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Abstract: While ship detection using high-resolution optical satellite images plays an important role
in various civilian fields—including maritime traffic survey and maritime rescue—it is a difficult
task due to influences of the complex background, especially when ships are near to land. In current
literatures, land masking is generally required before ship detection to avoid many false alarms
on land. However, sea–land segmentation not only has the risk of segmentation errors, but also
requires expertise to adjust parameters. In this study, Faster Region-based Convolutional Neural
Network (Faster R-CNN) is applied to detect ships without the need for land masking. We propose an
effective training strategy for the Faster R-CNN by incorporating a large number of images containing
only terrestrial regions as negative samples without any manual marking, which is different from
the selection of negative samples by targeted way in other detection methods. The experiments
using Gaofen-1 satellite (GF-1), Gaofen-2 satellite (GF-2), and Jilin-1 satellite (JL-1) images as testing
datasets under different ship detection conditions were carried out to evaluate the effectiveness of
the proposed strategy in the avoidance of false alarms on land. The results show that the method
incorporating negative sample training can largely reduce false alarms in terrestrial areas, and is
superior in detection performance, algorithm complexity, and time consumption. Compared with the
method based on sea–land segmentation, the proposed method achieves the absolute increment of
70% of the F1-measure, when the image contains large land area such as the GF-1 image, and achieves
the absolute increment of 42.5% for images with complex harbors and many coastal ships, such as
the JL-1 images.

Keywords: ship detection; deep learning; negative sample training; sea–land segmentation;
high-resolution satellite images

1. Introduction

Ship detection plays a critical role in maritime management, dynamic surveillance of harbors,
ship rescue, etc. Remote sensing can efficiently acquire images covering the vast area of ocean,
which provides unique advantages for ship detection at a large-scale. With the development of the
aerospace industry, various countries have rushed to launch high-resolution imaging satellites, and the
capacity of detection equipment mounted on them has also rapidly increased. This means that a large
amount of raw data and good development prospect for ship detection. Due to their large-scale and
high-resolution; however, we must face the challenge of handling more complex and massive data,
including complicated background.
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Kanjira et al. [1] provided a review based on 119 ship detection and classification papers from
1978 to 2017. From the review we can see that there are two main types of methods for traditional
ship detection. One type of method is to extract the preset features such as the shape [2–4], aspect
ratio [5], or area of the connected region after pretreatments including sea–land segmentation. In order
not to lose the details of the object, another type of method is to extract features directly using
all pixels in the image [6]. These two types of features are then used as basic information for
ship detection. In these methods, the performance of ship detection depends on the design of the
features. However, the method of artificially designing specific features is not robust enough to extract
effective features constantly, as well as requiring a very rich professional knowledge, a large amount
of manpower, and material resources. Meanwhile, the method of extracting features using all pixels is
too cumbersome and brings in a large amount of redundant information. Therefore, artificial feature
design is increasingly difficult to adapt to the current situation in which the amount of information
is soaring.

With the development of computer vision, deep learning has achieved the great success in a
wide range of problems in the past few years, such as object detection [7], classification [8,9], and
semantic labeling [10]. In the field of remote sensing, many deep learning-based methods have also
been proposed for object detection [11–17], such as oil tank [12,13], airplane [14,15], and vehicle [16,17].
A great breakthrough has been made in ship detection based on deep learning. Meanwhile, massive
high-resolution images have many detailed texture information, which coincides with the fact that
deep learning requires a large number of training samples and detects objects based on image texture
information. Therefore, it is suitable to adopt the deep learning method to solve the ship detection
problem using large-scale high-resolution optical images.

Deep learning-based ship detection in high-resolution optical images has attracted the attention
of researchers in recent years and achieved a significant improvement. Zhang et al. designed a shallow
neural network for ship detection based on a convolutional neural network (CNN) called S-CNN,
which combines CNN with the ship head model and the ship body model [18]. Some researchers also
designed new methods based on the combination of multiscale rotation region detection and deep
learning [19,20], which had a good effect in the task of detecting densely arranged ships, but it also
caused more false alarms. The current target detection method based on deep neural networks can be
roughly divided into two types. One is the method of region proposal methods [21,22] represented by
Faster R-CNN [21], which generates a set of potential bounding boxes then run classifiers to determine
whether they contain targets. The other one reframes object detection as a regression problem and
predicts coordinates of bounding boxes and class probabilities directly from the image features, such as
You Only Look Once (YOLO) [7] and Single Shot MultiBox Detector (SSD) [23]. The major advantage
of the second type of method is fast detection, yet the limitations are also obvious in which it may
output incorrect localizations and it is hard to detect small targets. Unlike the general objects in the
natural scene images, the size of ships in the remote sensing images is relatively small. Given that
Faster R-CNN is more suitable for small target detection, the study of the detection of ships presented
in this paper is based on Faster R-CNN. Inspired by Faster R-CNN, Yao et al. proposed a method
which used CNN and region proposal network (RPN), in which the anchors were designed by intrinsic
shape of ship targets [24]. However, this method only analyzes the situation of ships on the sea, and
does not consider the complexities of land or harbors.

