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Abstract: This paper presents a systematic review of the perception systems and simulators for 

autonomous vehicles (AV). This work has been divided into three parts. In the first part, perception 

systems are categorized as environment perception systems and positioning estimation systems. 

The paper presents the physical fundamentals, principle functioning, and electromagnetic spectrum 

used to operate the most common sensors used in perception systems (ultrasonic, RADAR, LiDAR, 

cameras, IMU, GNSS, RTK, etc.). Furthermore, their strengths and weaknesses are shown, and the 

quantification of their features using spider charts will allow proper selection of different sensors 

depending on 11 features. In the second part, the main elements to be taken into account in the 

simulation of a perception system of an AV are presented. For this purpose, the paper describes 

simulators for model-based development, the main game engines that can be used for simulation, 

simulators from the robotics field, and lastly simulators used specifically for AV. Finally, the current 

state of regulations that are being applied in different countries around the world on issues 

concerning the implementation of autonomous vehicles is presented. 
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1. Introduction 

Rapid advances in electronics, information, and communications technology (leading to 

miniaturization and improvement of computers, sensors and networking performance) have given 

rise to the development of several autonomous vehicles (AV) technologies [1]. UCSUSA [2] defines 

autonomous vehicles as follows: “Self-driving vehicles as cars or trucks in which human drivers are 

never required to take control to safely operate the vehicle. Also known as autonomous or 

“driverless” cars, they combine sensors and software to control, navigate, and drive the vehicle.” For 

Thrun [3], an AV is “an unmanned vehicle that is capable of sensing its environment and navigating 

without human input”. However, the standard way to discuss autonomous vehicles is to talk about 

“self-driving levels”, as defined by the SAE (Society of Automotive Engineers) [4]. The SAE, which is 

an automobile standardization agency, divided the autonomous driving capacity of a vehicle into six 

levels, from the most basic systems to 100% autonomous driving. These levels help measure how 

advanced the technology of a certain autonomous car is. This has opened up numerous fields of 

research and development that, although end up being interconnected, correspond to very diverse 

areas. 

In parallel to this evolution, the processes and procedures (function requirements and 

regulations) established for testing AV functions have also been developed and established over the 

previous decades. There, however, are concerns regarding the possible consequences of such a 

technology, especially with regard to peoples’ safety, mechanical failures that may cause crash and 

the costs of such an incident. To guarantee that an AV is safe and to reduce costs, different scenarios 

must be modelled and tested. Systematic testing of autonomous vehicles can be performed in 
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simulation or in the physical world. Physical tests offer real testing scenarios, and engineers can use 

actual vehicles instead of models. However, regulations restrict the use of these vehicles in cities; 

thus, to perform tests with real AVs, one needs access to expensive hardware and field tests, which 

consume a considerable amount of time. According to recently published reports [5,6], it is impossible 

to perform empirical field tests that verify the safety of autonomous cars in a reasonable timeframe. 

In this context, simulation, modelling and testing has the potential to fill the gap and enable rigorous, 

controlled, and timely evaluation AV systems.  

The research community recognizes three types of simulations [7]: live, virtual, and constructive 

(LVC). A live simulation is simply an operational test, with sensors used to identify which systems 

have been damaged by simulated firings, using real forces and real equipment. It is the closest 

exercise to real use. A virtual simulation ("X-in-the-loop") might test a complete system prototype 

with stimuli produced either by a computer or otherwise artificially generated. This sort of exercise 

is typical of a developmental test. A constructive simulation is a computer-only representation of a 

system or systems. Therefore, a simulation can vary from operational tests to a fully computer-

generated representation (i.e., no system components involved) of how a system will react to multiple 

inputs. It can be used for several purposes: (1) The design and evaluation of operational and 

development tests; (2) simulation, taking into account the levels of system aggregation, modeling 

level of the individual components of a system (for example, the system software), or modeling level 

of the system as a whole—to model a complete prototype and model multiple system interactions 

(i.e. a RADAR component with the rest of the system). 

However, as is exposed in [8], the first thing that must be taken into account is the type of 

characteristics or systems that can be tested through simulation (see Figure 1). In this work, we focus 

on the perception of autonomous vehicles as offering greater autonomy and complexity, emphasizing 

on their subsystems [9]: Environmental perception, and localization.  

 

Figure 1. Typical autonomous vehicle system. 

