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Abstract: In this paper, an Internet-of-Things (IoT) system containing a relay selection is studied as
employing an emerging multiple access scheme, namely non-orthogonal multiple access (NOMA).
This paper proposes a new scheme to consider secure performance, to be called relay selection
NOMA (RS-NOMA). In particular, we consider metrics to evaluate secure performance in such an
RS-NOMA system where a base station (master node in IoT) sends confidential messages to two main
sensors (so-called NOMA users) under the influence of an external eavesdropper. In the proposed IoT
scheme, both two NOMA sensors and an illegal sensor are served with different levels of allocated
power at the base station. It is noticed that such RS-NOMA operates in two hop transmission of the
relaying system. We formulate the closed-form expressions of secure outage probability (SOP) and the
strictly positive secure capacity (SPSC) to examine the secrecy performance under controlling setting
parameters such as transmit signal-to-noise ratio (SNR), the number of selected relays, channel
gains, and threshold rates. The different performance is illustrated as performing comparisons
between NOMA and orthogonal multiple access (OMA). Finally, the advantage of NOMA in secure
performance over orthogonal multiple access (OMA) is confirmed both analytically and numerically.

Keywords: relay selection; NOMA; IoT; secure outage probability; strictly positive secure capacity

1. Introduction

Any eavesdropper is able to disturb the signal easily due to the broadcasting environment
of wireless communication. At the application layer (i.e., highest layer), encryption methodology
using cryptography is conventionally implemented to assurance the secure information transmission.
Nevertheless, to tackle with situation of speedy growth of computer networks, these procedures and
secure keys become ineffective ways, especially in increasing computing capability [1]. Additionally,
great encounters in secure communications include the security of key transmission, the complexity of
key management, and distribution [2]. Consequently, physical layer security (PLS) is an effective way
to fight eavesdropping and diminish the overhearing information and it is considered as an extra data
fostering key encryption technology as in [3,4].

To provide a network access technique for the next generation of wireless communications, an
emerging multiple access scheme, namely, non-orthogonal multiple access (NOMA) transmission
was proposed in many works such as [5]. The power domain and channel quality are acquired to
exploit different performance of NOMA users regarding multiple access. As a main characterization, a
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significantly strengthened performance results from NOMA users with good channels, while relatively
poor performance is seen in NOMA users with bad channel conditions [6]. Combining NOMA with
cooperative communication [7–9], cooperative NOMA (C-NOMA) transmission scheme is proposed
as a possible solution to generate a unique system in which users with better channel circumstances
assist forwarding signal to distance users who are affected in situations of worse channels [7,10].

To achieve an advantage of the diversity related to wireless channels in relaying networks, a
relay selection scheme has been broadly implemented and considered as improving the quality of the
transmission [11]. Especially, a relay network is introduced in some technical deployment snapshots of
the IoT devices of SmartBridge, SmartDIMES, and SmartSenSysCalLab [12]. Two policies in energy
harvesting architecture inclusing time switching (TS) relaying, power splitting (PS) relaying are
empoyed with NOMA and it is considered as suitable deployment of wireless powered IoT relay
systems [13]. In a practical scenario, main technologies for wireless communication systems (for
example LTE) are required to deploy multiuser selection or scheduling schemes. In addition, the
relay selection scheme under NOMA networks is introduced and analysed in recent works [14–16].
A great improvement in the QoS of the system is resulted from a system model which combines
cooperative relay and NOMA. In particular, a two-stage relay selection is proposed and derived with
respect to closed-form expressions on outage probability and they are obtained in cooperative systems
using decode-and-forward as in [14]. The approximate and asymptotic expressions on average sum
rate are examined as combining relay selection and amplify-and-forward (AF) assisted NOMA [15].
Moreover, by analyzing the outage probability and its asymptotic results, a partial relay selection
scheme is studied in [16]. The fixed and adaptive power allocations (PAs) at the relays are introduced
in cooperative NOMA to consider two optimal relay selection schemes, namely as the two-stage
weighted-max-min (WMM) and max-weighted-harmonic-mean (MWHM) schemes [17]. On the
orther hand, to improve the performance in throughput and coverage, new model is exploited as
combining the orthogonal frequency division multiple access (OFDMA) and cooperative multicast
(CM) technology to perform the intra-cooperation of multicast group (MG) [18]. In other systems, relay
selection (RS) non-orthogonal multiple access (NOMA) is studied in terms of the diversity orders by
deployment of RS schemes for full-duplex /half-duplex communications [19].

Furthermore, power allocation and user scheduling are discussed as the other encounters in
NOMA networks [20]. To improve the NOMA’s performance, power distribution therein shows a
major characterization affecting different user’s performance since certain power partitions which are
allocated for multiple superposed users, and this topic fascinates a lot of study. For instance, fixed
power allocation scheme is deploy to serve two NOMA users and its performance is evaluated by
employing the closed-form expression of outage probability and ergodic sum-rate in [21]. In addition, a
general two-user power allocation algorithm is proposed by overcoming the drawbacks of fixed power
distribution in NOMA network [22]. On the other hand, fairness performance of NOMA network is
resulted by varying power allocation factors as investigation in [23]. While sum rate maximization
and proportional fairness criteria under impact of the power allocation algorithms is studied for two
user NOMA networks in [24].

On the other hand, stochastic geometry networks are exploited regarding the physical layer
security to apply to 5G NOMA networks in [25]. To enhance the secrecy performance for single
antenna and multiple-antenna stochastic geometry networks two dissimilar schemes were considered
as extended work of [25] and detailed contribution can be observed in [26]. Furthermore, the optimal
decoding order, power allocation and transmission rates are important metrics to evaluate and exhibit
a new design of NOMA under secrecy considerations [27]. A single-input single-output (SISO) system
serving NOMA scheme was investigated in terms of secure performance in [28]. In such system,
optimal power allocation policy is proposed to highlight advantage of secrecy performance of NOMA
compared with that in the conventional OMA [28]. The authors in [29] exploited physical layer security
in downlink of NOMA systems [29] and both the exact and asymptotic secrecy outage probability (SOP)
were investigated to examine secure performance of the SISO and MISO NOMA systems. In other
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trend of research, two transmit antenna selection (TAS) schemes were proposed to perform secure
performance evaluation in cooperative NOMA networks in [30], and then the closed-form formula
of the ergodic secrecy rate was achieved. To the best of the authors’ knowledge, there are few works
related to the analysis of the physical layer security in relay selection NOMA systems. Thus, this is the
main motivation of this work.