The deep learning-based methods mentioned above were applied to small images of the harbors
or the sea surface. The majority of traditional ship detection methods were developed using a small
number of images, and mostly the images taken in a calm sea state [1]. Here, it should be noted that
two problems in ship detection for large-scale high-resolution remote sensing images are remained:
the false alarm caused by a large area of nearby land and heterogeneous background of the land [1].
As some land areas share similar intensity and texture distributions to ships, there will be a large
number of false alarms when we detect ships from large-scale remote sensing images [25].



Sensors 2019, 19, 684 3 of 20

Current ship detection methods usually conduct sea–land segmentation before extracting ship
features [25–29] to solve these problems. Following the segmentation, we can use deep network to
extract features of ships. Sea–land segmentation generally has two solutions: using available GIS
layers of coastline and using grayscale and texture information of the images [29]. However, these
two methods have some disadvantages, respectively. When GIS layers is used for segmentation, they
may not be up to date, as the layout of port is constantly adjusted, and the coastline changes with
the seasons. With the improvement of the resolution of optical remote sensing images, the limited
spatial resolution of the existing geo-location information database can no longer meet the demand
for fine sea–land segmentation. Segmentation based on grayscale and texture [30–32] is not only
sensitive to the parameters selected, but also prone to misclassification. Also, segmentation using
grayscale and texture information needs to be performed on the entire image. When we process an
entire image, a large amount of calculate resources and time will be sacrificed. In recent years, the
method of sea–land segmentation based on deep learning also emerges. It can avoid handcrafted
extraction of features, but the detection of the parked ship and the large ship is still challenging [33].
Moreover, the preprocessing steps of sea–land segmentation increase the complexity of the algorithm.

As deep learning is suitable for a large number of images to extract features, it provides high
generality and capacity in target detection [9,19]. Deep learning network uses nontarget objects as
negative samples to learn their texture features. Thus, when nontarget objects of the same category
are subsequently detected, the network is trained to recognize them as background area. Therefore,
another way to remove false alarms is to use the nonship objects that look like ship as negative samples
to train the network. In the previous methods, docks, small islands, and other ship-shaped coastal
buildings were used as negative samples to extract their features to remove false alarms [4,5,28].
To improve the performance of Faster R-CNN, Li et al. proposed hard negatives, which were prone to
be detected falsely by the detector [22]. However, these methods need to specifically select and label
the sensitive negative samples.

To solve the problems mentioned above, this paper proposes a ship detection method which
incorporates negative sample training based on Faster R-CNN for large-scale optical images without
sea–land segmentation. To avoid the false alarm on land, it adds a large number of random negative
sample images (patches) containing only land area to train the network. It is different from the selection
of negative samples by targeted way in other deep learning-based ship detection methods, such as
the method proposed by Jianwei Li et al. [22]. Due to the strong ability of deep learning to extract
features from massive images and convert them into useful information, the false alarm caused by the
land area in the large images can be avoided without the preprocessing of sea–land segmentation. The
proposed method of incorporating negative sample training makes the avoidance of false alarms not
limited to certain types of objects that are more prone to produce false alarms, but all terrestrial objects.

The reminder of this paper is organized as follows. In Section 2, two detection methods based
on deep learning and two sea–land segmentation methods used in this paper for comparison are
detailed. In Section 3, the processing steps of ship detection based on Faster R-CNN incorporating
negative sample training proposed in this paper are presented in detail. Section 4 presents the data
and experiment settings and experimental results. Section 5 discusses the effectiveness of the proposed
negative sample training method based on deep learning with different backgrounds for detection,
and its quantitative comparison with sea–land segmentation. Section 6 draws the conclusions.

2. Related Works

2.1. Related Detection Networks

In this section, we present a brief introduction of Single Shot MultiBox Detector (SSD) [23] and
FPN [34] which are deep learning-based detection methods for comparative experiments.
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2.1.1. SSD: Single Shot MultiBox Detector

SSD is a method for detecting objects in images using a single deep neural network, which
discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios
and scales per feature map location. At prediction time, the network generates scores for the presence
of each object category in each default box and produces adjustments to the box to better match the
object shape.

SSD is simple relative to methods that require object proposals because it completely encapsulates
all computation in a single network. It makes SSD easy to train and fast to detect, and straightforward
to be integrated into systems that require a detection component. However, it has low performance in
detecting small objects, such as ship targets, although it has a fast detection speed.

2.1.2. FPN: Feature Pyramid Networks

FPN is a topdown architecture with lateral connections developed for building high-level semantic
feature maps at all scales, which shows improvement as a generic feature extractor in several natural
image applications based on Faster R-CNN system [19].

FPN uses feature pyramid representations for multiscale problem in natural images, and combines
the high-resolution shallow-layer features and the high-semantic deep-layer features. It provides a
practical solution for research and applications of feature pyramids, without the need of computing
image pyramids.