In this paper, we present a systematic literature review on simulators applied to system 

perception in autonomous vehicles. For this, the technological and legacy aspects involved in the 

development of AVs are presented in detail, specifying the different alternatives available to simulate 

and test each of the subsystems. 

The paper is organized as follows: Section 2 and 3 detail the technologies habitually engaged to 

capture information from the environment and to estimate position of the autonomous vehicles. 

Section 4 discusses the current fusion technics used to combined information from the perception 

systems. Section 5 carries out an exhaustive collection of tools and platforms capable of performing 

simulation tasks in the AV ambit. Section 6 shows the current state of legislation with regard to the 

legal aspects of autonomous driving and testing possibilities of AV in different countries. Section 7 

presents our conclusions. 
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2. Environment Perception System 

An autonomous vehicle acquires knowledge of its surrounding in two stages. The first stage 

consists of scanning the road ahead to detect possible changes in driving conditions (traffic lights and 

signs, pedestrian crossing, and barriers, among others). The second stage relates to the perception of 

other vehicles. 

This section presents the most representative sensors that make up the perception systems of 

AVs: Ultrasonic, RADAR, LiDAR, cameras, IMU, GNSS, and RTK. There are numerous informative 

and scientific articles or books that show the types of sensors used in AVs, their applications, as well 

as their advantages and disadvantages. These works portray the sensors as black boxes, formed by a 

set of inputs and outputs, without delving into the physical foundations of their operation. As a novel 

aspect of this work, these sensors are presented from a point of view of the electromagnetic spectrum 

that they actively or passively use for their operation. This will allow researchers to acquire a deeper 

knowledge of the benefits and disadvantages of these sensors in degraded environments or adverse 

weather conditions. In Figure 2, the electromagnetic spectrum is divided into two scales: 

Wavelengths and frequencies. In addition, the spectral ranges used by the sensors analysed in this 

work are shown. 

 

Figure 2. An overview of different spectra used for perception systems in autonomous vehicles. 

2.1. Ultrasonic Sensor 

As its name indicates, ultrasonic sensors use sonic waves, in the range of 20 kHz to  

40 kHz, generated by a magnetoresistive membrane, to measure the distance to an object. Its principle 

of operation is based on the measurement of the time of flight (ToF) of the sonic wave from when it 

is emitted until the echo is received:  

� =
�

2
× ToF (1) 

The c velocity of the wave is in meters per second and ToF is time of flight in seconds. 

These sensors are usually used in industrial environments for the measurement of height in 

storage of all types of raw materials. In vehicles, they are used in parking systems or as short distance 

measurement sensors at low speeds (Figure 3a and b). These low-cost sensors produce good results 

when measuring distances with any material, independent of its colour, in dusty environments or in 

adverse weather conditions (humidity or rain). Disadvantages of these sensors include a tendency to 
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produce false positives by bouncing, and a blind zone (blanking) in the measurements, located 

between the sender element of the sensor and the minimum range. 

(a) (b) 

Figure 3. (a) Ultrasonic car sensors from Bosch; (b) an assistance parking system from Audi. 

2.2. RADAR (Radio Detection and Ranging) 

Radar systems work in wavelengths of the order of millimetres; these are used in a wide variety 

of military and civil applications, such as aerial or terrestrial threat detection systems, shooting 

systems, and airports or meteorological systems. The emergence of smart vehicles and the need to 

increase road safety have triggered the use of this type of device in the automotive sector. Radar 

systems for intelligent vehicles work at frequencies of 24/77/79 GHz, known as millimetre wave radar 

(MMW). The radar measures the distance between the emitter and the object by calculating the time 

of flight of the emitted signal and the received echo. The radars not only allow the detection of the 

distance to several targets, but are also capable of accurately supplying the direction and speed of the 

targets. The new radars for vehicles use an array of micro antennas capable of generating a set of 

lobes that allow improvement of the range and a processing system for the detection of multiple 

targets (Figure 4a and b).  

(a) (b) 

Figure 4. Millimetre-wave RADAR CAR70 from Nanoradar: (a) Microarray radar antenna;  

(b) multi-lobe system. 

Range millimetre-wave RADAR is applied in Blind Spot Detection (BSD), Lane Change Assistant 

(LCA), Rear Cross Traffic Alert (RCTA), Forward Cross Traffic Alert (FCTA) or radar video fusion. 

