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Abstract: Coprime arrays have shown potential advantages for direction-of-arrival (DOA) estimation
by increasing the number of degrees-of-freedom in the difference coarray domain with fewer physical
sensors. In this paper, a new DOA estimation algorithm for coprime array based on the estimation of
signal parameter via rotational invariance techniques (ESPRIT) is proposed. We firstly derive the
observation vector of the virtual uniform linear array but the covariance matrix of this observation
vector is rank-deficient. Different from the traditional Toeplitz matrix reconstruction method using
the observation vector, we propose a modified Toeplitz matrix reconstruction method using any
non-zero row of the covariance matrix in the virtual uniform linear array. It can be proved in theory
that the reconstructed Toeplitz covariance matrix has full rank. Therefore, the improved ESPRIT
method can be used for DOA estimation without peak searching. Finally, the closed-form solution for
DOA estimation in coprime array is obtained. Compared to the traditional coprime multiple signal
classification (MUSIC) methods, the proposed method circumvents the use of spatial smoothing
technique, which usually results in performance degradation and heavy computational burden.
The effectiveness of the proposed method is demonstrated by numerical examples.

Keywords: direction-of-arrival estimation; degrees-of-freedom; coprime array; Toeplitz covariance
matrix; virtual uniform linear array; ESPRIT

1. Introduction

Direction-of-arrival (DOA) estimation plays a vital role in radar, sonar, wireless communications,
remote sensing and other engineering applications [1–5]. Specially, accurate DOA estimation is
important for monitoring the electromagnetic environment where the signals captured from radars are
usually distorted depending on weather condition. To measure these signal parameters quickly and
precisely, certain techniques combined with artificial neural networks [6,7] and target identification
algorithm [8] have been developed. A large number of DOA estimation methods have been proposed
in the past decades. Multiple signal classification (MUSIC) [9], estimation of signal parameters via
rotational invariance techniques (ESPRIT) [10] and their variants [11–14] are the popular subspace
methods for DOA estimation, which can provide higher resolution performance than the traditional
beamforming [15–18] and time difference estimation algorithms [19]. It is well known that these
methods can detect up to N − 1 sources in a uniform linear array (ULA) with N sensors. If more
sources have to be detected, these methods require more array sensors. As a result, the hardware
cost and the computational burden will be increased significantly. In other words, for the traditional
DOA estimation methods focusing on the ULA geometry, the available degrees-of-freedom (DOFs) are
restricted by the number of array sensors.

Sparse arrays can increase the number of DOFs, which have attracted the attention of many
researchers. Minimum redundancy array [20] and minimum hole array [21] are the two examples of
sparse arrays. In the coarray domain, minimum redundancy array can maximize the number of virtual
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sensors, while minimum hole array can minimize the number of holes. However, the actual positions
of sensors in these two sparse arrays cannot be obtained in analytical form. The nested arrays [22–24]
and coprime arrays [25] have recently been researched. Both array forms have spare geometries.
However, there are mutual coupling effects in the nested arrays because some sensor elements are
placed closely. A coprime array consists of a coprime pair of ULAs with inter-element spacing larger
than half wavelength. Coprime arrays can achieve much more DOFs than the number of physical
sensors, and there is no mutual coupling problem. Therefore, coprime arrays have triggered extensive
research in array signal processing because of its potential advantages. In [26,27], the coprime sensor
arrays are extended in beamforming to achieve peak side lobe attenuation. The general coprime
sampling scheme is proposed in [28] to conduct efficient compression of Toeplitz covariance matrices
for spatial spectrum estimation. In [29], the authors relate the coprime DFT filter banks in array signal
processing to the interpolated finite impulse response filter design. The theory of coprime sampling
has been introduced to multidimensional array design in [30]. Similarly, the advantages of coprime
arrays can also be exploited for DOA estimation.

