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Abstract: The objective of the study was to put forth an interpolation method (the LZ method)
for refining the GNSS-derived precipitable water vapor (PWV) map. We established a regional
weighted mean temperature (Tm) model for this experiment, which introduced a minor difference
into the resultant GNSS-derived PWV compared to the previous Tm models. The kernel of the
LZ method consists of increasing the sample density via the virtual sample points. These virtual
sample points originated from the digital elevation model (DEM) were constructed on the basis of
the statistically significant correlation between PWV and geographical location (i.e., geographical
coordinates and elevation). The LZ method was validated and compared to the conventional
interpolation approach only accounting for the original sample points. The results reflect that
the PWV maps generated by the LZ method showed more details than through conventional one.
In addition, the prediction performance of the LZ method was better than that of the conventional
method by using cross-validation.

Keywords: GNSS remote sensing; precipitable water vapor; weighted mean temperature; digital
elevation model

1. Introduction

Water vapor is a key greenhouse gas and an indispensable component of the water cycle.
Although it accounts for only 0.1% to 3% of the atmosphere, it is one of the most active atmospheric
components [1]. It directly affects the vertical stability of the atmosphere and the formation or evolution
of weather systems and contributes to radiation balance and a series of weather phenomena, such
as cloud formation, rainfall, or snowfall events, by absorbing or releasing massive amounts of latent
heat during phase transition [2]. Water vapor exhibits a complicated spatio-temporal distribution [3].
The accurate detection of the distribution and variation of atmospheric water vapor content can
provide the data necessary to understand weather processes for weather forecasting and meteorology
research [3]. Precipitable water vapor (PWV), the water vapor content of a vertically integrated column
per unit area, is a direct indicator of atmospheric water vapor content and is expressed as the height of
the corresponding equivalent liquid water column in centimeters [4].

The meteorological application of GNSS in the remote sensing of atmospheric water vapor has
been a research hotspot since the early 1990s given the rapid development of GNSS and the extensive
construction of continuous operation reference stations (CORS). The principle of the GNSS-based
PWV retrieval technique was initially proposed by Bevis et al. [3] in 1992. This technique assumes
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that the wet component of atmospheric delays is proportional to PWV. It has attracted considerable
attention since it was first reported because it can provide abundant data with high spatio-temporal
resolution and is suitable for all weather conditions [5]. Many scholars have compared this method
with traditional methods to verify its reliability. Differences among PWV data for North America [6],
Europe [7–9], and Asia [10–12] retrieved from GNSS, radiosonde, and WVR observations were less
than 5 mm. This result indicates that the accuracy of GNSS-derived PWV is comparable with that of
traditional techniques.

In recent years, many studies [13] have concentrated on estimates of weighted mean temperature
(Tm), which is a key parameter in the conversion of zenith wet delay to PWV in GNSS meteorology.
Actually, re-analysis products can provide sufficiently accurate Tm data theoretically. However, the
products have a problem with a time-delay release, cannot meet the real-time demand for Tm data [13].
Therefore, Tm model has been an indispensable part of GNSS meteorology due to it can be used to
calculate Tm values in real time. The current Tm model is mainly divided into two categories, according
to its differences in modeling principles. The first category can be called global model, usually modeled
on the basis of Tm spatiotemporal variations. These models with complex input parameters such as
the geographic coordinates of the points to be computed and UTC time, but they can calculate the
accurate Tm values [14,15]. However, when determining Tm from the global models, no meteorological
data are needed and only the aforementioned parameters are required as input for these models.
This reveals that the global models are very useful for those stations without surface meteorological
sensors. The second category is the regional model, which is modeled on the basis of the relationship
between Tm and surface meteorological elements, is a linear model such as Bevis model [3] and Liu
model [16]. Besides, the previous studies pointed out that the relationship between Tm and surface
meteorological elements is not constant, instead, it varies with location and time [17,18]. This indicates
that the empirical regional model based on local meteorological data will be more accurate for the
regional application. Therefore, in this work, we developed a multifactorial regional Tm model using
the datasets of radiosonde and surface meteorological data in Hong Kong, which was to meet the
needs of the process of obtaining GNSS-derived PWV in Hong Kong.