2.2. Sea–Land Segmentation

Due to the change of coastline, it does not mean that every target scene of remote sensing image
must have corresponding GIS data that is close to its acquisition time. It clearly limits the use of
methods based on GIS data. Also, segmentation based on grayscale and texture is not only sensitive to
the parameters selected, but also consumes a large amount of calculate resources and time. Therefore,
this section introduces a segmentation method based on the deep learning network, fully convolutional
network (FCN) [33].

We use the FCN convolutional neural network as proposed previously [33] and implement it
with TensorFlow. Figure 1 subtly depicts the process of using FCN for segmentation. This method is
divided into four steps.
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Firstly, training set collection. Some optical images of similar resolution are required to adjust the
model by making sea–land segmentation labels of images manually.
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Secondly, is FCN network training. The training set of images and corresponding labels are cut
into chips (1000 × 1000 in this paper), which feed a fully convolutional network to generate a new
model for sea–land segmentation.

Thirdly, land masking using trained model. The images to be detected are divided into small chips
which have the same size as training set. Then, the trained network takes these image chips as input
and produces their labels. Eventually, the cropped labels are put together to obtain the preliminary
sea–land segmentation map.

Fourthly, morphological processing. For an area that is determined to be land by preliminary
segmentation, if the area is smaller than the threshold we set and surrounded by ocean areas, it will be
redetermined as a sea area. In the same way, the areas determined to be oceans which are smaller than
the threshold are redetermined as land area. Refer to the size of the ship on the image, we optimize
the threshold parameters by multiple times. Finally, the segmented image is mapped into the original
image, and the land area is replaced with a value of 0. The ocean area remains unchanged. Thus, the
sea–land segmentation is finished.

3. Proposed Method

The overall processing steps of the deep learning-based ship detection method proposed in this
paper are shown in Figure 2. This section will give a detailed introduction to the Faster R-CNN-based
ship detection network (yellow box) and the reason of effectiveness by using negative sample images
to reduce false alarms in Section 3.1, negative sample training (green dotted box) in Section 3.2, and
network training and detection (red dotted box) in Section 3.3.
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3.1. The Framework of Faster R-CNN-Based Ship Detection

In terms of structure, Faster R-CNN incorporates feature extraction, region proposal, bounding
box regression, and classification into a single network (shown in Figure 3), which greatly improves
the overall performance of the network. There are two main routes: region proposal network (RPN)
stage and fast R-CNN (FRN) stage. RPN stage provides RoIs for FRN stage, and they share the feature
extraction networks (FENs).

From the training image, we assign a binary class label of being a ship or not to each anchor for
training RPNs, and assign a positive label to two kinds of anchors: (1) the box(es) with the highest
Intersection over Union (IoU) with any ground-truth box and (2) the box(es) with an Intersection
over Union (IoU) overlap higher than 0.7 with any ground-truth box. Moreover, a negative label is
assigned to a nonpositive anchor if its IoU ratio is lower than 0.3 for all ground-truth boxes. With these
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definitions, an objective function following the multitask loss in Fast R-CNN [21] is requested to be
minimized. The loss function in this paper is defined as

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, pi

∗) + λ
1

Nreg
∑

i
pi
∗Lreg(ti, ti

∗), (1)

where, i is the index of an anchor in a minibatch and pi is the predicted probability of anchor i being
an object. The ground-truth label pi

∗ = 1 if the anchor is positive and pi
∗ = 0 if the anchor is negative.

ti is a vector representing the 4 parameterized coordinates of the predicted bounding box, and ti
∗ is

that of the ground-truth box associated with a positive anchor.

Lcls(pi, pi
∗) = −lg[pi pi

∗ + (1− Pi
∗)(1− Pi)]. (2)

Lreg(ti, ti
∗) = R(ti − ti

∗). (3)

smoothL1(x) =

{
0.5x2 |x|< 1
|x|−0.5 |x|≥ 1

. (4)

The classification loss Lcls is log loss over two classes (ship vs. not ship), and can be calculated
through Equation (2) [21]. For the regression loss Lreg, which is shown in Equation (3) [21], R is the
robust loss function (smooth L1) in Equation (4) [21]. The two terms are normalized by Ncls and Nreg,
and weighted by a balancing parameter λ.

When the network trains a land-based anchor which is similar to a ship, the ground-truth label
Pi
∗ = 0. According to Equation (2), it can be known that Lcls(pi, pi

∗) = −lg(1− Pi). So that Lcls,
which means the value of the classification loss generated by this anchor, is larger as the larger of pi.
Therefore, it can improve the performance of detecting ship analogs on land, so as to leave out the step
of land–sea segmentation.Sensors 2019, 19, x  6 of 21 
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3.2. Negative Sample Training for Faster R-CNN-Based Ship Detection

Based on the characteristics that deep learning is suitable for a large number of images to extract
features, a large number of images not only proves the generality and significance of methods, but
is also an important factor to increase the detection performance. As described in Section 3.1, the
proposed network based on Faster R-CNN uses images of land areas as negative samples to learn their
texture features. Thus, when land areas are subsequently detected, the network is trained to recognize
them as nonship background area.