Some studies have been conducted by utilizing coprime arrays to provide super resolution for
DOA estimation. By combining the estimated results of two decomposed linear subarrays based on the
MUSIC method, the DOA estimation could be achieved for coprime array in [31]. However, the total
spectral search step results in high computational complexity. In order to narrow the search sector,
the authors in [32] propose a partial spectral search algorithm in one-dimensional coprime linear array.
However, the estimation accuracy is not improved compared to the total spectral search algorithm.
In [33], the partial spectral search algorithm has been applied in the two-dimensional coprime planar
array. By using the linear relationship in transformed domain, the DOA of sources can be retrieved in
a small limited sector. However, the high-dimensional computation still requires heavy computational
burden. A fast search-free DOA estimation algorithm for coprime array has been developed in [34].
By projecting the estimated results in two-dimensional plane onto one-dimensional angle region, the
DOA can be estimated by combining the estimated results of two subarrays. However, the methods
mentioned above do not fully utilize the increased DOFs of the coprime array. In order to fully employ
the DOFs contained in coprime array for DOA estimation, a novel method in [35] vectorizes the coprime
array covariance matrix to formulate a larger virtual ULA with widened aperture. Taking the vectorized
coprime array covariance matrix as an observation vector, the spatial smoothing technique is applied
to construct a full-rank covariance matrix for the virtual ULA. Based on the smoothed covariance
matrix, MUSIC algorithm is directly performed to identify more sources. However, the achieved
aperture of the virtual ULA can be significantly reduced due to the implementation of the spatial
smoothing technique, which results in a trade-off between the DOFs and the performance. Moreover,
the computational complexity is greatly increased arising from the spatial smoothing and the spectral
search steps. To use the sparsity of sources in the coprime array, the least absolute shrinkage and
selection operator is exploited to formulate an optimization problem for detecting the DOAs of sources
in [36]. However, the regularization variable is difficult to determine and a fixed number will lead to
spurious estimations in some cases. In addition, the optimization problem has to be solved by using
the optimization programming in high computational cost. Therefore, it is still an urgent task for us to
improve the DOA estimation performance in coprime array with low computational complexity.

In this paper, we have proposed a novel DOA estimation algorithm in the coprime array by using
the ESPRIT-based method. Since the observation vector of the virtual uniform linear array behaves
like single snapshot, the rank of its covariance matrix needs to be restored. Unlike the traditional
Toeplitz matrix reconstruction method [37] using the observation vector, we reconstruct a Toeplitz
covariance matrix using any non-zero row of the covariance matrix in the virtual uniform linear
array. Moreover, the symmetrical structure of the virtual uniform linear array is fully utilized for the
reconstruction. Theoretically, we can prove that the rank of the reconstructed Toeplitz covariance
matrix is full. Due to the avoidance of the spatial smoothing technique in the traditional coprime
MUSIC methods, the available DOFs can be fully utilized and the computational complexity can be
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greatly reduced. Then the modified ESPRIT is adopted for DOA estimation to avoid the predefined
spatial sampling grids and the spectrum searching step. Finally, the closed-form expression for DOA
estimation is obtained. Because of increased DOF in the coprime coarray, the proposed method can
detect more DOA than the ULA with the same number of sensors. Simulated results demonstrate that
the proposed method has higher accuracy and lower computational cost than the existing coprime
array DOA estimation methods.

The remainder of the paper is arranged as follows. In Section 2, we present the coprime array
configuration and the array signal model for DOA estimation. The proposed coprime array DOA
estimation algorithm and the related remarks are described in Section 3. In Section 4, experimental
results and the corresponding discussions are given to verify the effectiveness of the proposed
algorithm. Finally, Section 5 concludes this paper.

2. Problem Formulation

Let us consider a coprime array consisting of two uniform linear subarrays, which is illustrated in
Figure 1. The first subarray contains 2M physical sensors with Nd inter-element spacing, where N and
M are coprime integers and d is set as half of signal wavelength, or λ/2. The other subarray has N
sensors with Md inter-element spacing. The first sensor of these two subarrays can be collocated at
the zeroth position for reference. Consequently, the resulted coprime array has N + 2M − 1 sensors in
total. We assume that the positions of the coprime array sensors are located in the vector:

k = [k1, k2, · · · , kN+2M−1]
T (1)

where k1 = 0 and ki, i = 1, 2, · · · , N + 2M− 1 belong to the following set

S = {Mnd, 0 ≤ n ≤ N − 1} ∪ {Nmd, 0 ≤ m ≤ 2M− 1} (2)
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Figure 1. Illustration of coprime array configuration: (a) the first subarray; (b) the second subarray; (c)
the generated coprime array.