The latest studies (e.g., [19,20]) have shown that GNSS-derived PWV has considerable potential
applications in precipitation forecasting or meteorological disaster warning. Furthermore, the analysis
of water vapor changing trends or the forecasting of short-term precipitation events requires the
transformation of one-dimensional PWV data from observation networks to two-dimensional data
through spatial interpolation [21]. The spatial interpolation algorithm consists of showing the dynamic
distribution for water vapor within the CORS coverage area by real-time processing the GNSS-derived
PWV of each receiver in the CORS network. Li et al. [20] developed a real-time monitoring and
analytical system for the dynamic spatial and temporal variation characteristics of water vapor. Their
system can track the dynamic variation in water vapor content and forecast small- and medium-scale
extreme weather. However, there is limits the explanation of the PWV interpolation method and
interpolation accuracy. In fact, few studies have focused on the reliability of the interpolation methods
for PWV data. But, quite a few studies have confirmed that the Kriging interpolation method has
good performance for meteorological variables, such as temperature [22], rainfall [23], and wind [24].
Meanwhile, high-density sample points with attributes like PWV as the input of Kriging interpolation
would contribute to generating a more accurate continuous surface [25,26]. Realini et al. [27] found
that even the densest GNSS networks experienced difficulties in providing data with the high spatial
resolution for the detection of local fluctuations in water vapor. Because of economic reasons, it is
unfeasible to further improve the density of GNSS networks. Hence this paper proposed an alternative
method for increasing the sample density with inexpensive digital elevation model (DEM), which does
not require equipment installation and maintenance costs. The DEM points with the three-dimensional
coordinates were used to construct more sample points (i.e., virtual sample points) by multifactorial
fitting equations. Moreover, the parameters of the multifactorial fitting equations are obtained in
terms of the strong correlation between GNSS-derived PWV and the geographic coordinates as well
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as elevations of the original sample observations. In this work, the GNSS-derived PWV from the
Hong Kong region was interpolated through two schemes: Scheme I only applying the PWV data
derived from original stations in Hong Kong GNSS network; and Scheme II that combines the PWV
data in Scheme I with that in the virtual observations. Prediction performances of the two schemes
are evaluated using cross validation. Furthermore, the rationality of the GNSS-derived PWV maps
obtained by the two schemes is assessed by the DEM maps and cumulative precipitation maps in the
study area.

This paper is organized as follows: the study area, permanent GNSS network, and radiosonde
station are described in Section 2. Methods for retrieval of precipitable water vapor, acquisition of
a regional Tm model, DEM point sampling, the establishment of virtual sample points, and spatial
interpolation of PWV are discussed in Section 3. Section 4 presents test results of the proposed regional
Tm model and GNSS-derived PWV spatial interpolation. A summary and discussion are given in
Section 5.

2. Study Area

Hong Kong (HK) is situated in South China. It is located east of the Pearl River Estuary along
the South China Sea. It has a marine subtropical monsoon climate with four distinctive seasons, and
natural hillsides account for approximately 60% of the land area of HK (Figure 1).

2.1. GNSS Network in HK

The HK Satellite Positioning Reference Station Network (SatRef) consists of 18 CORS, including
16 reference stations and two integrated monitoring stations. These stations constantly receive GNSS
data. Observations and meteorological data from these stations are freely downloadable from the HK
Survey & Mapping Office (https://www.geodetic.gov.hk/smo/index.htm) in RINEX format. These
data can be used for high-precision positioning work and as fundamental data for retrieval algorithms
in the remote sensing of tropospheric water vapor content. Water vapor products with high temporal
and spatial resolution can be obtained given the continuous operation of the network and observation
stations throughout HK. In this work, 17 out of 18 stations were selected for analysis and comparison
given the continuity of observational and meteorological data. The details of these sites, including
station name, geodetic coordinates, and elevations, are shown in Table 1.

Table 1. GNSS stations and radiosonde station in HK selected for experiment.

Station Name Longitude E (◦) Latitude N (◦) Height (m)

HKCL 113.91 22.30 7.714
HKKS 114.31 22.37 44.718
HKKT 114.07 22.44 34.576
HKLM 114.12 22.22 8.554
HKLT 114.00 22.41 125.922
HKNP 113.89 22.25 350.672
HKOH 114.23 22.25 166.401
HKPC 114.04 22.28 18.130
HKQT 114.21 22.29 5.178
HKSC 114.14 22.32 20.239
HKSL 113.93 22.37 95.297
HKSS 114.27 22.43 38.714
HKST 114.18 22.40 258.705
HKTK 114.22 22.55 22.533
HKWS 114.34 22.43 63.791

kyc1 114.08 22.28 116.380
T430 114.13 22.49 41.323

King’s Park (45004) 114.17 22.31 66.0

https://www.geodetic.gov.hk/smo/index.htm
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2.2. Radiosonde Station in HK

A radiosonde station managed by the Hong Kong Observatory (HKO) is located in King’s Park
and it launches radiosonde balloons at UTC 0:00 and 12:00 (local time UTC+8) daily. These radiosonde
balloons can rise to approximately 30,000 m heights and record more than 100 layers of data, in the
absence of extreme weather interference. The data include pressure, balloon height, temperature, and
relative humidity.

PWVs obtained from the meteorological data are also provided and the results have a
high-accuracy [8]. However, given that the radiosonde balloons are only launched twice a day,
meaning a 12-hr temporal resolution of the PWVs, which is too low for the monitoring of dynamic
change in water vapor. For improving the accuracy of PWVs, based on a large amount of meteorological
observation data in the HK region, a regional Tm model can be developed.