Therefore, we input a large number of random negative sample images containing only land area
without any ship targets to train the network to avoid the false alarm on land without the segmentation
of land and sea. In order to reduce the job of labeling negative samples, as shown in Figure 4, our
negative sample image does not contain any ship targets, and the entire image is used as a nonship
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target to train the network. When we label ship targets, the negative sample images are separated from
the positive sample images. So that the negative sample images only need to generate blank labels.
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The flow path of the negative sample training (shown in the green dotted box in Figure 2) can be
divided into the following steps.

(1) Select images. The images used to make positive and negative sample images adopts high spatial
resolution data with resolutions of the level of meters or submeters, and are consistent with the
band of the images to be detected after training the network.

(2) Crop images and pick positive and negative sample images. Crop the images to T × T-size
images. From these images, select N images containing ship targets (as shown in Figure 4a)
to form a positive-sample-image set U = {Ui}N

i=1, and M images that do not contain any ship
targets (as shown in Figure 4b) to form a negative-sample-image set V = {Vi}M

i=1.
(3) Generate labels of positive and negative sample images. Mark the position of ship target in

positive sample images and generate a set of labels W = {Wi}N
i=1 corresponding to the image

set U, where Wi = {(x1t, x2t, y1t, y2t)}Ni
t=1 denotes the set of ship positions in the i-th image of set

U, and Ni denotes the number of ships in the i-th image of set U. (x1t, x2t, y1t, y2t) represents the
coordinate position of the t-th ship in an image. The negative-sample-image set V has no ship
target, so it is not necessary to annotate it; blank labels corresponding to the negative sample
images can be generated directly.

(4) Make datasets. The sets U, V, and W are randomly divided into {U(1), U(2), U(3)},
{V(1), V(2), V(3)}, and {W(1), W(2), W(3)}, respectively, according to a certain proportion. The
set {U(1), V(1), W(1)} represents the training dataset, the set {U(2), V(2), W(2)} represents the
evaluating dataset. Since the network test step is a simulation for subsequent ship detection of
large images, and the assessment of the test result need to be manually identified and calculated,
the test data set only contains the image set {U(3), V(3)}.

(5) Network training. Using the dataset {U(1), V(1), W(1)} to train Faster R-CNN-based network
built according to Section 3.1.
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3.3. Network Training and Detection

Use dataset to train the RPN part and FRN part for the Faster R-CNN-based network was built
according to Figure 3. This network is based on the stochastic gradient descent principle, and adopts
the method to learn shared features via alternating training RPN stage and FRN stage as shown in
Figure 5. The whole process is divided into four steps. The left side of the figure shows the network
before each step of training, and the right side shows the network after each step of training. The entire
network is represented by three small balls of different colors. The same color indicates that this part
of the network has the same parameters.
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(FRN) stage.

As seen from Figure 5, the top three balls on the left represent the network that is initialized by
migration learning before training. The top three balls on the right indicate the network after four steps
of training. The following four lines describe the four-step training in detail. Specifically, in step 1,
ImageNet pretraining model is used to initialize the RPN network parameters (including ball 1 and
ball 2), then the RPN is trained by using the back propagation algorithm and optimized. After training,
the convolutional model shared by RPN and FRN (ball 2), as well as the unique part of the RPN (ball 1),
will be updated (changed color). The training of step 2 is similar to step 1 in training the FPN stage.
In step 3, as it can be seen from the figure, in the network before training, the ball 1 is from step 1 and
the ball 2 is from step 2, which means the shared convolutional model from step 2 and the unique part
of the RPN from step1 are used to initialize. Then, we maintain the parameters of the convolution
layer unchanged, and fine-tune the remaining part of the RPN. During this training process, the shared
convolutional model remains unchanged and is therefore called sharing, while the unique part of the
RPN is changed. The network training in step 4 is similar to step 3.

After the network is trained and the parameters are adjusted to the best, the test part of the dataset
is used for testing. We input the image into the network, and output the target result to the image
when a score greater than a certain threshold score, where 0.5 is defined in this paper.

Finally, when detecting the ship in the image, the large-scale high-resolution images are input
into the trained network block by block according to a certain size (preferably close to the size of the
images used to train the network). In order to prevent the missed detection of the ships which across
the blocks, we leave an overlap of a certain pixel width between blocks. The images are input into
the network for ship detection, and we get the position and confidence of each ship. Ultimately, our
measurement of the performance of its detection also depends on recall and precision of the results.



