Design and Analysis
	Online Algorithm Implement
	Performance Analysis

	Illustrative Studies
	Experiment Setting
	Methodology
	Experiment Results and Analysis
	Performance Comparison
	Fairness Evaluation
	Stability of Our Proposed Strategy
	Adaptiveness of Our Proposed Strategy
	Impact of Delay in Information Exchange

	Conclusions
	References