From the above analysis, it is worth noting that a few studies have considered the technical
design of NOMA relaying architecture against the unwanted eavesdropper with appropriate secrecy.
This paper aims to exploit the advantage of relay selection to improve system performance of IoT
deploying NOMA. In particular, this motivates us to design secure NOMA schemes for the practical
IoT scenario where the relay is selected to forward signal with enhanced performance at NOMA
receivers. In this scenario, we use the secrecy probability to measure the secrecy performance of the
system since the perfect secrecy rate is usually not obtained, and hence, it can not be evaluated as
the secrecy metric. We highlight that the SOP and SPSC are appropriate secrecy metrics for security
consideration in the NOMA systems.

The primary contributions of the paper are summarized as follows:

• Targeting the secrecy outage constraint, we comprehensively study the design of NOMA-assisted
IoT system against the external eavesdropper. The transmit signal to noise ratio (SNR) at the
base station (BS), transmission rates, and power allocated factors to each user are considered as
main parameters. These values need be determined in design of RS-NOMA. For the first time,
we analytically prove that the relay selection provides improved secure performance at higher
number of relay for RS-NOMA.

• For Decode-and-Forward (DF) mode, we show that the outage behavior of RS- NOMA scheme is
superior to that of OMA scheme in the specific SNR region. Furthermore, we confirm that the
RS-NOMA scheme depends on how strong the eavesdropper channel is. In fact, SOP and SPSC of
far user depend on the number of relay selected.

• Both analytically and numerically, the exactness of derived expressions is verified and we compare
the performance of the NOMA scheme with that of the OMA scheme in the studied problems
with the secrecy outage constraint.

The remainder of this paper is organized as follows. In Section 2, the system model is introduced.
The detailed analysis in terms of SOP metric is proposed in Section 3. In Section 4, we derive an
exact expression of SPSC in RS-NOMA. Section 5 presents the benchmark of OMA scheme for further
evaluation. Numerical results are presented in Section 6. Concluding remarks are given in Section 7.

The main notations of this paper are shown as follows: E {·} denotes expectation operation; fX (.)
and FX (.) stand for the probability density function (PDF) and the cumulative distribution function
(CDF) of a random variable X.

2. System Model of Secure Analysis for DF Relay Selection

Figure 1 represents the considered RS-NOMA assisted IoT system including a base station
(BS), multiple relays (i.e., K relays), two main sensors (D1, strong user, and D2, poor user), and an
eavesdropper (E) in an IoT network. In such a system model, the BS is located in the cell-center,
strong user D1 and E are located near with the BS while the poor user D2 is very close to the cell-edge.
In this situation, it is assumed that there is no direct links between BS and the poor user due to high
obstructions or deep fading. However, quality of transmission from the BS to D2 will be improved
by employing relay selection scheme. We further assume that single antenna is equipped at all nodes
in the RS-NOMA network and each link employing channels associated with independent Rayleigh
fading. As most expectations in the literature, it is assumed that E can acquire the signals transmitted
from the BS.
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Figure 1. System model of a RS-NOMA assisted IoT system in the existence of an external eavesdropper.

The channel coefficients from the BS to relay k, k = 1, 2, . . . , K and the eavesdropper are denoted
by hSRk and hE, respectively. Next, the channel coefficient from the BS to near NOMA user is hD1,
while gkD2 is denoted as channel coefficient between relay k and D2. These channels are normalized
as Rayleigh fading channel. We assume the quasi-static block fading model adopted; it means the
channel coefficients are kept constant during the transmission of one message, which includes a block
of symbols, and adjust independently of one block to the next block. We call PS is transmit power at
the BS, α1, α2 are power allocation factors for two NOMA users and they satisfy α1 + α2 = 1. It is noted
that x1, x2 are simultaneous transmissions from the BS to serve two NOMA users D1, D2 respectively.
In addition, we denote wU as Additive white Gaussian noise (AWGN) term at node U.

As a fundamental principle of RS-NOMA, the transmitter is enabled to simultaneously assist
multiple users. To perform this task, the superposition coding (SC) is deployed in the transmitter to
conduct a linear combination of multiple signals to serve the users. The composed signal xNOMA

S is
transmitted from the BS to all relays and two NOMA users in the first phase, which is shown as

xNOMA
S =

√
α1PSx1 +

√
α2PSx2. (1)

The received signal at D1 in the direct link is expressed by

yNOMA
SD1 = hD1xNOMA

S + wD1

= hD1

(√
α1PSx1 +

√
α2PSx2

)
+ wD1.

(2)

Here, it is AWGN noise and variance of σ2
0 .

The received signal at Rk is given by

yNOMA
SRk = hSRkxNOMA

S + wR

= hSRk

(√
α1PSx1 +

√
α2PSx2

)
+ wRk.

(3)

In this paper, it is assumed that users are not arranged by their channel conditions. Under such
considered RS-NOMA scheme, x2 can be detected at user 1 before using successive interference
cancellation (SIC) [6]. Therefore, the received instantaneous signal-to-interference-noise ratio (SINR)
of the user D1 can be given as SNR to detect x2 as
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γNOMA
SD1,x2 =

α2PS|hD1|2

α1PS|hD1|2 + σ2
0

=
α2ρS|hD1|2

α1ρS|hD1|2 + 1
. (4)

The SIC is carried out at D1 to remove the signal for D2, therefore the instantaneous rate for D1
detect the signal x1 is given by

γNOMA
SD1,x1 =

α1PS|hD1|2

σ2
0

= α1ρS|hD1|2 (5)

where ρS = PS
σ2

0
.

In this situation, it is possible to apply fixed power allocation coefficients in two NOMA users
in such relay selection mode. To improve the performance of the relay selection schemes, reasonable
power optimization can be further studied, and this concern may be considered in our future work.

At relay, x2 can be detected before using SIC and as employing SIC, x2 will be regarded as
interference eliminated before decoding signal x1. It is assumed that these relays can not harm D1 and
there is no detection on x1. Firstly, the expression of SNR must be computed to decode x2 transmitted
from the BS to relay as

γNOMA
SR,x2 =

α2PS|hSRk|2

α1PS|hSRk|2 + σ2
0

=
α2ρS|hSRk|2

α1ρS|hSRk|2 + 1
. (6)

At the cell-edge user, the received signal can be obtained at D2 from the relay as

yNOMA
RD2

= gkD2
√

PRx2 + wD2 . (7)

Therefore, calculating SNR to detect x2, which is transmitted in the second hop from the kth relay
to user D2, is given as

γNOMA
RD2,x2 =

PR|gkD2|2

σ2
0

= ρR|gkD2|2, (8)

where ρR = PR
σ2

0
.