There are P uncorrelated narrowband signals impinging on the coprime array from the far filed
with the directions:

Θ = [θ1, θ2, · · · , θP]
T (3)
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where θp denotes the direction of the p-th signal. The received data vector in the coprime array at time
index t is given by:

x(t) =
P

∑
p=1

a(θp)sp(t) + n(t) (4)

where sp(t) represents the discretized baseband waveform corresponding to the p-th signal with the
direction θp and n(t) is the independent and identically distributed complex white Gaussian noise
with zero mean and variance σ2

nI, where I is the (N + 2M− 1)× (N + 2M− 1) identity matrix. a(θp)

is the steering vector corresponding to the p-th signal with the direction θp, which is defined as:

a(θp) = [e−j(2π/λ)k1 sin θp , · · · , e−j(2π/λ)kN+2M−1 sin θp ]
T

(5)

The theoretical covariance matrix of the coprime array snapshot vector x(t) is expressed as:

R = E{x(t)xH(t)} =
P

∑
p=1

σ2
pa(θp)aH(θp) + σ2

nI (6)

where E{·} is the statistical expectation operator, (·)H is the Hermitian transpose,
{

σ2
p

}P

p=1
are the

powers of the impinging signals. In practice, the theoretical covariance matrix R cannot be available,
which is approximately computed as:

R̂ =
1
T

T

∑
t=1

x(t)xH(t) (7)

where R̂ is called as the sample covariance matrix and T is the number of snapshots. It should be noted
that R̂ converges to R when T tends to infinity. If T is small, the large mismatch between R̂ and R can
degrade the estimation accuracy.

3. Proposed Coprime Array DOA Estimation Method

The theoretical covariance matrix R of the coprime array can be vectorized as the vector:

z = vec(R) = Bp + σ2
ni (8)

where vec(·) is the vectorization operator which stacks all columns of a matrix on top of the another,
p = [σ2

1 , σ2
2 , · · · , σ2

P]
T , i = vec(I), and the matrix B ∈ C(N+2M−1)2×P is given by:

B = [a∗(θ1)⊗ a(θ1), a∗(θ2)⊗ a(θ2), · · · , a∗(θP)⊗ a(θP)] (9)

where (·)∗ is the conjugate operation and ⊗ is the Kronecker product operation. It is interesting
that z, B, p and i in Equation (8) can be respectively regarded as the received signal, array manifold,
waveform vector, and noise components of an augmented virtual array. The entries of a∗(θp)⊗ a(θp)

in matrix B can be denoted as e−j(2π/λ)(km−kn) sin θp , m, n = 1, 2, · · · , N + 2M− 1. In the augmented
virtual array, the virtual sensor positions are included in the set:

Sp = {km − kn, m, n = 1, 2, · · · , N + 2M− 1} (10)

The difference coarray of the coprime array is defined as:

Sc = {±(Mn− Nm)d, 0 ≤ m ≤ 2M− 1, 0 ≤ n ≤ N − 1} (11)
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It has been shown in [35] that a virtual ULA with continuous sensors ranging from (−MN −M +
1)d to (MN + M − 1)d can be extracted from the augmented virtual array. The positions of the virtual
sensors in the virtual ULA are contained in the set:

Sv = {(−Q + 1)d, · · · , 0, · · · , (Q− 1)d} (12)

where Q is given by Q = MN + M. By removing the repeated rows of z and arranging the rest of rows
corresponding to the elements in Sv, the observation vector of the virtual ULA can be expressed as

zv = Bvp + σ2
niv (13)

where Bv ∈ C(2Q−1)×P is the manifold matrix of the virtual ULA whose elements can be denoted
as e−j(2π/λ)x sin θ , x ∈ Sv, θ ∈ Θ. iv consists of zeros except a 1 at the Q-th position. Based on the
observation vector of the virtual ULA zv, the covariance matrix of the observation vector zv can be
written as:

Rv = zvzH
v (14)

Since the observation vector zv behaves like single snapshot in the virtual ULA, the rank of the
covariance matrix Rv is one. Hence, the traditional subspace methods cannot be implemented on the
covariance matrix Rv for DOA estimation. To address this problem, the spatial smoothing technique is
used to build a positive semidefinite matrix with full rank in [35], which can be performed for DOA
estimation. Firstly, the virtual ULA can be divided into Q overlapping subarrays with Q sensors.
Then by using the (Q + 1 − l)-th to (2Q − l)-th rows of zv, the received signal vector of the l-th subarray
is given by:

zvl = Bvlp + σ2
nivl (15)

where Bvl ∈ CQ×P contains the (Q + 1− l)-th to (2Q− l)-th rows of Bv, and ivl contains zeros except for
a 1 at the l-th position. By taking the average of the covariance matrix over all overlapping subarrays,
the spatially smoothed matrix can be calculated as:

Rs =
1
Q

Q

∑
l=1

zvlzH
vl (16)

Since Rs ∈ CQ×Q is a full-rank matrix, the MUSIC algorithm can be directly performed on
Rs for DOA estimation. However, because of the exploitation of the spatial smoothing technique,
the computational complexity is greatly increased, especially when the number of physical sensors
is very large. Besides, the achieved aperture in the virtual ULA can be significantly reduced by the
spatial smoothing technique, which results in performance degradation in the DOA estimation.