Sensors 2019, 19, 684 9 of 20

4. Results

In this part, we present the experimental results of our paper in three parts. In Section 4.1,
we present the results of comparative experiments of three deep learning-based detection networks.
In Section 4.2, we combined Faster R-CNN, which shows the best performance in the Section 4.1, with
the negative sample training proposed in this paper to achieve ship detection for large-scale images
without the sea–land segmentation. We also show comparative experimental results of the proposed
method with the FCN sea–land segmentation-based method. Section 4.3 shows a detailed analysis of
different test results for different images.

We used i5-7500 CPU, 16 GB RAM hardware, 6 GB Graphics card of NVIDIA 1060 and the
TensorFlow framework under Linux to carry out these experiments.

4.1. Comparative Experiments of Detection Networks

To the best of our knowledge, there is no public ship dataset available for the methods test.
To facilitate the research, We collected and cut some Gaofen-1 (GF-1) and Gaofen-2 (GF-2) satellite
images to small size and then built them into a dataset including training, evaluating, and test datasets
(as shown in Table 1). Figure 4 shows some images as an example.

Table 1. Information of small image dataset.

The Number of
Negative Sample

Images

The Number of
Positive Sample

Images

The Number
of Ships Size

Satellite and
Spatial

Resolution

The Proportion of
Training, Evaluation,

and Test Images

2303 1282 5160 800 × 800 GF-2 0.81 m
GF-1 2 m 16:4:5

The detection results of SSD, FPN, and Faster R-CNN on our dataset described above are shown
in Table 2. The migration learning method is used on SSD to train sufficient on our dataset.

Table 2. Comparison of ship detection results.

Deep Network for Ship Detection mAP Average Test Time Spent for a
800 × 800 Image (s)

SSD 0.482 0.0596
FPN 0.654 0.1605

Faster R-CNN 0.696 0.1848

Since FPN and Faster R-CNN have similar structures, Res101 network are used in both, and
other training parameters are also the same, for example, batch size (the number of image processed
each time) is 2, learning rate (determine the convergence effect of the model) is 3, and max epochs
(the round numbers of calculate, the larger the value, the easier it is to converge) is 12.

The indicator of the evaluation performance is mAP (the mean average precision) [21]. It can
be seen from the comparison results that although the Faster R-CNN method has a slower detection
speed, the detection performance is the best. Therefore, we choose Faster R-CNN as the basic network
to incorporate negative sample training for ship detection in this paper.

4.2. Results of Negative Sample Training for Faster R-CNN-Based Ship Detection

In order to analyze the influence of different proportions of positive and negative samples on
the detection performance, we used Faster R-CNN, which attained the best detection performance in
the previous comparison, combined with the negative sample training to train four networks with
different proportions of positive and negative samples (as shown in Table 3).
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Table 3. Information of networks training with different proportions of positive and negative
sample images.

The Proportion of Positive and
Negative Sample Images

The Number of Negative
Sample Images

Training
Steps

Training Time
Spent (h)

1:0 0 49,000 21
2:1 645 75,000 32
1:1 1282 53,000 22.5
1:2 2303 140,000 61

Sample images which are shown in the previous section including positive sample images and a
certain amount of negative sample images (as shown in Figure 4b) are used to train the networks. The
four networks are trained until the parameters are close to optimal, that is, the network loss values are
not significantly reduced. The training parameters are introduced in Table 3.

In order to test whether incorporating the negative samples training method proposed in this
paper can reduce the false alarm on land for large images, we collected five large images taken by
GF-1, GF-2, and Jilin-1 (JL-1) satellites. Table 4 and Figure 6 show the information of images.

Table 4. Information of five large images.

Image Name Image Size (Pixels) Satellite Spatial
Resolution

Number of
Ships Image Position

GF-1 21,227 × 21,227 GF-1 2 m 55 Hamburg, Germany (N53.50 E9.80)
GF-2(1) 10,000 × 10,000 GF-2 0.81 m 133 Straits, Singapore (N1.20 E103.80)
GF-2(2) 10,000 × 10,000 GF-2 0.81 m 149 Laem Chabang, Thailand (N13.10 E100.80)
JL-1(1) 16,294 × 16,970 JL-1 0.72 m 287 Tokyo Bay, Japan (N35.41 E139.63)
JL-1(2) 16,294 × 14,294 JL-1 0.72 m 208 Tokyo Bay, Japan (N35.33 E139.60)Sensors 2019, 19, x  11 of 21 
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images on the right are JL-1(1) and JL-1(2).

As shown in Figure 6, the test images we used include GF-2 images sheltered by thin clouds with
the same proportion of the land and sea area, GF-1 images with a large proportion of land areas, and
JL-1 images where the sea area accounts for a large area and the layout of harbors are more complex.
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Afterwards, using the trained networks, we design experiments to compare the method of
negative sample training with a method that uses the same networks to detect ships after preprocessing
of sea–land segmentations of five large images with different resolutions, different sizes, and different
background, including one GF-1 image, two GF-2 images, and two JL-1 images (Figure 7 shows the
experimental results).Sensors 2019, 19, x  12 of 21 

 

 

Figure 7. Images of partial experimental results. The second column represent the results of ship 
detection using networks trained by positive and negative sample images with the proportion of 1:1. 