The received signal at D2 which forwarded by D1 is expressed as

yNOMA
D1D2 = gD12

√
PRx2 + wD2 . (9)

The received SINR at D2 to get x2 for link is given by

γNOMA
D12,x2 =

PR|gD12|2

σ2
0

= ρR|gD12|2. (10)

Regarding computation of the received signal to interference plus noise ratio (SINRs) at the
eavesdropper, here, we overestimate the eavesdropper’s capability. A worst-case assumption from the
legitimate user’s perspective is made here. That is, E is equipped capability of the multiuser detection.
In more detailed consideration, user E performs parallel interference cancellation (PIC) to distinguish
the superimposed mixture. In such a scenario, the eavesdropper knows the decoding order and the
power allocation factors. Thus, we have to adopt the worst-case assumption from the legitimate user’s
perspective due to the conservativeness mandated by the security studies. It is worth noting that this
assumption has been adopted in previous work on the secrecy of NOMA systems [25,26]. It is shown
that the received signal at E is
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yNOMA
SE = hExNOMA

S + wE

= hE

(√
α1PSx1 +

√
α2PSx2

)
+ wE.

(11)

Therefore, SNR is computed to overhear x1 at E as

γNOMA
SE1 =

α1PS|hE|2

σ2
E

= α1ρE|hE|2, (12)

where ρE = PS
σ2

E
, Here, AWGN noise term at E has variance of σ2

E.

And then, SNR related to overhearing signal x2 at E is given by

γNOMA
SE2 =

α2PS|hE|2

σ2
E

= α2ρE|hE|2. (13)

In this RS-NOMA scheme, the best relay node is selected by the following criterion. Firstly, the
end-to-end SNR following DF mode can be computed by [31]

γNOMA
k = min

(
γNOMA

SRk,x2 , γNOMA
RD2,x2

)
, (14)

where γSRk,x2 stands for SNR at the first hop from the BS transmitting signal to the kth relay Rk.
The index k∗ in group of relay in considered criteria is determined by

γNOMA
k∗ = max

k=1,...,K

(
γNOMA

k

)
. (15)

The secrecy capacity for D1 is obtained as

CNOMA
x1 =

1
2

log2

1 + min
(

γNOMA
SD1,x1 , γNOMA

SD1,x2

)
1 + γNOMA

SE1

+, (16)

where [x]+ = max {x, 0}. It is worth noting that D2 employs Maximum ratio combining (MRC)
principle to process mixture signal as existence of both D1-D2 link and Source-Selected Relay-D2 link.
As a result, the secrecy capacity for D2 is obtained as [16]

CNOMA
x2 =

1
2

log2

1 + max
(

min
(

γNOMA
SD1,x2 , γNOMA

D12,x2

)
, γNOMA

k∗

)
1 + γNOMA

SE2

+. (17)

3. Secure Outage Performance in RS-NOMA

In this section, the secrecy capacity is studied for Rayleigh fading channels in terms of the SOP.
To describe the secrecy performance of a wireless communication system, such a metric is also an
important performance measurement and SOP is generally used. In particular, the SOP is defined as
the probability that the instantaneous secrecy capacity Csec will drop below a required secrecy rate
threshold R (i.e., if Csec < R, information security will not be satisfied, and then an outage event can
be raised; otherwise, perfect secrecy will be maintained).

3.1. SOP at D1

Proposition 1. The SOP for D1 can be expressed as

PNOMA
SOP1 = 1− α1ρSλD1

(α1ρSλD1 + ϕ1λE) ϕ1α1λE
exp

(
− ψ1

α1ρSλD1
+

1
α1ρSλD1

− α2 − ψ1α1

ϕ1α1λE

)
U (t1) , (18)
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where ϕ1 = 22R1 α1ρE, ψ1 = 22R1 − 1, U (t1) =
∫ α2−ψ1α1

0 exp
(
− α2

α1t1ρSλD1
+ t1

ϕ1α1α1ρSλE

)
dt1. From here to

following sections, we denote λD1, λD12, λSRk, λkD2, λE as channel gains of links BS-D1, D1-D2, BS-Rk,
Rk-D2, BS-E respectively. Here, R1 denotes the target data rate of D1.

Proof. See in Appendix A.

3.2. SOP at D2

Proposition 2. For performance evaluation on user D2, we formulate SOP as

PNOMA
SOP2 = 1− ρRλD12

(ρRλD12 + ϕ2λE) ϕ2α1ρSλE
exp

(
1

α1ρSλD1
− α2ρS − ψ2α1ρS

ϕ2α1ρSλE
− ψ2

ρRλD12

)
q (t2)

×
K

∏
k=1

(
ρRλkD2

(ρRλkD2 + ϕ2λE) ϕ2α1λE
exp

(
1

α1ρSλSR1
− α2 − ψ2α1

ϕ2α1λE
− ψ2

ρRλkD2

)
q (t3)

)
,

(19)

where ϕ2 = 22R2 α2ρE, ψ2 = 22R2 − 1, q (t2) =
∫ α2ρS−ψ2α1ρS

0 exp
(
− α2ρS

α1ρSt2λD1
+ t2

ϕ2α1ρSλE

)
dt2, q (t3) =∫ α2−ψ2α1

0 exp
(
− α2

α1t3ρSλSR1
+ t3

ϕ2α1λE

)
dt3. We denote R2 as the target data rate of D2.

Proof. See in Appendix B.

The secure performance can be examined for the whole NOMA system by deploying this formula

OPNOMA = 1− (1−OP1−NOMA) (1−OP2−NOMA) . (20)

4. SPSC Analysis in RS-NOMA

In such RS-NOMA, the SPSC is fundamentally defined as the probability of the secrecy capacity
Csec being zero. Under this circumstance, SPSC is an extra metric characterizing the properties of
physical channels in wireless communication, and hence, physical-layer (PHY) security is perfectly
evaluated to exhibit the RS-NOMA scheme to real application under the existence of eavesdropper in
nature wireless transmission environment. In general, the SPSC can be calculated by

PSPSC = Pr (Csec > 0) . (21)

4.1. SPSC Compution at D1

From the definition above, we have the outage formula in this case as

PNOMA
SPSC1 = Pr

(
CNOMA

x1 > 0
)

= Pr
(

γNOMA
SD1,x1 > γNOMA

SE1 , γNOMA
SD1,x2 > γNOMA

SE1

)
≈ Pr

(
γNOMA

SD1,x1 > γNOMA
SE1

)
︸ ︷︷ ︸

P1

Pr
(

γNOMA
SD1,x2 > γNOMA

SE1

)
︸ ︷︷ ︸

P2

.
(22)

Such outage event must be constrained by ρE |hE |2
ρS

> α1ρE |hE |2

α2ρS−α1ρSα1ρE |hE |2
. Firstly, P1 can be written by

P1 = Pr
(
|hD1|2 >

ρE
ρS
|hE|2

)
=
∫ α2−α1

α1α1ρE

0
exp

(
− ρEx

ρSλD1

)
1

λE
exp

(
− x

λE

)
dx

=
ρSλD1

ρSλD1 + ρEλE

(
exp

(
−
(

ρE
ρSλD1

+
1

λE

)
α2 − α1

α1α1ρE

)
− 1
)

.