Instead of the spatial smoothing technique, we propose a highly accurate and computationally
efficient method to reconstruct a full-rank Toeplitz covariance matrix. For the virtual ULA, the element
of the observation vector zv is denoted as:

zva =
P

∑
p=1

σ2
pe−j(2π/λ)da sin θp + σ2

n ia (17)

where a = (−Q + 1), · · · , 0, · · · , (Q− 1) and ia is given by:

ia =

{
1, a = 0
0, a 6= 0

(18)
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Based on the elements of the observation vector zv, the element of the covariance matrix Rv can
be expressed as:

r(a, b) = E
{

zvaz∗vb
}

=

[
P
∑

p=1
σ2

pe−j(2π/λ)da sin θp + σ2
n ia

]
×
[

P
∑

l=1
σ2

l e−j(2π/λ)db sin θl + σ2
n ib

]∗
=

P
∑

p=1
σ2

pe−j(2π/λ)da sin θp
P
∑

l=1
σ2

l ej(2π/λ)db sin θl + σ2
n ib

P
∑

p=1
σ2

pe−j(2π/λ)da sin θp + σ2
n ia

P
∑

l=1
σ2

l ej(2π/λ)db sin θl + σ4
nδa,b

=
P
∑

l=1
σ2

l ej(2π/λ)db sin θl

[
P
∑

p=1
σ2

pe−j(2π/λ)da sin θp + σ2
n ia

]
+ σ2

n ib
P
∑

p=1
σ2

pe−j(2π/λ)da sin θp + σ4
nδa,b

(19)

where a, b = (−Q + 1), · · · , 0, · · · , (Q− 1). Let us define:

ca,l = σ2
l

[
P

∑
p=1

σ2
pe−j(2π/λ)da sin θp + σ2

n ia

]
(20)

and

ga,b = σ2
n ib

P

∑
p=1

σ2
pe−j(2π/λ)da sin θp (21)

Therefore, r(a, b) in Equation (19) can be further written as:

r(a, b) =
P

∑
l=1

ca,lej(2π/λ)db sin θl + ga,b + σ4
nδa,b (22)

Here, ga,b can be further computed as:

ga,b =

{
ha, b = 0
0, b 6= 0

(23)

with

ha = σ2
n

P

∑
p=1

σ2
pe−j(2π/λ)da sin θp (24)

By using any non-zero row of the covariance matrix Rv, a Toeplitz covariance matrix can be
reconstructed as following:

Rt(a) =


r(a, 0) r(a, 1) · · · r(a, Q− 1)

r(a,−1) r(a, 0) · · · r(a, Q− 2)
...

...
. . .

...
r(a,−Q + 1) r(a,−Q + 2) · · · r(a, 0)


=Atdiag{ca,1, · · · , ca,P}AH

t + haIQ + σ4
nIQ,a

(25)

where IQ is the Q×Q identity matrix and the matrix At is given by

At = [at(θ1), at(θ2), · · · , at(θP)] (26)

with
at(θp) =

[
1, e−j(2π/λ)d sin θp , · · · , e−j(2π/λ)d(Q−1) sin θp

]T
(27)

The matrix IQ,a is denoted as:

IQ,a =

{
IQ, a = 0
0Q, a 6= 0

(28)
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where 0Q is a Q×Q zero matrix. From Equation (20), it can be observed that ca,l 6= 0 for l = 1, · · · , P.
Besides, the matrix At is a Vandermonder matrix according to its definition in (26). Therefore,
the Toeplitz covariance matrix Rt(a) reconstructed in (25) is full-rank, which can offer a large enough
rank to detect the directions of P sources.