Radar waves have higher penetrability because they offer good features in all weather conditions, 

and can accurately detect short-range targets in front, to the side, and to the rear side of vehicle. For 

this reason, they are used in several ADAS systems. RADAR can significantly improve vehicle safety 

performance and reduce the decision-making burden of people at the wheel. Furthermore, it can be 

installed besides the bumpers of the vehicle. Some disadvantages of this sensor type are the lack of 

precision, its reduced Field of View (FOV), and the fact that it can produce false positives due to 

bouncing of the emitted signal. 

main lobe 

insolate material microarray antenna 
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2.3. LiDAR (Light Detection and Ranging) 

LiDAR systems were initially developed in the 70s to measure elements in sea or land from 

satellites or airplanes. It was specifically developed for the detection of submarines by the American 

Navy. LiDAR systems base their operation on the measurement of the time of flight of a pulsed light 

emitted from a laser diode until it is received by an emitter. The emission are in infrared ranges (905 

nm or 1550 nm). Emissions at 905 nm require less energy than those emitted at 1550 nm because the 

water in the atmosphere begins to absorb energy from 1400 nm. This initial disadvantage of power 

increase at 1550 nm is used by the aqueous liquid of the eye to totally filter this wavelength, making 

them less harmful than LiDAR at 905 nm [10]. Lasers used for vehicles belong to Class 1 [11] and are 

safe under all conditions of normal use. LiDARs use the ToF principle to carry out the measurement 

of distance between emission and reception. These can be classified according to the type of 

information they obtain from their environment in 2D or 3D LiDARs or it can be classified according 

to their construction rotary or solid state LiDAR. 2D LiDAR obtains information from the 

environment by projecting a single laser beam on a rotating mirror perpendicular to the axis of 

rotation (see Figure 5a). The 3D LiDAR allows to obtain a 3D map of great accuracy to be obtained of 

the environment; for that purpose, they use a set of diodes lasers mounted on a pod that rotates at 

high speed (see Figure 5b). The number of lasers installed in the pod determines the accuracy of the 

point cloud obtained in each turn. Currently we can find 3D LiDARs that integrate from 4 to 128 

lasers or channels with a horizontal FOV of 360 grades and vertical FOV that oscillates between 20-

45 grades with accuracy of a few centimetres. Depending of the number of channels, 3D LiDAR are 

used in Adaptive Cruise Control (ACC), object avoidance, object identification or 3D mapping. 

LiDAR is affected by weather conditions such as rain, snow, fog or dusty environments due to the 

diffraction of light in these environments. Furthermore, they reduce their operating range detection 

depending on the reflectivity of the objects that are reached by the laser beams. The maximum 

detection capacity depending on the type of reflectivity of the material to be detected is presented in 

the datasheet provided by the manufacturer. 

(a)  
(b) 

 
(c) 

Figure 5. Operating schemes: (a) Rotating 2D LiDAR, (b) rotating 3D LiDAR, (c) solid state 3D LiDAR. 

The last kind of device based on laser measurement that has arrived in the autonomous vehicles 

world is the solid state LiDAR. Solid state LiDAR allows a 3D representation of the scene to be 

obtained around the LiDAR without the use of mobile parts in the device. A micro mirror MEMS 

circuit carries out the synchronization with a beam laser to scan the horizontal FOV in multiples lines. 



Sensors 2019, 19, 648 6 of 29 

For that, the micro-mirror reflects the beam over a diffuser lens, which creates a vertical line that 

touches the objects (Figure 5c). The light reflected is captured by a lens and is sent to a photodetector 

array to build the first line of a 3D matrix. The process is repeated until a point cloud of the scene is 

created. This feature notably increases its durability, reduces maintenance tasks, and decreases its 

price. Solid state has a smaller FOV than the rotary LiDAR. The trends in perception system are 

replacing the current rotating 3D LiDAR by a set of solid state LiDARs integrated around the vehicle.  

2.4. Cameras  

In the perception system of autonomous vehicles and from a point of view of the wavelength 

received by the device, cameras can be classified as visible (VIS) or infrared (IR). The element used 

by the camera to capture a scene is known as an imaging sensor and has traditionally been 

implemented with two technologies: Charge-coupled device (CCD) and complementary metal oxide 

semiconductor (CMOS). CCD image sensors are manufactured by an expensive manufacturing 

process that confers them unique properties such as high quantification efficiency and low noise. 