(23)
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Similarly, in case of α1ρE |hE |2

α2ρS−α1ρSα1ρE |hE |2
> ρE |hE |2

ρS
, P2 can be calculated as

P2 = Pr

(
|hD1|2 >

α1ρE|hE|2

α2ρS − α1ρSα1ρE|hE|2

)

=
∫ ∞

α2−α1
α1α1ρE

exp
(
− α1ρEx
(α2ρS − α1ρSα1ρEx) λD1

)
1

λE
exp

(
− x

λE

)
dx.

(24)

To calculate the above integral, we set new variable as v = α2ρS − α1ρSα1ρEx → x = α2ρS−v
α1ρSα1ρE

,
then it can be expressed by

P2 =
1

λE

∫ α2ρS

α1ρS

exp
(
− α2ρS − v

α1ρSvλD1
− α2ρS − v

α1ρSα1ρEλE

)
dv

−α1ρSα1ρE

=
1

α1ρSα1ρEλE
exp

(
1

α1ρSλD1
− α2ρS

α1ρSα1ρEλE

)
q (v) .

(25)

Therefore, the SPSC is then computed to evaluate secure performance at D1 as

PNOMA
SPSC1 = P1 × P2

= m

 q (v) exp
(
− n(α2−α1)

α1α1ρE
+ 1

α1ρSλD1
− α2ρS

α1α1ρSρEλE

)
−q (v) exp

(
1

α1ρSλD1
− α2ρS

α1α1ρSρEλE

)  ,
(26)

where m = ρSλD1
(ρSλD1+ρEλE)α1α1ρSρEλE

, n = ρE
ρSλD1

+ 1
λE

, q (v) =
∫ α1ρS

α2ρS
exp

(
− α2

α1vλD1
+ v

α1ρSα1ρEλE

)
dv.

4.2. SPSC Computation at D2

In a similar way, the SPSC performance at D2 can be expressed as

PNOMA
SPSC2 = Pr

(
CNOMA

x2 > 0
)

= Pr
(

min
(

γNOMA
SD1,x2 , γNOMA

D12,x2

)
> γNOMA

SE2

)
︸ ︷︷ ︸

G

× Pr
(

max
k=1...K

(
min

(
γNOMA

SR,x2 , γNOMA
RKD2,x2

))
> γNOMA

SE2

)
︸ ︷︷ ︸

H

.

(27)

To proceed from this formula, we first consider term of G and it can be calculated as

G = Pr
(

min
(

γNOMA
SD1,x2 , γNOMA

D12,x2

)
> α2ρE|hE|2

)
= Pr

(
α2ρS|hD1|2

α1ρS|hD1|2 + 1
> α2ρE|hE|2

)
︸ ︷︷ ︸

G1

Pr
(

ρR|gD12|2 > α2ρE|hE|2
)

︸ ︷︷ ︸
G2

. (28)

It is worth noting that the outage probability must satisfy the condition of ρS − α1ρSρE|hE|2 >

0→ |hE|2 < 1
α1ρE

. As a result, it can be rewritten as

G1 =
∫ 1

α1ρE

0
exp

(
− ρEx
(1− α1ρEx) ρSλD1

)
1

λE
exp

(
− x

λE

)
dx

=
1

λE

∫ 1
α1ρE

0
exp

(
− ρEx
(1− α1ρEx) ρSλD1

− x
λE

)
dx.

(29)
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Next, a new variable can be put as v1 = 1− α1ρEx → x = 1−v1
α1ρE

to calculate the above integral.
As a result, it can be expressed by

G1 =
1

λE

∫ 0

1
exp

(
− 1− v1

α1v1ρSλD1
− 1− v1

α1ρEλE

)
dv1

−α1ρE

=
1

α1ρEλE
exp

(
1

α1ρSλD1
− 1

α1ρEλE

)
q (v1) ,

(30)

where q (v1) =
∫ 1

0 exp
(
− 1

α1v1ρSλD1
+ v1

α1ρEλE

)
dv1.

Similarly, we have

G2 = Pr
(
|hD12|2 >

α2ρE
ρR
|hE|2

)
=
∫ ∞

0
exp

(
− α2ρEx

ρRλD12

)
1

λE
exp

(
− x

λE

)
dx

=
ρRλD12

ρRλD12 + α2ρEλE
.

(31)

From (30) and (31), we have

G =
ρRλD12

(ρRλD12 + α2ρEλE) α1ρEλE
exp

(
1

α1ρSλD1
− 1

α1ρEλE

)
q (v1) . (32)

From (27), H can be calculated as

H = Pr
(

max
k=1...K

(
min

(
γNOMA

SR,x2 , γNOMA
RKD2,x2

))
> γNOMA

SE2

)

=
K

∏
k=1

Pr

(
α2ρS|hSR1|2

α1ρS|hSR1|2 + 1
> ζ

)
︸ ︷︷ ︸

H1

Pr
(

ρR|gkD2|2 > ζ
)

︸ ︷︷ ︸
H2

.
(33)

H1 can be computed as:

H1 = Pr

(
α2ρS|hSR1|2

α1ρS|hSR1|2 + 1
> ζ

)

= Pr
(
|hSR1|2 >

ζ

(α2 − ζα1) ρS

)
=

{
exp

(
− ζ

(α2−ζα1)ρSλSR1

)
, ζ < α2

α1

0, ζ ≥ α2
α1

.

(34)

Similarly, we can calculate H2 to be

H2 = Pr
(
|gkD2|2 >

ζ

ρR

)
= exp

(
− ζ

ρRλkD2

)
. (35)

It is constrained by α2ρE|hE|2 < α2
α1
→ |hE|2 < 1

α1ρE
. In this situation, it can be rewritten as
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H1 × H2 = E|hE |2

exp
(
− ζ

(α2 − δα1) ρSλSR1

)
︸ ︷︷ ︸

H1

× exp
(
− ζ

ρRλkD2

)
︸ ︷︷ ︸

H2

, ζ <
α2

α1


= E|hE |2

exp

− α2ρE|hE|2(
α2 − α2ρE|hE|2α1

)
ρSλSR1

× exp

(
−α2ρE|hE|2

ρRλkD2

)
, |hE|2 <

1
α1ρE


=

1
λE

∫ 1
α1ρE

0
exp

(
− α2ρEx
(α2 − α1α2ρEx) ρSλSR1

− α2ρEx
ρRλkD2

− x
λE

)
dx.