Subsequently, we implement the ESPRIT algorithm on the reconstructed Toeplitz covariance
matrix Rt(a) to estimate the directions of sources. An eigendecomposition of the Toeplitz covariance
matrix Rt(a) can be performed as follows:

Rt(a) = UsΛsUH
s + UnΛnUH

n (29)

where Λs contains the P largest eigenvalues of the Toeplitz covariance matrix Rt(a), and its
corresponding eigenvectors are contained in the signal subspace matrix Us. The remaining eigenvalues
and corresponding eigenvectors of the Toeplitz covariance matrix Rt(a) are contained in the diagonal
matrix Λn and the noise subspace matrix Un, respectively.

The Vandermonder matrix At can be partitioned as follows:

At =

[
At1

At(Q, :)

]
=

[
At(1, :)

At2

]
(30)

where At1 comprises of the first Q − 1 rows of the matrix At and At2 comprises of the last Q − 1 rows
of the matrix At. According to the definition of the Vandermonder matrix At in (26), there exists a
rotation matrix Γ satisfying:

At2 = At1Γ (31)

where the rotation matrix Γ is defined as

Γ = diag
{

e−j(2π/λ)d sin θ1 , e−j(2π/λ)d sin θ2 , · · · , e−j(2π/λ)d sin θP
}

(32)

Similarly, the signal subspace matrix Us can be partitioned as:

Us =

[
Us1

Us(Q, :)

]
=

[
Us(1, :)

Us2

]
(33)

where Us1 represents the first Q − 1 rows of the signal subspace matrix Us and Us2 represents the last
Q− 1 rows of the signal subspace matrix Us. Because the columns of the matrix At1 and the columns of
the matrix Us1 span the identical subspace, there exists a nonsingular matrix F satisfying the following
equations:

Us1 = At1F (34)

and
Us2 = At2F = At1ΓF (35)

Based on Equations (34) and (35), we can obtain the following relationship:

F−1ΓF = U+
s1At1ΓF = U+

s1Us2 (36)

where (·)+ denotes the Moore-Penrose inverse.
From Equation (36), it can be observed that Γ and U+

s1Us2 are similar matrices, which should have
the same eigenvalues. It should be noted that the eigenvalues of the rotation matrix Γ can be given by
e−j(2π/λ)d sin θi , i = 1, 2, · · · , P. Therefore, the DOA of the source signals can be estimated from:

θ̂i = arcsin
(
− 1

π
angle(ui)

)
i = 1, 2, · · · , P (37)
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where ui, i = 1, 2, · · · , P are the eigenvalues of U+
s1Us2, and angle(·) represents the phase angle of a

complex number.
The proposed coprime array DOA estimation method is summarized in Table 1. The related

remarks are listed as follows:

Table 1. The proposed coprime array DOA estimation method.

Step 1: Calculate the observation vector zv of the virtual ULA in (13).
Step 2: Compute the covariance matrix Rv of the virtual ULA in (14).
Step 3: Reconstruct the Toeplitz covariance matrix Rt(a) in (25).
Step 4: Perform eigendecomposition on Rt(a) to obtain the matrix Us in (29).
Step 5: Estimate the directions of the sources from (37).

Remark 1. The computational complexity of the proposed coprime array DOA estimation method is
O((N + 2M− 1)2T + Q3 + 3QP2 + 2P3), which is mainly caused by the eigendecomposition of the Toeplitz
covariance matrix Rt(a) with a complexity of O(Q3). The computational complexity of the coprime MUSIC
algorithm [35] mainly lies in the peaking search step with O(Q2 J), where J is the number of hypothetical
angles. In general cases, J � Q is used to ensure the satisfactory resolution performance of the DOA
estimation. Therefore, the proposed method has lower computational complexity than the coprime MUSIC
algorithm [35]. Compared to the sparsity-based DOA estimation method in coprime array [36] with the
complexity of O((N + 2M− 1)2 J), the proposed method also has lower computational cost and does not
encounter the trade-off between the estimation performance and the computational complexity.

Remark 2. The proposed coprime array DOA estimation method has the following advantages. Firstly, compared
to the traditional DOA estimation methods with ULA structure, the coprime array configuration used in the
proposed method can identify more DOAs of sources with limited sensor number due to increased DOFs in the
coarray domain. Secondly, different from the spatial smoothing technique, we use the symmetrical property of the
virtual uniform linear array to construct a full-rank Toeplitz covariance matrix. In such way, the computational
burden can be significantly reduced and the estimation accuracy can be greatly improved. Last but not least, we
derive a closed-form expression for efficiently estimating the DOAs of sources, which circumvents the use of
predefined spatial angular grids and the peaking search step that are employed in traditional coprime MUSIC
and sparsity-based methods. Based on the above advantages, the solutions of the proposed method can be used for
equipment working in real conditions due to fast and precise calculation.