CMOS was developed to reduce the cost of manufacturing at the expense of reducing its 

performance. The design of the extraction architecture of the luminosity values allows the selection 

and processing of regions of interest (ROI); furthermore, the CMOS device has a lower consumption 

than CCDs. These characteristics make them the most used technology for mobile devices. On the 

other hand, CCD technology has a high dynamic range and higher image quality in low light 

environments. The differences of both technologies begin to overlap and it is expected that in the 

future, CMOS technology will replace CCD [12,13]. 

VIS cameras capture wavelengths between 400 nm to 780 nm (see Figure 2), same as the human 

eye can. The visible spectrum is divided into three bands or channels: R, G and B, which will be coded 

separately. These devices are the most commonly used in AV perception systems to obtain 

information about the surroundings of the vehicle due to their low cost, high quality colour 

information, and high resolution. The huge volume of data generated by means of the device 

supposes a further problem for the processing system. The most common applications are BSD, side 

view control, accident recording, object identification, LCA, and signs detection. VIS cameras are 

highly affected by variations in lighting conditions, rain, snow or fog conditions and for this reason 

are combined with RADAR and LiDAR technologies to increase its robustness.  

The combinations of two VIS cameras with a known focal distance allows stereoscopy vision to 

be performed, which adds a new channel called depth information. Cameras with these features are 

known as RGBD. These devices supply a 3D representation of the scene around the vehicle. 

IR cameras are passive sensors that work in infrared (IR) wavelengths ranges between 780 nm 

to 1 mm. There are many devices which work in this spectrum because fewer light interferences exist 

(e.g., LiDARs). Perception systems that includes IR cameras [14,15] work in near-infrared (NIR: 780 

nm–3 mm) or mid-infrared (MIR: 3mm–50mm, known as thermal cameras) ranges. The uses of NIR 

usually replace or complement VIS cameras. IR cameras are used: (1) In situations where there are 

peaks of illumination; for example, at the exit of a tunnel, when driving in front of the sun or when 

long light crosses the car; and (2) in hot body detection, such as pedestrians [16–18], animals [19] or 

other vehicles [20]. In these cases, the thermal cameras allow the segmentation process to be 

simplified to fewer operations based on thresholds and they are not affected by weather or lighting 

conditions. On the other hand, they supply a grey scale image and the bigger cell size of the image 

sensor notably reduces its resolution. 

ToF cameras are active sensors that use the time of flight principle to obtain a 3D representation 

of the objects in the scene. ToF cameras emit NIR light pulses of 850 nm with an LED (Light Emitting 

Diodes) array and they measure the difference in phase Δφ between the modulated signal emitted 

(sE) and the signal received (sR) to compute the distance, as shown in Equation 1 and Figure 6 [21]. 
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Figure 6. Emitted signal (blue) and received signal (red). 
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The distance ranges from 10 meters for indoor scenes and about 4 meters for outdoor scenes, 

depending on the number of LEDs in the matrix. As with IR cameras, they have a low resolution due 

to characteristics of the wavelength they are required to capture. 

Table 1 shows a summary of the advantages and disadvantages of the sensors analysed in this 

section. In the table are shown 11 features, which have been quantified in line with data obtained in 

this review. The quantification has been carried out using four scores to simplify the process: 0—

none, 1—low, 2—medium and 3—high. The first six features pose maximum quality with the highest 

score and the rest obtained the best quality with the minimum score. 

Table 1. Summary of the main features of sensors used in perception systems of AV. 

 Ultrasonic RADAR 3D LiDAR Cameras 

   Rotating Solid State VIS IR ToF 

FOV  1 2 3 2 3 3 2 

Range 1 3 3 3 2 3 2 

Accuracy 1 2 3 3 3 2 2 

Frame rate 2 2 2 2 2 3 3 

Resolution 1 1 2 2 3 1 1 

Colour perception 0 0 1 2 3 1 1 

Size 1 1 2 1 1 1 1 

Weather affections 1 1 2 2 3 1 3 

Maintenance 2 1 2 1 2 2 2 

Visibility 2 1 3 2 2 2 2 

Price 1 2 3 1 1 3 2 

 

Figure 7 shows a set of spider charts of features of the sensors presented in this review. A perfect 

sensor is defined as the one that obtains the best scores in all the characteristics analysed in this 

review. This means maximum values (3) for FOV, range, accuracy, frame-rate, resolution, colour 

perception, and minimum values (0) for weather affections, maintenance, visibility, and price. This 

comparison offers a clear overview of the sensors’ strengths and weaknesses. 