 

(a) 

 

(b) 

Figure 8. The diagram of judgement used to calculate the test result. (a) Schematic diagram of the 
same ship being detected twice. (b) Schematic diagram of multiple parallel ships being detected only 
once. We considered that only one ship was detected if these conditions occur. 

Figure 7. Images of partial experimental results. The second column represent the results of ship
detection using networks trained by positive and negative sample images with the proportion of 1:1.

We need to identify the image block-by-block when detecting ships in a large-scale image. Thus,
in order to prevent ships from being missed just on the boundary between blocks, we set a 200-pixel
overlap between each block. However, this also aggravates the situation that the same ship is repeatedly
detected, as shown in Figure 8a. In this case, when we calculate the recall and precision, we considered
that only one ship was detected. If there is only one exterior matrix for the parallel ships in the test
results as shown in Figure 8b, we also think that the network only detected one ship.
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Figure 8. The diagram of judgement used to calculate the test result. (a) Schematic diagram of the
same ship being detected twice. (b) Schematic diagram of multiple parallel ships being detected only
once. We considered that only one ship was detected if these conditions occur.

4.3. Comparison by Using Different Images

In our experiments, the commonly used indicators are calculated for measuring the performance
of ship detection: recall (R), precision (P), and F1-measure (F) [19]. At the same time, we recorded the
time required for the experiment. Tables 5–9 show the detection performance and the time consumption
of detections. From Figure 7, we can see that there are some differences in the detection results of the
five images. We will introduce them separately.

Table 5. Results and time spent of detection of the GF-1 image.

The Proportion

Non-Sea-Land Segmentation FCN-Based Segmentation

Time (s)
Detection Result

Time (s)
Detection Result

R P F R P F

1:0 1497 0.385 0.045 0.081 117,683 0.034 0.216 0.059

2:1 1463 0.745 0.757 0.751 118,975 0.195 0.311 0.240

1:1 1470 0.755 0.764 0.759 116,984 0.103 0.461 0.168

1:2 1472 0.707 0.788 0.745 118,559 0.103 0.461 0.168

Table 6. Results and time spent of detection of the first GF-2 image.

The Proportion

Non-Sea–Land Segmentation FCN-Based Segmentation

Time (s)
Detection Result

Time (s)
Detection Result

R P F R P F

1:0 556 0.970 0.891 0.929 12,596 0.933 0.942 0.937

2:1 550 0.972 0.928 0.949 12,258 0.937 0.942 0.939

1:1 527 0.986 0.892 0.937 11,769 0.893 0.935 0.914

1:2 509 0.992 0.942 0.966 12,561 0.830 0.940 0.882

(1) Panchromatic GF-1 image with a spatial resolution of 2 m and size of 21,227 × 21,227.

Since the spatial resolution of the GF-1 image is large and the water area contained in the image
is only rivers, where ships in river are relatively small, the detection performance of the image is
worse (as shown in Table 5). This image contains a large proportion of land areas, so that the method
incorporating negative sample training avoids most false alarms from the land. Therefore, a Faster
R-CNN-based ship detection network with negative sample training has been greatly improved
compared to network which is trained without negative samples; and due to the large proportion
of land area, it can be seen that networks which add more negative samples have better detection
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performance. As the large area of the image, a large amount of time is consumed in the sea–land
segmentation process, and the detection performance of the sea–land segmentation method are not
very good due to the poor separation effect between the river and the land. Figure 9 shows the
detection results of the partial region of the GF-1 image.

Table 7. Results and time spent for detection of the second GF-2 image.

The Proportion

Non-Sea–Land Segmentation FCN-Based Segmentation

Time (s)
Detection Result

Time (s)
Detection Result

R P F R P F

1:0 547 0.984 0.685 0.808 2756 0.813 0.982 0.890

2:1 542 0.987 0.871 0.925 2759 0.887 0.973 0.928

1:1 512 0.979 0.894 0.935 2416 0.867 0.985 0.922

1:2 494 0.972 0.884 0.926 2433 0.891 0.963 0.926

Table 8. Results and time spent of detection of the first JL-1 image.

The Proportion

Non-Sea–Land Segmentation FCN-Based Segmentation

Time (s)
Detection Result

Time (s)
Detection Result

R P F R P F

1:0 1740 0.970 0.885 0.926 35,245 0.374 0.953 0.537

2:1 1619 0.987 0.938 0.962 35,855 0.354 0.924 0.512

1:1 1580 0.980 0.930 0.954 34,216 0.325 0.945 0.484

1:2 1576 0.976 0.909 0.941 37,758 0.311 0.928 0.466

Table 9. Results and time spent of detection of the second JL-1 image.