4. Simulation Results

In this section, a coprime array with M = 3 and N = 5 is deployed. In this deployed coprime
array, we assume that the first sensor of two subarrays is collocated at the zeroth position for reference.
Therefore, it is obvious that the deployed coprime array has N + 2M − 1 = 10 physical sensors in total,
whose positions are included at k = [0, 3d, 5d, 6d, 9d, 10d, 12d, 15d, 20d, 25d]T . The unit inter-element
spacing d is set to be half of wavelength.

We compare the performance of the proposed coprime array DOA estimation method with
the partial spectral search method [32], the coprime MUSIC method [35], and the sparsity-based
method [36]. For the partial spectral search method, coprime MUSIC method and sparsity-based
method, the hypothetical angular grids are within [−90◦, 90◦] with the fixed angular step of 0.1◦.
For the sparsity-based method, the regularization variable is set as 0.25 as recommended in [36].
Throughout the simulations, the sensor noise is assumed to be complex white Gaussian noise with
zero mean and unit variance.

In the first example, the resolution ability of the aforementioned methods is examined when the
number of sources is larger than that of physical sensors. Assume that 11 uncorrelated sources with
equal power impinge on the coprime array from −75◦, −60◦, −45◦, −30◦, −15◦, 0◦, 15◦, 30◦, 45◦, 60◦,
75◦. The signal-to-noise ratio (SNR) is equal to 10 dB and the number of snapshots in the coprime
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array is set as T = 300. Although the partial spectral search method calculates the spatial spectra of two
linear subarrays, it does not compute the spatial spectrum of the entire coprime array. Hence, we plot
the estimated DOAs of the partial spectral search method in the entire coprime array in Figure 2a.
Because the increased DOFs in the coprime array are not used, the partial spectral search method
cannot identify the 11 sources completely. We display the spatial spectra of the coprime MUSIC method
and the sparsity-based method in Figure 2b,c, respectively. The coprime MUSIC method can detect
all of the sources because the increased DOFs in the coprime coarray are utilized. There are several
spurious peaks in the spatial spectrum of the sparsity-based method due to the exploitation of the
uncertain regularization variable. For the proposed method, the estimated DOAs versus the source
index are shown in Figure 2d. It can be observed that the proposed method can handle all of the
sources accurately, because the number of available DOFs in the coprime array with N + 2M − 1 = 10
physical sensors is extended to MN + M− 1 = 17. In order to verify the resolution performance of the
proposed method in different trials, Figure 3 presents the estimated DOAs of the above 11 uncorrelated
sources using the proposed method in 50 times Monte-Carlo run. The circles denote the estimated
DOAs, while the dashed lines denote the actual directions. It can be seen that the proposed method is
effective in different trails.
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Figure 2. The resolution performance of each method with coprime array when the number of sources
is larger than that of physical sensors: (a) the partial spectral search method; (b) the coprime MUSIC
method; (c) the sparsity-based method; (d) the proposed method; first example.
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Figure 3. Resolution ability test of the proposed method in different trials; first example.

In the second example, we investigate the estimation accuracy of all methods in terms of the root
mean square error (RMSE) criterion. The RMSE is defined as:

RMSE =

√√√√ 1
VP

V

∑
v=1

P

∑
p=1

(θ̂p,v − θp)
2

(38)

where θ̂p,v is the estimated DOA of the p-th source in the v-th Monte-Carlo trial, and V is the number
of Monte-Carlo trials. In this example, 300 rounds of Monte-Carlo trials are conducted. We assume
that there is one source randomly generated from the angular interval [0◦, 5◦]. Figure 4a displays
the RMSE of the tested methods versus the SNR for fixed training snapshots T = 500. It can be
observed that the RMSE of the proposed method is smaller than that of the remaining methods,
which indicates that the estimation accuracy of the proposed method is better than the remaining
methods. The estimation accuracy of the partial spectral search method, coprime MUISC method and
sparsity-based method is limited by the hypothetical angular step in the predefined sampling region.
On the contrary, the proposed coprime array DOA estimation method does not have such limitations.
The RMSE of the aforementioned methods versus the number of snapshots for fixed SNR = 0 dB is
shown in Figure 4b. The proposed method still enjoys the best performance, which illustrate that
implementing the ESPRIT-like method in the virtual ULA can achieve higher estimation accuracy than
the MUSIC-like methods.