 



Sensors 2019, 19, 648 8 of 29 

 
 

 

Figure 7. Comparison of the features of the different sensors used in environment perception systems. 

3. Position Estimation Systems 

3.1. Global Positioning Systems  

Global Navigation Satellite System (GNSS) is the most widely used technology for vehicle 

positioning on land, sea, and air. The GNSSs provides the absolute position of a receiver with respect 

to a fixed reference and consists of a set of satellites orbiting approximately 20,000 km from the earth’s 

surface. These emit signals with information about the satellite, its position, orbital parameters, etc. 

This system is complete with reception systems, which receive those signals and extract information 

about position, speed, and exact time. The best-known GNSS system is the Global Positioning System 

or GPS, developed by the USA in the 1970s, which consists of 24 satellites located in six planes 

separated by 55º and with a rotation period of 11 hours and 58 minutes. Its configuration allows any 

receiver located on the earth’s surface to receive signals from between 6 and 12 satellites. 

The operating principal of the GNSS is based on measuring the time of flight of the signal 

emitted by the satellite and that received by the receptor. The system is able to reliably obtain details 

of position and time (x, y, z, t) with a minimum of four visible satellites. Table 2 shows the 

characteristics of the most widely used GNSS systems for global positioning, their constellations, 

precision, coverage, period of rotation, height, and owner [22,23]. 
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Table 2. Most commonly used global positioning systems. 

 GPS GLONASS GALILEO BEIDOU 

Satellites  24  24 30 30 + 5* 

Precision 
7.8 m, civil 

5.9 m, military 

7.4 m, civil 

4.5 m, military 

1.0 m, civil 

0.01 m, advantage 

10 m, civil 

0.1 m, military 

Coverage Global Global Global Chinese 

Period 11 h 58 m 11 h 15m 14 h 12h 53m 

height 26650 Km 19100 Km 23222 Km 21150 Km 

Owner EEUU Russia European Union China 

* Geostationary Satellite. 

Satellite signals are influenced by numerous errors: (1) Synchronization of the atomic clocks of 

the orbiting satellites, (2) signal transmission by the ionosphere and troposphere, (3) noise in the 

receivers, (4) multipath effect due to signal reflections, and (5) geometric uncertainties. 

Differential GNSS (DGNSS) was developed to alleviate errors that affect signal measurement 

from satellite constellations. The DGNSS consists of two GNSS receivers, a ground or base station 

and a mobile station, known as a Rover. The base station knows its exact position and continuously 

communicates the signal corrections to the moving station. The signal corrections provide precisions 

of 0.7 m to 3 m in civil applications and improve the integrity of the measurement (ability of the 

system to provide timely warnings to users when the system should not be used for navigation). 

DGNSS needs a system of precisely georeferenced land stations and a communication system, 

usually UHF radio, with the mobile stations.  

There are other systems based on signal correction that come from satellites, such as the Satellite 

Based Augmentation System (SBAS) and Real-Time Kinematic (RTK).  

 SBAS was designed to improve air navigation by increasing the horizontal and vertical accuracy 

of the receptors and providing information about the quality of the signals. For this purpose, it 

has a set of stations distributed over large geographical areas that monitor the status of the 

satellite constellations, informing of any anomaly. These systems are operated by different 

institutions, governments, and even private companies [24]. 

 RTK systems use the satellite signal carrier to improve the position accuracy of the mobile 

stations; the base station retransmits the carrier to one or more rover stations and these compare 

the carriers with the signals received from the satellites and calculate the position accurately. 

These systems obtain precisions of up to 2 cm and usually use a radio modem to communicate 

between base stations and rovers within a range of 20 km. RTK has been successfully applied in 

autonomous driving [25] and precision agriculture [26]. 