The station number of King’s Park is 45004, and the sounding data of the station from 1973 to
present could be acquired from the Wyoming Weather Website (http://weather.uwyo.edu/upperair/
seasia.html). The details of the station are shown in Table 1.
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Figure 1. Map of the study area showing the satellite positioning reference stations in HK.

3. Materials and Methods

The PWV retrieval processing flow is shown in Figure 2. The software obtains the zenith
total delay (ZTD) after processing GNSS observations and meteorological data. The empirical
model is used to calculate the zenith hydrostatic delay (ZHD) on the basis of the measured or
interpolated meteorological parameters. The conversion coefficient II is obtained by inputting the
surface meteorological parameters in the regional model for the estimation of the weighted mean
temperature (Tm), which is used for a series of calculations. Then, the PWV is calculated by multiplying
conversion coefficient II with zenith wet delay (ZWD). The details of the above steps are described in
the following sections.

The proposed improved interpolation steps are shown in Figure 3. A series of points with
three-dimensional coordinates, which are selected through the systematic sampling approach from the
point cloud data of the DEM, establish links with original sample points to yield the virtual points
with PWV values on the basis of the correlation between PWV values and geographical location.
The original sample point and the virtual sample are adopted in the spatial interpolation method
applied to construct the GNSS-derived PWV map. Finally, the qualities (i.e., the rationality and
prediction performance) of interpolation is evaluated by actual precipitation map and prediction error
obtained by cross-validation. The following sections describe these processes in detail.

http://weather.uwyo.edu/upperair/ seasia.html
http://weather.uwyo.edu/upperair/ seasia.html
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Figure 3. Flowchart for the comparison of the interpolation performances of the new method (based on
extended virtual PWV sample points) and conventional one (based on original PWV sample points).

3.1. Method for Water Vapor Retrieval

The ground-based GNSS meteorology system is based on the GNSS observation network.
The remote sensing of tropospheric water vapor involves the process of separating ZHD from ZTD
and multiplying the obtained ZWD with conversion coefficient II to finally obtain the PWV value.
These steps are illustrated by Equations (1)–(3):

ZWD = ZTD− ZHD (1)

Π =
106

ρw × Rv × ( k3
Tm

+ k′2)
(2)

PWV = Π× ZWD (3)

where ρw is the density of liquid water (ρw= 1.0g · cm−3) units not italic, and Rv represents the
universal gas constant for water vapor (Rv = 0.4613 J · g−1 · K−1); k′2, k3 are atmospheric physical
constants k′2 = 22.1± 2.2 K · hPa−1, k3 = (3.739± 0.012)× 105 K2 · hPa−1); Tm indicates the weighted
mean temperature in K [3].

ZHD in Equation (1) is calculated by using the Saastamoninen empirical model [28]:

ZHD =
0.002277× P

1− 0.00266× cos(2ϕ)− 0.00028× H
(4)

where P is surface pressure (hPa). φ (rad) and H (km) represent the latitude and geodetic height of
the station, respectively. P can be obtained from rinex meteorological data files that were released
by the station. The value of P for stations that lack meteorological data can be calculated through
interpolation with the global pressure and temperature model. Meanwhile, φ and H can be obtained
from public receiver information.

ZTD in Equation (1) was estimated by using GAMIT software (version 10.6) [29] which is based on
the double-difference model. The close distances between every two stations resulted in short baselines
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that subsequently strengthened the correlation between tropospheric parameters. To weaken this
correlation, the observation data of four international GNSS service (IGS) stations (BJFS, SHAO, URUM,
and LHAZ) were incorporated into the baseline solution [30,31]. In this work, and the remainder of
the solution strategy for ZTD estimation is summarized in Table 2.

Table 2. Solution strategy for obtaining ZTD.

Parameter Strategy

Interval Zen/Number Zen 1/25
Elevation Cutoff 10◦

Mapping Function VMF1

Interval Zen/Number Zen = 1/25 shows that ZTD parameters are estimated per hour. In this
study, the downloaded VMF1 model (ftp://everest.mit.edu//pub/GRIDS/) is adopted as the
mapping function.

3.2. Method for Obtaining Tm

As shown in Equations (2) and (3), Tm is a vital variable to determine the conversion in the process
of ZWD to PWV [3], and it can be calculated with the following equation:

Tm =
∫

(e/T)dz/
∫

(e/T2)dz (5)

where e and T are the water vapor pressure and temperature of each layer of the
atmosphere, respectively.

In fact, a continuous dataset (e.g., temperature) can hardly be acquired in practice, the numerical
integration expressed by Equation (5) is often approximated as:

Tm =

n
∑

i=1
(ei/Ti)× ∆hi

n
∑

i=1
(ei/Ti

2
)× ∆hi

(6)

where hi is the thickness of ith layer atmosphere, and ei and Ti are the water vapor pressure and
temperature of the ith layer atmosphere, respectively.