(36)
We formulate H as

H = 1−
K

∏
k=1

(
1−

∫ 1
α1ρE

0
exp

(
− α2ρEx
(α2 − α1α2ρEx) ρSλSR1

− α2ρEx
ρRλkD2

− x
λE

)
dx

)
. (37)

Therefore, the SPSC evaluation at D2 can be determined by

PNOMA
SPSC2 =

ρRλD12

(ρRλD12 + α2ρEλE) α1ρEλE
exp

(
1

α1ρSλD1
− 1

α1ρEλE

)
q (v1)

×
(

1−
K

∏
k=1

(
1−

∫ 1
α1ρE

0
exp

(
− α2ρEx
(α2 − α1α2ρEx) ρSλSR1

− α2ρEx
ρRλkD2

− x
λE

)
dx

))
,

(38)

where q (v1) =
∫ 1

0 exp
(
− 1

α1v1ρSλD1
+ v1

α1ρEλE

)
dv1, ζ = α2ρE|hE|2.

5. Optimization and Studying OMA as Benchmark

5.1. Selection of α1 for NOMA Transmission

In this section, we perform a numerical search for the value of α1 that minimizes outage
performance. However, these derived expressions of outage probability can not exhibit optimal
α1. Fortunately, it can show an approximation to α1 obtained in a simple manner from the
following observations

γNOMA
SD1,x1 ≥ ε2 ⇒ ϑSD1,x1 ≥

ε2

α1
, (39)

where ϑSD1,x1 = ρS|hD1|2,
and

γNOMA
SD1,x2 ≥ ε2 ⇒ ϑSD1,x2 ≥

ε2

α2 − α1ε2
, (40)

where ε2 = 22R2 .
Clearly, the value of α1 which minimizes outage performance is equivalent with evaluation of

ϑSD1,x1 and ϑSD1,x2 as below

ϑSD1,x2 = ϑSD1,x1 ⇒ α1 =
1

2 + ε2
. (41)

Although our derivation is clearly an approximation computation, its accuracy will be verified
later in the numerical results section. It is interesting to see that considered outage value does not
depend on the instantaneous channel values and it depends only on the target rates of the two users.

5.2. Asymptotic Analysis

We first consider asymptotic SOP for D1. To investigate the asymptotic secrecy performance,
we also provide an asymptotic SOP analysis.



Sensors 2019, 19, 736 11 of 23

From (18), at high SNR ρE the SOP performance of D1 based NOMA system can be asymptotically
expressed as

PNOMA
SOP1−asy ≈ Pr

(
1 + a2

a1

1 + α1ρE|hE|2
< 22R1

)
≈ Pr

(
|hE|2 >

1 + a2
a1
− ε1

ε1α1ρE

)
≈ exp

(
−

1 + a2
a1
− ε1

ε1α1ρEλE

)
, (42)

where ε1 = 22R1 .
Then, we perform asymptotic derivation for SOP of D2. Similarly, from (19), the asymptotic

expression for a D2 is given by

PNOMA
SOP2 ≈ Pr

(
1 + a2

a1

1 + γNOMA
SE2

< 22R2

)
︸ ︷︷ ︸

U1

Pr

(
1 + a2

a1

1 + γNOMA
SE2∗

≥ 22R2

)
︸ ︷︷ ︸

U2

.
(43)

From (43), we can calculate U1 as

U1 = Pr

(
1 + a2

a1

1 + α2ρE|hE|2
< 22R2

)
≈ exp

(
−

1 + a2
a1
− ε2

ε2α2ρEλE

)
. (44)

Similarly, with U2 we get

U2 = Pr

(
1 + a2

a1

1 + γNOMA
SE2∗

< 22R2

)
=

K

∏
k=1

Pr

(
|hE|2 >

1 + a2
a1
− ε2

ε2α2ρE

)

=
K

∏
k=1

(
exp

(
−

1 + a2
a1
− ε2

ε2α2ρEλE

))
.

(45)

Replacing (44) and (45) into (43) leads to

PNOMA
SOP2 ≈ exp

(
−

1 + a2
a1
− ε2

ε2α2ρEλE

)
K

∏
k=1

(
exp

(
−

1 + a2
a1
− ε2

ε2α2ρEλE

))
. (46)

5.3. Consideration on OMA as Benchmark

As a traditional multiple access scheme, OMA is still deployed in a huge number of applications.
It is further considered an advantage of NOMA compared with older counterpart, i.e., OMA. Although
security concerns in OMA scheme are studied in the literature, this paper carefully presents the main
computations to make such comparisons clearer. In OMA, we first compute SNR to detect x1 from the
BS to D1 as

γOMA
SD1,x1 =

PS|hD1|2

σ2
0

= ρS|hD1|2. (47)

To detect x2 from the BS to relay, it is required to calculate SNR as

γOMA
SR,x2 =

PS|hSR1|2

σ2
0

= ρS|hSRk|2. (48)

We compute SNR to detect x2 in second hop from relay to D2 as

γOMA
RD2,x2 =

PR|gkD2|2

σ2
0

= ρR|gkD2|2. (49)
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It is shown SNR to detect signal x1, x2 at E respectively

γOMA
SE1 =

PS|hE|2

σ2
E

= ρE|hE|2, (50)

and

γOMA
SE2 =

PS|hE|2

σ2
E

= ρE|hE|2. (51)

Similarly, the secrecy capacity for D1 in OMA is obtained as

COMA
x1 =

[
1
2

log2

(
1 + γOMA

SD1,x1

1 + γOMA
SE1

)]+
. (52)

The secrecy capacity for D2 in OMA is obtained as

COMA
x∗2 =

[
1
4

log2

(
1 + γOMA

k∗
1 + γOMA

SE2

)]+
. (53)

It is worth noting that the best relay node is selected by the following criterion γOMA
k∗ =

max
k=1,...,K

(
γOMA

k
)

with γOMA
k = min

(
γOMA

SR,x2, γOMA
RD2,x2

)
.

In similar way, SOP at D1 in OMA scheme is given by

POMA
SOP1 = 1− Pr

(
COMA

x1 ≥ ξ1

)
= 1− Pr

(
1 + γOMA

SD1,x1

1 + γOMA
SE1

≥ ξ1

)

= 1− Pr
(
|hD1|2 ≥

ξ1ρE
ρS
|hE|2 +

ξ1 − 1
ρS

)
.