The Proportion

Non-Sea–Land Segmentation FCN-Based Segmentation

Time (s)
Detection Result

Time (s)
Detection Result

R P F R P F

1:0 1742 0.974 0.841 0.903 36,418 0.817 0.924 0.867

2:1 1625 0.974 0.895 0.933 38,524 0.824 0.945 0.880

1:1 1595 0.961 0.864 0.910 37,581 0.807 0.922 0.861

1:2 1585 0.971 0.821 0.890 35,526 0.804 0.928 0.862
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(2) The first panchromatic GF-2 image with a spatial resolution of 0.81 m and size of 10,000 × 10,000.

The first GF-2 image has obvious sea–land boundaries, higher resolution and small image size,
and almost no ships on the coast, so that the detection performance of the image are all better than
those of GF-1 (as shown in Table 6). The method incorporating negative sample training has only a
small advantage in the detection performance. In the networks training with different positive and
negative sample proportions, the network with the proportion of 1:2 has advantages in the detection
performance. The detecting results of the partial region of the first panchromatic GF-2 image are
shown in Figure 10. It can be seen that the sea–land segmentation method divides the coastal ship
into terrestrial areas, which results in missed detection. Therefore, the method based on sea–land
segmentation has a low recall.
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Figure 10. The detection results of the partial region of the GF-2(1) image. (a) Test results using
network with a proportion of positive to negative samples of 1:1. (b) Test results using network with a
proportion of positive to negative samples of 1:1 after FCN-based segmentation.

(3) The second panchromatic GF-2 image with a spatial resolution of 0.81 m and size of 10,000 × 10,000.

The second GF-2 image is covered by large thin clouds, so that the sea-land boundary is blurred.
Since the network training without negative samples lacks training of more ships’ resemblances on
land, it will be judged as the ship target when encountering a misty object on the shore. Therefore, the
precision of the network training without negative samples is significantly lower than other networks
(as shown in Table 7). It can be seen from the third line of Figure 7 that the FCN-based method has a
better segmentation performance around harbors. Since the sea–land segmentation method completely
shields the blurred objects on land, the precision of method based on sea–land segmentation is higher.
However, coastal ships are also missed because they are misclassified into land area, which causes low
recall for the method based on sea–land segmentation. The detection result of the partial region of the
second GF-2 image is shown in Figure 11.

(4) Two panchromatic JL-1 images with a spatial resolution of 0.72 m and size of 16,294 × 16,970.

The two JL-1 images used in the experiment are images with complex environment around the
port and high-resolution with a large proportion of the sea surface. It can be seen from the experimental
results that since the land area is small; whether or not adding the negative sample to train the network
has little effect on the experimental results (as shown in Tables 8 and 9). Additionally, the network
which adds less negative sample images can achieve better detection performance. However, due
to the complicated environment around the port, too many shore ships lead to too many missed
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detections, which reduce its recall, using the sea–land segmentation method. The detecting results of
the partial region of the two JL-1 images are shown in Figure 12.
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5. Discussion

According to Figure 7 and Tables 5–9, we analyzed the experimental results in two parts:
the first part discusses the overall comparison of proposed method and other methods for deep
learning-based ship detection; the second part presents an analysis of suitable detection methods for
different backgrounds.

5.1. Overall Comparison of Negative Sample Training and Others Based on R-CNN

As can be seen from the results section, although the deep learning-based sea–land segmentation
method can avoid handcrafted extraction of features, it still has some inherent defects like traditional
sea–land segmentation methods, such as the omission caused by dividing the landing ship and
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the large ship into terrestrial areas, the blurred coastline caused by clouds, and so on. Moreover,
the preprocessing steps of sea–land segmentation increase the complexity of the algorithm. The
non-negative sample method without sea–land segmentation preprocessing also degrades its detection
performance due to false alarms caused by land area. This part quantitatively analyzes the experimental
results with the R-CNN-based methods of negative sample training, non-negative sample training,
and FCN-based sea–land segmentation for ship detection.

At the same time, a comparative experiment based on RPN with Zeiler and Fergus model (ZF)
for ship detection, proposed by Kaikai et al. [24], is added. We implement this method with same
hardware, software environment, and parameters required for training (Anchor scales of [0.25, 0.5, 1.0,
2.0], IoU of 0.5), and use the migration learning method to train sufficient on our dataset. After that, we
tested the five large images using this method.

Since F1-measure is an indicator which combines the recall and precision for comprehensively
reflecting the overall detection performance. For the large images used in this paper, we calculated
the F1-measure and drawn into a bar graph to more intuitively demonstrate the detection capabilities
(as shown in Figure 13).
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learning-based ship detection.