A regional Tm model for HK can be built on the basis of previous studies [16]. The relevant
method and steps for developing a high accuracy Tm model are described in detail in Section 4.

3.3. Method for DEM Point Sampling

DEM is a continuous surface that represents ground elevation in the form of a series of ordered
numerical arrays [32]. DEM data with a 3 arc-second resolution provided by the NASA Shuttle Radar
Topographic Mission (SRTM, version 3) was adopted in this study. The vertical resolution of the DEM
data was 90 m. The data used in this study are available on the website of the U.S. Geological Survey
(https://dds.cr.usgs.gov/srtm/version2_1/SRTM3/). QGIS software (version: 2.8) [33] was used
to clip out a rectangular area wherein HK was located at 113.80◦E–114.42◦E and 22.15◦N–22.56◦N.
Then, the software was used to transform the clipped data into the xyz grid data format, which is a
three-column matrix that comprises original geographic coordinates of DEM data. In this case, x, y, and
z represent longitude, latitude, and ellipsoidal height, respectively. Next, these data were reorganized
for display, and the SRTM DEM map of the study area is shown in Figure 4.

ftp://everest.mit.edu//pub/GRIDS/
https://dds.cr.usgs.gov/srtm/version2_1/SRTM3/
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Massive amounts of DEM points result in reducing the efficiency of the interpolation algorithm.
However, a series of points with spatial distribution determined by systematic sampling can be
sufficient to illustrate the spatial variability of the research object. Thus, the approach only needs
to extract a certain number of points by setting the appropriate longitude and latitude intervals.
Besides, only the PWV data in the land surface needs to be generated in view of actual interpolation
requirements. In this work, DEM samples were filtered on the basis of the following principles:

(1) Setting the longitude interval to 0.045◦, a series of points were determined.
(2) The latitude interval was set to 0.035◦, and all points within the scope of the study

were determined.
(3) All points in the land area were retained and some points from the oceans were removed on the

basis of the points identified above.

After the above three steps, 98 points with three-dimensional coordinates were specified, as shown
in Figure 5.
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3.4. Method for the Establishment of Virtual Sample Points

Only 17 stations have PWV information (as shown in Figure 1) that can be interpolated for the
construction of water vapor distribution maps for HK. Moreover, the spatial distribution of these
stations was insufficiently dense and uniform and was too coarse to reflect the dynamic fluctuations of
water vapor. Thus, PWV information from existing original sample points to virtual sample points
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with a uniform distribution (Figure 5) must be extended through a reasonable method on the basis of
the relationship between PWV values and the geographical position of 17 original points. The PWV
values calculated with the GNSS observation data and meteorological data of 17 stations for the period
of 0:00 on August 19, 2017 to 0:00 on September 1, 2017 (the sample interval was half an hour and
provided 637 results in total) were compared with their elevation information (referred to ellipsoidal
height in this paper) to explore the correlation between PWV and elevation. Figure 6 shows the
number and percentage of points in the range of correlation coefficients (CCs). The CCs of 70.96%
of the sample points exceeded 0.7, those of the remaining 17.42% were in the range of 0.5 to 0.7, and
those of 11.62% of the sample points were less than 0.5. These results indicate that the PWV values and
station elevation of more than 88% samples were significantly correlated. Therefore, extending PWV
information to virtual sample points based on the correlation between station elevation (or horizontal
position information) and PWV was reliable. The steps involved in extending PWV information are as
follows:

(1) The CCs between station horizontal position (x, y, x2, y2, and xy)/elevation (h and h2) information
and its PWV value were determined. Where x, y, and h represent longitude, latitude, and
elevation, respectively.

(2) Station position parameters (e.g. x, y, and h) with CCs of less than 0.7 were deleted.
(3) The PWV expanding functional model based on the linear or nonlinear relations between PWV

value and station spatial position information was constructed, and parameters were screened
through the stepwise regression method:

PWV = A× B + C (7)

A =



a
b
c
d
e
f
g


, B =



x
x2

y
y2

xy
h
h2


, C =

[
∆x + ∆x2 + ∆y + ∆y2 + ∆xy + ∆h + ∆h2

]
(8)

where [a, b, c, d, e, f , g]′ and
[
∆x + ∆x2 + ∆y + ∆y2 + ∆xy + ∆h + ∆h2

]
are coefficient column

vectors and constant row vectors of variables
[
x, x2, y, y2, xy, h, h2], respectively. Eventually,

the optimal multiple regression equation is deduced by the stepwise method at the significance
level of 0.05.
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3.5. Method for Spatial Interpolation