In the third example, we compare the computational complexity of all the coprime array DOA
estimation methods from the aspect of the estimation time. One signal source is assumed to come from
0◦. The SNR and the number of snapshots are set as 10 dB and 500, respectively. 500 Monte-Carlo
runs are performed. The running time of each coprime array DOA estimation method is shown in
Table 2 based on an Intel Core i5-2450M, 4GB RAM laptop. It is obvious that the estimation time of the
proposed method is smaller than that of the other methods, which means that the proposed method
has lower computational cost than the other methods. This is because the proposed method avoids the
spatial smoothing and peaking search steps. The sparsity-based method has the largest running time
and suffers from the heaviest computational burden, since it has to solve the optimization problem
and the spectrum search process is exploited.
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Figure 4. The RMSE performance of all examined methods: (a) RMSE versus the input SNR; (b) RMSE
versus the number of snapshots; second example.

Table 2. Running time of each coprime array DOA estimation method.

Proposed Method Partial Spectral Search Coprime MUSIC Method Sparsity-Based Method

500 runs 0.943 s 44.668 s 34.511 s 1567.693 s
average time 0.002 s 0.089 s 0.069 s 3.135 s

In the fourth example, we test the RMSE performance of different methods when there are more
sources than the physical sensors. We assume that 11 sources are incident on the coprime array from
the directions uniformly distributed in [−50◦, 50◦]. However, the partial spectral search method cannot
detect all of the sources because this method does not use the increased DOFs in the coprime array.
Therefore, we only compare our method with the coprime MUSIC method and the sparsity-based
method in this example. 500 Monte-Carlo trials will be conducted to obtain each point in the curves of
the pictures. The RMSE of the tested methods versus the SNR for fixed training snapshots T = 500 is
plotted in Figure 5a. It can be observed that the RMSE of the proposed method is smaller than that of
the coprime MUSIC method and sparsity-based method, which indicates that the performance of the
proposed method is better than the coprime MUSIC method and sparsity-based method. The RMSE
of the aforementioned methods versus the number of snapshots for fixed SNR = 10 dB is shown in
Figure 5b. As can be seen, the proposed method still outperforms the coprime MUSIC method and the
sparsity-based method when there are more sources than the physical sensors.

In the fifth example, the RMSE performance of the proposed method in different coprime array
configurations is taken into consideration. We assume that the coprime pair (M,N) is respectively set as
(2,3), (3,4), (3,5), (4,5) to form four different coprime array geometries and the other variables are chosen
as the same as the second example. Figure 6a presents the RMSE of the proposed method versus the
SNR for fixed training snapshots T = 100, and Figure 6b shows the RMSE of the proposed method
versus the number of snapshots for fixed SNR = 10 dB. The RMSE of the proposed method decreases as
the input SNR and the number of snapshots increase, which demonstrates that the proposed method
can still achieve satisfactory performance in different coprime array configurations.
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Figure 5. The RMSE performance of the tested methods when there are more sources than the physical
sensors: (a) RMSE versus the input SNR; (b) RMSE versus the number of snapshots; fourth example.
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Figure 6. The RMSE performance of the proposed method in different coprime array configurations:
(a) RMSE versus the input SNR; (b) RMSE versus the number of snapshots; fifth example.

5. Conclusions

We apply the ESPRIT-based method to the symmetrical coprime virtual ULA for DOA estimation.
By using the symmetrical structure of the virtual uniform linear array, a Toeplitz covariance matrix can
be reconstructed with full rank and the spatial smoothing technique can be circumvented. The ESPRIT
method is performed on the reconstructed Toeplitz covariance matrix for DOA estimation without
peak searching and predefined angular grids. Finally, a closed-form solution is obtained to resolve
the sources. Since the DOFs are increased in the coprime coarray domain, the proposed method
can identify more DOAs than the number of physical sensors. The proposed method has improved
performance and reduced computational complexity compared to the traditional coprime array DOA
estimation methods. Computer simulations demonstrate the advantages of the proposed method over
other methods.
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Abbreviations

The following abbreviations are used in this paper:
DOA Direction-of-Arrival
ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques
MUSIC MUltiple SIgnal Classification
ULA Uniform Linear Array
DOF Degrees-of-freedom
SNR Signal-to-Noise Ratio
RMSE Root Mean Square Error
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