(54)

In next step, it is calculated as

POMA
SOP1 = 1− Pr

(
|hD1|2 ≥ AOMA

1 |hE|2 + BOMA
1

)
= 1−

∫ ∞

0
exp

(
−

AOMA
1 x + BOMA

1
λD1

)
1

λE
exp

(
− x

λE

)
dx

= 1− 1
λE

exp

(
−

BOMA
1
λD1

) ∫ ∞

0
exp

(
−
(

AOMA
1
λD1

+
1

λE

)
x

)
dx.

(55)

Finally, SOP at D1 in this situation is given by

POMA
SOP1 = 1− λD1

λE AOMA
1 + λD1

exp

(
−

BOMA
1
λD1

)
, (56)

where ξ1 = 22R1 , AOMA
1 = ξ1ρE

ρS
, BOMA

1 = ξ1−1
ρS

.
The SOP at D2 in OMA scheme is further computed as

POMA
SOP2 = Pr

(
COMA

x∗2 < R2

)
= Pr

(
1 + γOMA

k∗
1 + γOMA

SE2
< 24R2

)

= Pr

 max
k=1,...,K

(
min

(
ρS|hSR1|2, ρR|gkD2|2

))
︸ ︷︷ ︸

ν∗

< ψ|hE|2 + µ

 .

(57)
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And then, it is rewritten as

POMA
SOP2 =

∞∫
0

(1− Fν∗ (−ηy1)) f|hE |2
(x) dx

=
∫ ∞

0

[
1− (1− exp (−η (ψx + µ)))k

] 1
λE

exp
(
−x
λE

)
dx

=
1

λE
exp (−kηµ)

×
∫ ∞

0

(
K

∑
k=1

(
K
k

)
(−1)k−1 exp

(
−
(

kηψ +
1

λE

)
x
))

dx

= 1− exp (−kηµ)
K

∑
k=1

(
K
k

)
(−1)k−1 1

kηψλE + 1
,

(58)

where ψ = 24R2 ρE, µ = 24R2 − 1, η = 1
ρSλSRk

+ 1
ρRλkD2

.
The SOP for secure performance evaluation of whole OMA is given as

OPOMA = 1− (1−OP1−OMA) (1−OP2−OMA) . (59)

Regarding SPSC analysis for an OMA scenario, we have the following equation in similar
computation. We first present SPSC metric at D1 as

POMA
SPSC1 = Pr

(
COMA

x1 > 0
)
= Pr

(
γOMA

SD1,x1 > γOMA
SE1

)
=

1
λE

∫ ∞

0
exp

(
−
(

ρE
ρSλD1

+
1

λE

)
x
)

dx =
ρSλD1

ρEλE + ρSλD1
.

(60)

Furthermore, the expression of SPSC metric can be derived at D2 as

POMA
SPSC2 =

∞∫
0

(1− Fν∗ (−ηy2)) f|hE |2
(x) dx

=
∫ ∞

0

[
1− (1− exp (−ηρEx))k

] 1
λE

exp
(
−x
λE

)
dx

=
1

λE

∫ ∞

0

(
K

∑
k=1

(
K
k

)
(−1)k−1 exp

(
−
(

kηρE +
1

λE

)
x
))

dx

= 1−
K

∑
k=1

(
K
k

)
(−1)k−1 1

kηρEλE + 1
,

(61)

where η = 1
ρSλSRk

+ 1
ρRλkD2

.

6. Numerical Results

In this section, we provide numerical examples to evaluate the secrecy performance of RS-NOMA
under impact of eavesdropper based on two system metrics including SOP and SPSC. Specifically, we
investigate these metrics by considering the effects of transmit SNR, fixed power allocation factors,
the number of relays, channel gains.

As an important parameter of NOMA, the impact of different threshold rates on the SOP
performance of user D1 is simulated in Figure 2. The reason for such observation is that the threshold
rate is the limited secure capacity as performing probability calculation. At high threshold rate,
the performance gap between NOMA and OMA can be observed clearly. In addition, asymptotic
evaluation shows that outage behavior is constant because such outage does not depend on ρS.
This observation can be seen in the following experiments.
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Figure 2. Comparison study on SOP of NOMA and OMA for User D1 versus ρS = ρR as changing R1

(λD1 = λE = 1, ρE = 0 dB, R2 = 1).

Another observation is that the impact of the number of relays selected to forward signal to user
D2. As a further development, Figure 3 plots the SOP of NOMA scheme versus a different number of
relays. As observed from the figure, we can see that the higher number of selected relays also strongly
affect secure performance of RS-NOMA scheme compared with small variations at OMA. The most
important thing is that the RS-NOMA furnishes with K = 5 relay providing remarkable improvement
in secure outage performance. This is due to the fact that there are more chances to achieve improved
signal to serve far NOMA user. This observation confirms a role of relay selection to enhanced secure
performance in the considered RS-NOMA.
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Figure 3. Comparison study on SOP of NOMA and OMA for User D2 versus ρS = ρR as changing K
(λD1 = λD12 = λSRk = λkD2 = λE = 1, ρE = −10 dB, R2 = 1).

Figure 4 plots the outage probability of RS-NOMA and OMA schemes versus SNR for simulation
settings with λE = 1, ρE = 0 dB, R1 = 0.5, R2 = 1. Obviously, the outage probability curves match
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precisely with the Monte Carlo simulation results. In this observation, the performance gap between
NOMA and OMA is small as changing channel gain of link S-D1. This is in contrast with Figure 4,
which shows larger a performance gap between NOMA and OMA for secure consideration at D2.
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λD1= 1 (dB), sim.
λD1= 5 (dB), sim.
λD1 = 10 (dB), sim.

Figure 4. Comparison study on SOP of NOMA and OMA for User D1 versus transmit ρS = ρR as
varying λD1.