Spatial interpolation is a common method used to obtain the information at a position within
an unmeasured area and is based on the application of known information from surrounding
stations [34], which are known as sample points. An interpolated value is also called predicted value.
Some techniques, such as inverse distance weighted interpolation, Kriging, natural neighbor, and
two-dimensional minimum curvature spline, are often used in the spatial interpolation. The Kriging
technique is a geostatistical (rather than nondeterministic) approach that generates a continuous
surface that does not pass through all sample points. The prediction provided by the Kriging technique
is an unbiased estimate of the true value with the minimum variance. It has been used in a wide range
of fields for years, including ecology, hydrology, meteorology, and geomatics [35–38]. Based on the
existing research results [34–38] and the high correlation between PWV and elevation, in this study the
co-Kriging (CK) method is adopted for spatial interpolation of PWV. In the case of CK, the predictions
for points is defined as the following linear weighted model:

Z(s0) =
n

∑
i=1

λizi +
m

∑
j=1

bjxj (9)

where Z(s0) is the predicted value at the location s0; zi, xj, i = 1, . . . , n, j = 1, . . . , m represent the values
of the main variable and subvariable at locations i and j, respectively; n and m are the sample sizes
of z and x, respectively; and λi and bj are the CK weights, which depends on the spatial relationship
between the values at the estimation point and the sample point. λi and bj are obtained using the
Lagrange multiplier as follows:

n
∑
i

λiγ
(
zi, zj

)
+

m
∑
i

biγ
(

xi, zj
)
+ µ1 = γ

(
z0, zj

)
n
∑
i

λiγ
(
zi, xj

)
+

m
∑
i

biγ
(
xi, xj

)
+ µ2 = γ

(
z0, xj

)
n
∑
i

λi = 1
n
∑
i

bi = 0

(10)

where γ
(
zi, zj

)
is the value of the variogram between si and sj. Similarly, γ

(
z0, zj

)
is the value of the

variogram between s0 and sj, et al. The dissimilarity between two sample points can be measured
using a variogram, which is a function of the distance and direction of the two points. The values of
{λi} and

{
bj
}

are obtained by solving linear Equation (10) and then substituted into Equation (10) to
interpolate CK at each point.

The prediction accuracy can be validated using the differences between the predicted values and
the measured values at those sample points, because the latter can be assumed as the truth. In addition,
the prediction performance of Kriging interpolation was evaluated by ‘one out’ cross-validation.
The idea consists of removing temporarily one datum at a time from the data set and ‘re-predict’ this
value on the basis of remaining data. Hence the predicted value at each point used to assess the Kriging
interpolation performances comes from the ‘re-predict’. In this study, the statistical quantities used to
evaluate the quality of a set of interpolation results follow:

(1) Mean error (ME) is the averaged difference between the predicted and measured values. Values
close to 0 are preferred. The equation for ME is as follows:

ME =
1
n

n

∑
i=1

(
Ẑ(si)− z(si)

)
(11)
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where Ẑ(si) and z(si) are the predicted and measured values at location Si, respectively, and n is
the number of the sample points.

(2) Root mean square error (RMSE) is also the deviation between the predicted and measured values.
Small RMSE values indicate improved accuracy. This index is calculated as follows:

RMSE =

√
1
n

n

∑
i=1

(
Ẑ(si)− z(si)

)2 (12)

(3) Root mean square standardized error (RMSSE) can be also used to evaluate the quality of a set of
prediction. The value of this factor should be close to 1 if the prediction standard errors are valid.
Values close to 1 are indicative of good prediction accuracy. Equation (13) shows the equation of
this factor:

RMSSE =

√
1
n

n

∑
i=1

[(
Ẑ(si)− z(si)

)2/σ2(si)
]

(13)

where σ2(si) is the variance of the prediction at location Si.

4. Experiments and Results

4.1. Modeling of the Regional Tm for HK

In general, the values of Tm computed by Equation (6) are only taken as the truth for validating.
Besides this the Tm usually obtained by the regional Tm model based on surface meteorological
elements such as surface temperature (Ts). Such model was first proposed by Bevis et al. [3] in 1992,
which was the linear regression model between Tm and Ts (Tm = 70.2+ 0.72Ts) with an RMSE of 4.74 K.
In recent years, many further studies [39] have introduced all the meteorological elements (i.e., Ts,
pressure (P), and water vapor pressure (e)) obtained by the meteorological sensors to build multivariate
regression equations to further improve the accuracy of the regional models. However, the effect of
this approach is not ideal. In this paper, 1454 datasets, including Tm, Ts, P, and e, acquired during the
period of January 1, 2015 to December 31, 2016, were used for modeling the regional Tm model. Tm

results were calculated by the numerical integration method through using daily sounding data. Other
experimental data (Ts, P, and e) were derived from the observations obtained by radiosonde stations.