It can be seen from Figure 13 that the proposed method mostly can get better performance than
others. Specifically, for images that contain large land area such as the GF-1 image, due to the proposed
method reduces the false alarm caused by land and the sea–land segmentation method cannot get
segmentation results with high accuracy in river region, the proposed method has a great improvement
in detection performance and the absolute increment of F1-measure of our method can reach 70%
compared to the ship detection method using FCN for sea–land segmentation. For images with simple
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coastlines and few coastal ships such as the GF-2 images, the F1-measure of our method is slightly
better or equivalent to other methods. For images with complex harbors and many coastal ships, such
as the JL-1 images, since methods based on sea–land segmentation are likely to cause missed detection
of coastal ships, the absolute increment of F1-measure of our method can reach 42.5% compared to
method based on sea–land segmentation. Moreover, the detection performance of the Faster R-CNN
method using the Res101 network as the feature extraction network is better than the method using
the ZF network as the feature extraction network proposed by Kaikai et al. [24]. From the experimental
results of different images, it can be concluded that the proposed method has advantages in detection
performance and robustness.

From the perspective of time consumption, the sea–land segmentation process takes a lot of time.
The resulting images of sea–land segmentation obtained by preliminary segmentation methods need
to be filled using mathematical morphology methods, so as to obtain the final complete sea–land
segmentation results. Moreover, the method of sea–land segmentation preprocessing needs to divide
the ship detection into two steps: preprocessing and detection. A larger image requires not only more
computing time, but also more requirements for computer storage.

Therefore, the method incorporating negative sample training has advantages in terms of
algorithm complexity, robustness, detection performance, and time consumption compared to the
method of using sea–land segmentation preprocessing.

5.2. Comparison of Different Backgrounds

To different backgrounds for detection, the detection performance of different methods are
different, so it is important to choose a suitable and robust detection method.

(1) Harbor

As can be seen from Figures 10 and 12, the sea–land segmentation method is disadvantageous for
ships in harbor. It can easily detect the docked ship as a land area which results in missed detection.
The consequence of the miss of ship detection is very serious. Therefore, it is not recommended to
adopt the sea–land segmentation method for the images containing complicated harbor.

(2) Land

According to Figure 9, in the case of a large area land of nonharbor, quantity false alarms will
occur if the network training without a large number of negative samples. From Table 5, the GF-1
image that contains the large area nonharbor land shows that the method incorporating negative
sample training can greatly improve the detection precision.

(3) Sea surface

For the sea surface background, the above methods can all achieve good performance.

(4) Rivers

Due to the complicated situation near the river, the boundaries of sea–land segmentation are not
obvious and the sea–land segmentation performance is not very good. The rivers usually pass through
a large number of land area, therefore, for the background of river regions, the method incorporating
negative sample training is till recommended.

(5) Clouds

In the case of thin cloud cover, such as Figure 11, due to the unclear outline of the object in the
land area, there will be some false alarms in the land area without sea–land segmentation. Since the
sea–land segmentation method completely shields the blurred objects on land, the precision of the
method based on sea–land segmentation is higher. But the sea–land segmentation method is still not
good for handling the question of coastal ship. Due to the thin cloud, the coastline becomes more
blurred. It increases the difficulty of sea–land segmentation and makes the performance of sea–land
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segmentation worse. At this time, if there is a missed detection on the coastal ship, the recall rate will
be lower using sea–land segmentation. Therefore, in the case where the image is covered by thin cloud,
these methods should be selectively chosen according to specific condition.

6. Conclusions

To avoid false alarms on land for deep learning-based ship detection, this paper proposes a ship
detection method based on Faster R-CNN for large-scale optical images without sea–land segmentation.
The proposed method adds a large number of images containing only land area without any ship
targets as negative samples to avoid the false alarm on land, which is different from the selection
of negative samples by targeted way in other detection methods. We designed experiments using
the GF-1, GF-2, and JL-1 satellite images as testing images with different ship detection conditions
to evaluate the effectiveness of the proposed strategy and compare with method based on sea–land
segmentation. Based on the analysis of experimental results, the following conclusions can be obtained.

(1) The method incorporating negative sample training can almost achieve no false alarms in
terrestrial areas without increasing labor, and is superior in detection performance, algorithm
complexity, robustness, and time consumption than that of using sea–land segmentation, and can
also adapt to various ship detection environments.

(2) Taking images in the paper as an example, for images that contain large land area such as the
GF-1 image, the absolute increment of F1-measure in our method can reach 70%. For images with
simple coastlines and few coastal ships such as the GF-2 images, the F1-measure of our method is
slightly better or equivalent to other methods. And, for images with complex harbors and many
coastal ships such as the JL-1 images, the absolute increment in F1-measure of our method can
reach 42.5% compared to method based on sea–land segmentation.

(3) The proportion of sea to land of image area has an impact on the network detection performance.
It is wise to choose a similar proportion of negative sample images based on the proportion of
land area.

However, the test performance of the method incorporating negative sample training still have
room for improvement. The possible future research directions are as follows.

(1) For smaller ships with wakes that have a faster moving speed on the sea surface, the network has
a high rate of omission ratio. This question should be considered in the future works.

(2) As the region proposal of positive direction is not very effective in the task of detecting densely
arranged ships, we will consider ship detection with rotation region proposal in the future.

(3) Design deep learning networks that are more suitable for small target detection to improve the
precision of object detection.
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