In Figure 5, the SOP performance of the RS-NOMA and OMA schemes with different threshold
rates at D2 are compared to provide an impact of the required rates on secure performance. We setup
the main parameters as λD1 = λD12 = λSRk = λkD2 = λE = 1, ρE = −10 dB, K = 1. It can be
seen from both figures that the proposed RS-NOMA scheme can remarkably enhance the secure
performance compared to the OMA scheme. Performance gaps between NOMA and OMA can be
seen clearly at higher threshold rate R2.
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Figure 5. SOP of NOMA and OMA for User D2 versus ρS = ρR as varying R2.
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In Figure 6, we compare the secure performance for the RS-NOMA and OMA schemes with
different strong levels of eavesdroppers. To perform the simulation, the required parameters are
summarized as λD1 = λE = 1, R1 = 0.5, R2 = 1. It can be evidently seen that SOP in the OMA is
better than that in the RS-NOMA scheme. The main reason for this is that the cooperative NOMA
network is sensitive to the relation between the target data rates and power allocation. In a similar
trend, we see the performance gap at user D2 as in Figure 7. In this situation, the simulated parameters
are shown in this case as λD1 = λD12 = λSRk = λkD2 = λE = 1, R2 = 0.5, K = 3. To provide more
insights, the secure performance of the whole system needs be considered. In Figure 8, the curves of
SOP are illustrated to show performance gaps among these cases including User D1, User D2 and the
whole NOMA system.
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Figure 6. Comparison study of SOP for NOMA and OMA for User D1 versus ρS = ρR as varying ρE.
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Figure 7. Comparison study of SOP for NOMA and OMA for User D2 versus ρS = ρR as varying ρE.
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Figure 8. Comparison study of SOP in several cases versus ρS = ρR (λD1 = λD12 = λSRk = λkD2 =

λE = 1, ρE = −8 dB, K = 1, R1 = R2 = 1).

In Figure 9, an optimal value of power allocation factor, i.e., α1 can be checked by a numerical
method. It can be confirmed that our derivation in an approximate manner is similar to numerical
value obtained. This is the guideline for designing NOMA to achieve the lowest outage performance.
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Figure 9. Optimal SOP in several cases with indication of optimal value regarding α1 (λD1 = λD12 =

λSRk = λkD2 = λE = 1, ρE = −5 dB, K = 1, R1 = R2 = 0.5).

In Figure 10, further simulation is performed for consideration at D1; the SPSC performance
versus transmit SNR is presented. As can be seen, at lower SNR regime, SPSC performance between
OMA and NOMA is similar. This observation will change at higher SNR. The strong characterization
of eavesdropper leads to varying SPSC performance. As seen in other simulations, this result verifies
the exactness of the analytical computations presented in the previous section.
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Figure 10. Comparison study of SPSC in several cases versus ρS = ρR at D1 as setting different values
of ρE (λD1 = λE = 1, R1 = 0.5, R2 = 1).

In Figure 11, the curves of SPSC versus transmit SNR at D2 are presented. As can be seen,
the analytical results can match the simulations very well. Obviously, by varying channel gains of
the eavesdropper, the SPSC will be changed. Meanwhile, the performance gap between OMA and
NOMA in such SPSC is linear in the range of SNR from −20 dB to 5 dB and it does not exist if the SNR
is greater than 10 dB. Like previous simulations, this result coincides with the analysis in analytical
computations presented in the previous section.
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Figure 11. SPSC performance in several cases versus ρS = ρR as different choices of ρE (λD1 = λD12 =

λSRk = λkD2 = λE = 1, K = 1, R1 = 0.5,R2 = 1).

7. Conclusions

In this study, the closed-form expressions are derived in a scenario of relaying network deploying
NOMA. In such NOMA, relay in group is selected to evaluate secure performance in situations
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regarding the existence of secrecy probability in such RS-NOMA. In this scenario, we considered
a system with an eavesdropper, multiple-relay, two NOMA users, and a base station. As an
important achievement, the best relay selection criteria was recommended to enhance system secrecy
performance against eavesdropping attacks. By evaluating the effects of various indicators of the
system, we investigated two main metrics, the SPSC and the SOP and then secrecy performance
analysis is achieved. In addition, we further demonstrated the accuracy of the analysis using Monte
Carlo simulations. In addition, we confirmed the advantage of NOMA scheme compared with OMA
at specific values of simulated parameters. For future work, multiple antenna at the base station and
multiple eavesdroppers should be examined together with relaying techniques to illustrate a practical
implementation of RS-NOMA.
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Appendix A

Proof of Proposition A1. We first compute SOP based on the concerned definition as

PNOMA
SOP1 = 1− Pr

(
CNOMA

x1 ≥ R1

)
= 1− Pr

(
1
2

log2

(
min

(
1 + γNOMA

SD1,x1

1 + γNOMA
SE1

,
1 + γNOMA

SD1,x2

1 + γNOMA
SE1

))
≥ R1

)
≈ 1− Pr

(
γNOMA

SD1,x1 ≥ 22R1
(

1 + γNOMA
SE1

)
− 1
)

︸ ︷︷ ︸
X1

Pr
(

γNOMA
SD1,x2 ≥ 22R1

(
1 + γNOMA

SE1

)
− 1
)

︸ ︷︷ ︸
X2

.

(A1)

To compute such outage, X1 can be first calculated as

X1 = Pr

(
|hD1|2 ≥

ϕ1|hE|2 + ψ1

α1ρS

)

=
∫ ∞

0
exp

(
− ϕ1|hE|2 + ψ1

α1ρSλD1

)
1

λE
exp

(
− x

λE

)
dx

=
α1ρSλD1

α1ρSλD1 + ε1λE
exp

(
− ψ1

α1ρSλD1

)
.

(A2)

where ϕ1 = 22R1 α1ρE, ψ1 = 22R1 − 1.
In addition, X2 can be expressed by

X2 = Pr

|hD1|2 ≥
ϕ1|hE|2 + ψ1

ρS

(
α2 − ψ1α1 − ϕ1α1|hE|2

)
 . (A3)

It is noted that strict constraint here is ρS

(
α2 − ψ1α1 − ϕ1α1|hE|2

)
> 0 → |hE|2 < α2−ψ1α1

ϕ1α1
then

X2 can be further computed by

X2 =
∫ α2−ψ1α1

ϕ1α1

0
exp

(
− ϕ1x + ψ1

(α2 − ψ1α1 − ϕ1α1x) ρSλD1

)
1

λE
exp

(
− x

λE

)
dx. (A4)
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Next, new variable can be seen as t1 = α2 − ψ1α1 − ϕ1α1x → x = α2−ψ1α1−t1
ϕ1α1

then X2 can be
re-expressed by

X2 =
1

ϕ1α1λE

∫ α2−ψ1α1

0
exp

(
− α2 − t1

α1t1ρSλD1

)
exp

(
−α2 − ψ1α1 − t1

ϕ1α1λE

)
dt1

=
1

ϕ1α1λE
exp

(
1

α1ρSλD1
− α2 − ψ1α1

ϕ1α1λE

)
U (t1) .

(A5)

After performing simple manipulations, it can be obtained that

PNOMA
SOP1 = 1− α1ρSλD1

(α1ρSλD1 + ϕ1λE) ϕ1α1λE
exp

(
− ψ1

α1ρSλD1
+

1
α1ρSλD1

− α2 − ψ1α1

ϕ1α1λE

)
U (t1) . (A6)

This is end of the proof.