Table 3 lists the CCs for the relationships between every two elements. It can be found the CCs
between Tm and Ts/P/e were 0.862/0.833/−0.744, respectively. The result reveals that the independent
variable Ts exerted the most intense effect on the dependent variable Tm. This relationship validates
the rationality of the traditional single-factor model that takes Ts as the unique argument. At the same
time, the CCs between each variable exceeded 0.7. The findings indicate that the arguments of the Tm

regression model were not mutually independent and were instead strongly correlated. Hence adding
all meteorological elements into the regression model failed to improve the model prediction accuracy.

Table 3. CCs of various meteorological elements.

CC Tm Ts e P

Tm 1 0.862 0.833 −0.744
Ts 0.862 1 0.926 −0.851
e 0.833 0.926 1 −0.843
P −0.744 −0.851 −0.843 1

JASP software (version 0.9) [40] was adopted to weaken the influence of multiple collinearities
through the stepwise regression method. A total of 1,454 sets of values of Ts, P, and e and their
corresponding Tm values were used to establish the regression model for the experimental period.
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Stepwise regression analysis yielded the following two models that passed the significance test at the
95% confidence level:

1 : Tm = 0.603Ts + 107.632
2 : Tm = 0.447Ts + 0.117e + 150.787

(14)

Equation (14) shows that Model 1 contains the unique independent variable Ts, (K) and the
independent variable of Model 2 includes e (hPa) in addition to Ts.

4.2. Analysis of the Proposed Tm Model

R, R2, and S.E. values derived from regression models are presented in Table 4 and used to validate
the fit of the proposed models. Here, R, R2, and S.E. represent the standard regression coefficient, the
coefficient of determination, and the standardized error of the estimate, respectively. Model 2 had
higher R and R2 values and smaller S.E. values than Model 1. Thus, the fitting precision of Model 2 is
higher than that of Model 1. We choose model 2 that is a multifactorial regional model (named the MR
model in this study) with the better fit to the test data as the proposed new model for the further test.

Table 4. Goodness-of-fit results from the two regression models.

Model R R2 S.E

1 0.862 0.743 1.932
2 0.867 0.752 1.901

Although the MR model fitted the test data well, the prediction ability of the MR model maybe
not better than that of the widely used Bevis model and previous HK regional model (or called Liu
model Tm = 85.63 + 0.668Ts [16,37]). Therefore, assessing the prediction capacity of the proposed
model using recent data is necessary. In this experiment, 180-day radiosonde data for the period from
DOY 1 to 180, 2017 were selected to compute the true value of Tm through the numerical integration
method. The calculation results of the MR model, Liu model, and Bevis model were compared
by using meteorological data at the corresponding sampling time epochs (00Z and 12Z during the
experimental period).

Figure 7 presents the comparison of various models and truth values. Obviously, the pink line
(the MR model) was more consistent with the red line (radiosonde) than both with the blue line (Bevis
model) and yellow line (Liu model). These results indicate that the calculations provided by the MR
model better match the truth value. Moreover, RMSE statistics between the prediction values of the
three models and true values are listed in Table 5. It can be seen the RMSE of the MR model was
lower than that of both Bevis and Liu empirical model. Specifically, the RMSE value of the MR model
decreased by 0.7 K from 3.5 K to 2.8 K compared to Bevis model, which reduced 0.5 K from 3.3 K to
2.8 K than that of Liu model. Thus, the Tm prediction accuracy of the MR model had been improved
by 20% and 15% compared to the Bevis model and Liu model, respectively. Besides, the Tm calculated
using three aforementioned models had errors, and it is necessary to assess the impact of the error
on the accuracy of the resultant PWV. The relative error in the PWV is a commonly used quantity to
evaluate the impact of the error in Tm on its resultant PWV, which is computed by:

∆PWV
PWV

≈ Tm + ∆Tm

Tm
− 1 =

∆Tm

Tm
(15)

where ∆PWV is the error in PWV resulting from the error in Tm and ∆Tm. This is a simplified equation
for calculating the relative error in the PWV. Interested readers can refer to [18] for a detail derivation
process of the equation. Equation (15) reveals that relative error of Tm can approximate the relative
error of PWV. Furthermore, the relative RMSE (named ∆RMSE) of PWV can be calculated using the
equation as follows [18]:

∆RMSE =
RMSE

Tm
(16)
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As shown in Table 5, the ∆RMSE of the MR model (0.9%) is smaller than that of both Bevis model
(1.2%) and Liu model (1.1%). This result shows that the MR model introduced a lower relative error
into the resultant PWV compared with the Bevis model and Liu model. Therefore, the MR model with
high prediction accuracy was applied in the following PWV interpolation experiments.
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Figure 7. Comparison of the Tm time series obtained from the numerical integration method (by using
radiosonde data), the MR model, Liu model, and Bevis model for the period from DOY 1 to DOY 180,
2017. The radiosonde station acquired data at 00Z and 12Z UTC on each day.

Table 5. RMSE and ∆RMSE between Tm results of the MR, Liu and Bevis models from radiosonde
during test time (Unit: K).

Evaluation Indices MR Model Liu Model Bevis Model

RMSE 2.8 3.3 3.5
∆RMSE 0.9% 1.1% 1.2%

4.3. PWV Spatial Interpolation and Precipitation Distribution Maps

Under the influence of typhoon Hato (International number: 1713), a large area in HK received
heavy rainfall from August 22, 2017 to August 23, 2017. In this work, the GNSS observation
and meteorological data of 17 stations at the corresponding time of DOY 234 to 235, 2017 were
selected. Meanwhile, the precipitation data were collected from HKO as the auxiliary information for
validation. The interpolation experiments were implemented in two Schemes, Scheme I, which involves
interpolation using CK method based on the original 17 measured points in SatRef, and Scheme II,
which is the proposed interpolation method (named LZ method in this study) that combines17
measured points with 98 virtual measured points to interpolate by CK.

PWV information retrieved from four selected stations, namely, HKSC, HKCL, HKOH, and HKTK
and the half-hour total precipitation for HK from August 22 to 24, 2017 are shown in Figure 8. The PWV
peaked after a certain period of accumulation, and precipitation occurred after the PWV had decreased
for several hours. The PWV value decreased after an intense precipitation event. Therefore, there is a
certain relationship between PWV and actual precipitation.

As shown in Figure 8, the data for four specific time epochs, including 12:00 and 20:00 on August
22, 2017 and 3:00 and 14:00 on August 23, 2017 were subjected to PWV CK interpolation experiments
with Schemes I and II. Meanwhile, Figure 9 shows the August 2017 precipitation map released by
the HKO. The GNSS-derived PWV distribution maps constructed by the two interpolation schemes
are shown in Figure 10, and Figure 11 shows the cumulative precipitation for the corresponding
time intervals.
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In Figure 10a–h, the PWV distribution maps generated by Schemes I and II indicate that the PWV
in the central area was lower than that in the northern and northwestern fringe areas. Mea3nwhile,
it can be found that the central area with lower PWV values than surrounding parts, however,
its elevation is significantly higher than in others (recall Figure 4). This finding consistent with the
previous research [41] that the PWV tends to decrease with increasing elevation. Similarly, the PWV
in the central of the island in the southwest of HK is relatively lower than other parts in accordance
with Figure 10b,d,f,h. On the contrary, the elevation of the central part is higher than the rest of the
island. Nevertheless, the phenomenon, which the PWV values in the central region are lower than
in the rest part of the island, shown in Figure 10b,d,f,h obtained from Scheme II is not easy to find in
corresponding Figure 10a,c,e,g obtained from Scheme I. In consequence, Scheme I provided the general
distribution map of PWV that was influenced by the sparsity of original sample points. In contrast,
Scheme II, with many virtual sampling points provided the detailed spatial distribution map of PWV.
Furthermore, the interpolation results of Scheme I (in Figure 10a,c,e,g) demonstrated the dynamic
change of PWV during the period (August 22 to 24, 2017). The PWV in the study area was low at 14:00
on August 22, 2017 and reached than 70 mm at 20:00 on the same day. Besides, the PWV was lower in
the central and southern but higher in the northern and northwestern at 3:00 on August 23, before
heavy rainfall. The PWV in HK deeply deceased after heavy rainfall at 14:00 on August 23, 2017. Thus,
the PWV in the central and southwestern was less than that in the northeastern. In addition, the PWV
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map generated by the LZ method (Scheme II) show a similar changing trend and it is significant it has
more details of PWV distribution.
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generated by Scheme I, while graph (b,d,f), and (h) are generated by Scheme II.
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For evaluating the performance, precipitation distribution maps generated by actual cumulative
rainfall was compared with the interpolation results of the two schemes. Figure 11 shows the
distribution of accumulated precipitation in the period from 14:00 to 20:00 on August 22, 2017 and
between 03:00 and 14:00 on August 23, 2017. The total rainfall in the whole study area ranged from
14 mm to 46 mm during the period between 14:00 and 20:00 on August 22 and from 129 mm to 201 mm
during 03:00 to 14:00 on August 23, 2017. Figure 11a shows increased precipitation in the southwestern
islands and northeastern regions, and Figure 11b indicates that precipitation increased in the central
mountainous area and southwestern islands. Besides, Figure 9 provides the rainfall map in August
2017 released by the HKO (isohyets are in mm), which shows that rainfall mainly localized in the
central, northeastern, and southwestern area in the HK. Figures 4 and 9 reveal that the area with
higher elevation results in higher precipitation, and vice versa. In other words, there is a spatial
auto-correlated effect within the precipitation and elevation in the HK. However, we also find that the
area with heavy precipitation (the elevation is higher than the surrounding) has smaller PWV than the
surrounding. The research of Goovaerts [42] may provide an explanation for the phenomenon. Water
vapor (expressed as PWV) condenses due to adiabatic cooling caused by terrain uplifting, eventually
forming precipitation. Therefore, the interpolation results of the two schemes presented in Figure 10
indicates that the PWV distribution interpolated by Scheme II is closer to the real than that interpolated
by Scheme I.