Appendix B

Proof of Proposition A2. From the definition, it can be expressed SOP as

PNOMA
SOP2 = Pr

(
CNOMA

x2 < R2

)
= Pr

(
γNOMA

SD1,x2 < 22R2
(

1 + γNOMA
SE2

)
− 1∪ γNOMA

D12,x2 < 22R2
(

1 + γNOMA
SE2

)
− 1
)

× Pr
(

γNOMA
SRk∗,x2 < 22R2

(
1 + γNOMA

SE2

)
− 1∪ γNOMA

Rk∗D2,x2 < 22R2
(

1 + γNOMA
SE2

)
− 1
)

=
(

1− Pr
(

γNOMA
SD1,x2 ≥ 22R2

(
1 + γNOMA

SE2

)
− 1, γNOMA

D12,x2 ≥ 22R2
(

1 + γNOMA
SE2

)
− 1
))

︸ ︷︷ ︸
Q1

×
K

∏
k=1

(
1− Pr

(
γNOMA

SRk,x2 ≥ 22R2
(

1 + γNOMA
SE2

)
− 1, γNOMA

RkD2,x2 ≥ 22R2
(

1 + γNOMA
SE2

)
− 1
))

︸ ︷︷ ︸
Q2

.

(A7)

In this situation, R1 can be written as

Q1 = 1− Pr
(

γNOMA
SD1,x2 ≥ 22R2

(
1 + γNOMA

SE2

)
− 1, γNOMA

D12,x2 ≥ 22R2
(

1 + γNOMA
SE2

)
− 1
)

= 1− Pr

(
|hD1|2 ≥

ϕ2|hE|2 + ψ2

α2ρS − ψ2α1ρS − ϕ2α1ρS|hE|2

)
︸ ︷︷ ︸

J1

Pr

(
|gD12|2 ≥

ϕ2|hE|2 + ψ2

ρR

)
︸ ︷︷ ︸

J2

. (A8)

This case requires the constraint as α2ρS − ψ2α1ρS − ϕ2α1ρS|hE|2 > 0→ |hE|2 < α2ρS−ψ2α1ρS
ϕ2α1ρS

then
J1 can be expressed by

J1 =
1

λE

∫ α2ρS−ψ2α1ρS
ε2α1ρS

0
exp

(
− ϕ2x + ψ2

(α2ρS − ψ2α1ρS − ϕ2α1ρSx) λD1
− x

λE

)
dx. (A9)

To further computation, we set new variable as t2 = α2ρS − ψ2α1ρS − ϕ2α1ρSx → x =
α2ρS−ψ2α1ρS−t2

ϕ2α1ρS
then it can be expressed by

J1 =
1

ϕ2α1ρSλE
exp

(
1

α1ρSλD1
− α2ρS − ψ2α1ρS

ϕ2α1ρSλE

)
q (t2) . (A10)
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In this step, it can be shown J2 as

J2 = Pr

(
|hD12|2 ≥

ϕ2|hE|2 + ψ2

ρR

)

=
∫ ∞

0
exp

(
− ϕ2x + ψ2

ρRλD12

)
1

λE
exp

(
− x

λE

)
dx

=
ρRλD12

ρRλD12 + ϕ2λE
exp

(
− ψ2

ρRλD12

)
.

(A11)

From (A10) and (A11), it can be obtained R1 as

Q1 = 1− ρRλD12

(ρRλD12 + ϕ2λE) ϕ2α1ρSλE
exp

(
1

α1ρSλD1
− α2ρS − ψ2α1ρS

ϕ2α1ρSλE
− ψ2

ρRλD12

)
q (t2) , (A12)

where ϕ2 = 22R2 α2ρE, ψ2 = 22R2 − 1, q (t2) =
∫ α2ρS−ψ2α1ρS

0 exp
(
− α2ρS

α1ρSt2λD1
+ t2

ϕ2α1ρSλE

)
dt2.

Then, R2 can be calculated as

Q2 =
K

∏
k=1

1− Pr

(
|hSR1|2 ≥

ϕ2|hE|2 + ψ2

α2ρS − ψ2α1ρS − ϕ2α1ρS|hE|2

)
︸ ︷︷ ︸

Y1

Pr

(
|gkD2|2 ≥

ϕ2|hE|2 + ψ2

ρR

)
︸ ︷︷ ︸

Y2

. (A13)

Such outage event need the condition as α2ρS − ψ2α1ρS − ϕ2α1ρS|hE|2 > 0 → |hE|2 < α2−ψ2α1
ϕ2α1

then Y1 can be expressed by

Y1 =
1

λE

∫ α2−ψ2α1
ϕ2α1

0
exp

(
− ϕ2x + ψ2

(α2 − ψ2α1 − ϕ2α1x) ρSλSR1
− x

λE

)
dx. (A14)

Similarly, we set new variable as t3 = α2 − ψ2α1 − ϕ2α1x → x = α2−ψ2α1−t3
ϕ2α1

then it can be
expressed by

Y1 =
1

ϕ2α1λE
exp

(
1

α1ρSλSR1
− α2 − ψ2α1

ϕ2α1λE

)
q (t3) . (A15)

As a result, we have Y2

Y2 =
∫ ∞

0
exp

(
− ϕ2x + ψ2

ρRλkD2

)
1

λE
exp

(
− x

λE

)
dx

=
ρRλkD2

ρRλkD2 + ϕ2λE
exp

(
− ψ2

ρRλkD2

)
.

(A16)

From (A15) and (A17), R2 is rewritten as

Q2 =
K

∏
k=1

(
1− ρRλkD2

(ρRλkD2 + ϕ2λE) ϕ2α1λE
exp

(
1

α1ρSλSR1
− α2 − ψ2α1

ϕ2α1λE
− ψ2

ρRλkD2

)
q (t3)

)
. (A17)

Then, PNOMA
SOP2 can be achieved that

PNOMA
SOP2 =

(
1− ρRλD12

(ρRλD12 + ϕ2λE) ϕ2α1ρSλE
exp

(
1

α1ρSλD1
− α2ρS − ψ2α1ρS

ϕ2α1ρSλE
− ψ2

ρRλD12

)
q (t2)

)
×

K

∏
k=1

(
1− ρRλkD2

(ρRλkD2 + ϕ2λE) ϕ2α1λE
exp

(
1

α1ρSλSR1
− α2 − ψ2α1

ϕ2α1λE
− ψ2

ρRλkD2

)
q (t3)

)
.

(A18)

This is end of the proof.
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