4.4. Error Analysis of the Two Interpolation Schemes

The CK interpolation results of the two schemes for all selected time epochs were cross-validated
in terms of ME, RMSE, and RMSSE to verify the superiority of the proposed method. This approach
aims to verify the fitness of the continuous surfaces generated by two schemes to the 17 original points
with PWV information. Thus, these accuracies performance indicators (ME, RMSE and RMSSE) reflect
the differences between the PWV values estimated in two scheme and GNSS-derived PWV estimated
by GAMIT at each original sample points, and the latter can be assumed as the truth.

The selected time epochs included 14:00 and 20:00 on August 22, 2017 and 03:00 and 14:00 on
August 23, 2017 and were simplified as time epochs 1 to 4. As shown in Table 6, ME and RMSE
values of Scheme II were lower than those of Scheme I, whereas the RMSSE of Scheme II was closer
to 1 than that of Scheme I. The mean ME and RMSE of Scheme I decreased by 0.06 and 3.27 mm
from 0.07/6.47 mm to 0.01/3.20 mm, respectively. The mean RMSSE value of Scheme II was 0.41
lower than that of Scheme I, which was closer to 1. Furthermore, the minimum ME of Scheme I
(0.02 mm) and Scheme II (−0.01 mm) were obtained for time epoch 3. The minimum RMSE values
of both of the two Schemes were 3.23 and 1.61 mm, respectively, and were obtained for time epoch
3. The RMSSE values for time epoch 1 were the closest to 1. Accordingly, the maximum ME and
RMSE of Scheme I were 0.25 and 10.62 mm, respectively, and were obtained for time point epoch 4/2,
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respectively. The maximum ME and RMSE of Scheme II were 0.05 and 5.58 mm, respectively, and
were obtained at time epoch 1/2. Moreover, the RMSSE values of Scheme I for time epoch 3 (1.61 mm)
and Scheme II for time epoch 2 (0.97 mm) were farthest from 1. To summarize, the series of PWV
prediction points calculated by using the proposed method (Scheme II) were in good agreement with
original measurement points. Scheme II provided low ME and RMSE values and RMSSE values close
to 1. These results indicate that the accuracy of Scheme II is higher accuracy than that of Scheme I.
The most outstanding advantage of Scheme II is that the density of input points with PWV as the CK
interpolation algorithm is much denser than that of Scheme I. When the CK interpolation algorithm is
taken to predict value at each unknown point in the study area, there are many more known points of
Scheme II than that of Scheme I.

Table 6. Prediction accuracies of CK in terms of ME, RMSE, and RMSSE resulting from the two schemes
and the selected time epoch (unit: mm).

Time Epoch
ME RMSE RMSSE

Scheme I Scheme II Scheme I Scheme II Scheme I Scheme II

1 0.18 0.05 5.63 3.09 1.25 1.02
2 −0.18 −0.05 10.62 5.58 1.35 0.97
3 0.02 −0.01 3.23 1.61 1.61 1.02
4 0.25 0.02 6.37 2.54 1.47 1.02

Mean 0.07 0.01 6.47 3.20 1.42 1.01

5. Summary and Discussion

In this research, we have proposed a new interpolation method (the LZ method) for refining
the GNSS-derived PWV distribution map. In addition, a multifactorial regional Tm model (the MR
model) for the demand of the LZ method test experiment was proposed. The relative RMSE results
reflect that compared with the previous Tm model (i.e., Bevis model and Liu model), the MR model
induced less difference into the resultant GNSS-derived PWV. The kernel of the LZ method consists of
densifying the sample points by providing virtual sample points. Based on the statistically significant
correlation within PWV and geographic coordinates/elevation at 17 original sample points, PWVs
were extended from the original 17 stations to 98 uniformly distributed DEM virtual sampling points.
Four-time epochs during the period from August 22 to 23, 2017 were selected to check the performance
of the LZ method. The results indicate that the PWV maps generated by the LZ method have more
fact-based details than that through the conventional interpolation method with only 17 original
sampling points. Many more areas in the PWV map have a tendency that the value of PWV decreases
with the increasing elevation. Moreover, the precipitation maps show that there is a positive correlation
between precipitation and elevation in the HK. In additions, all of the accurate indicators (i.e., ME,
RMSE, and RMSSE) show that the LZ method has better performance than the conventional method.

Overall, the LZ method on the basis of the application of virtual sample points resolved the
insufficient horizontal resolution of PWV interpolation results caused by the sparse and uneven
distribution of GNSS stations. Future work is to analyze the accuracy of the proposed approaches
within different weather conditions or in different locations.
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