3.2. Dead-Reckoning (DR) and Inertial Positioning  

DR is the process of estimating the position and heading of a vehicle based on previous position 

measurements. The simplest position estimates are made using rotary sensors (encoders) fixed to the 

steering wheel and the wheels of the vehicle [27], a technique known as odometry. It is not capable 

of quantifying slippages or lateral movements of the vehicle, and for this reason is complemented 

with Inertial Measurement Units (IMUs) which combine accelerometers, gyroscopes and 

magnetometers [28]. The incorporation of these sensors allows the previously mentioned errors to be 

corrected and the sampling speed of the measurement system to be increased. However, they 

introduce errors due to the measurement of first and second order variables [29]. IMUs alone do not 

provide a global vehicle position, so they are usually accompanied by a GNSS system.  

The current positioning systems for vehicles are hybrid systems that merge data from different 

sources such as odometry, IMUs, GNSS, LiDARs, RADARs and cameras to obtain a reliable position 

and heading with tolerable error. 
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4. Fusion Algorithms  

Sensory fusion or data fusion aims to improve the measurement of two or more sources of data 

from sensors, beyond the individual measurement of each of them. Sensory fusion is especially 

indicated when large amounts of disparate sensor data are produced. Sensorial fusion applied to the 

measurement of redundant data reduces the uncertainty of the measurement, increases the accuracy 

and improves the integrity of the system, improving fault tolerance.  

Obtaining a classification of the algorithms or fusion techniques is an arduous and difficult task 

due to multidisplinarity and the large number of case studies reported in the literature. In a review 

carried out by [30], it is possible to find an extensive classification of fusion methods according to 

different criteria such as: (1) relations between the input data sources; (2) input / output data types 

and their nature; (3) abstraction level of the employed data; (4) different data fusion levels, and (5) 

architecture types. In this review, we will stablish three categories: (1) estimation methods based on 

Gaussian filters (e.g., Kalman filter (KF) or particle filters (PF)), (2) probabilistic inference methods 

(i.e., Bayes theorem), and (3) artificial intelligence methods based on machine learning algorithms. 

Three categorizations are applied to both perception systems and location systems in autonomous 

vehicles. Following are examples that combine the merging of data from the different categorizations. 

and different sensors of the perception and location systems. 

4.1. Fusion Methods in Perception Systems 

There are numerous works related to the sensors mentioned in this review that detect vehicles, 

pedestrians, lanes, signs, and so on. In [31], the data supplied by a LiDAR and a stereo camera are 

fused to improve a vehicle’s detection. The method has two stages: (1) Hypothesis generation, where 

a vehicle candidate is obtained, combining Haar features from depth maps with the AdaBoost 

classifier; and (2) hypothesis verification, where a shape estimation of the candidates is calculated 

using the LiDAR information and a support vector machine. The proposed fusion approach achieves 

a lower false alarm rate in urban environments. A method that fuses the MMW RADAR with camera 

information is presented in [32]. The work presents a collaborative fusion approach to achieve an 

optimal balance between vehicle detection accuracy and computational efficiency. The MMW radar 

first detects the potential vehicle and provides a region of interest. The vision processing module 

employs symmetry detection and active contour detection to identify the vehicle inside the region of 

interest provided by the MMW radar. The experimental results show a 92.36% detection rate and 0% 

false alarm rate using a real-world dataset. In [33], the advantages of the fusion of LiDAR and RADAR 

sensors are used in order to provide permanent precise spatial and dynamical data. The work 

presents a real-time algorithm, which enables an autonomous car to comfortably follow other cars at 

various speeds, while maintaining a safe distance. In [34], an unscented Kalman filter and Joint 

Probabilistic Data Association is used to fuse the data from a 2D LiDAR and camera information to 

detect vehicles. The presented approach achieves an increase in safety for vehicle detection in single-

lane carriage-ways, where casualties are higher than for other road classes. 

The increase in precision and robustness obtained with the fusion methods when redundant 

information is available is especially relevant when the systems can produce injuries or death to 

people. Pedestrian detection is a common area to use the fusion algorithms, as demonstrated by 

numerous works found on this topic. In [35], the distance data and the reflexivity of a 3D LiDAR are 

fused through a set of 50 features to detect pedestrians. The features are composed by three subsets: 

(1) Shape features obtained in XYZ projections of pedestrian cloud points, (2) Hu invariants moments 

from XYZ projections and, (3) statistical features from the reflexivity data. The data fused was used 

to train an SVM. The pedestrian detection method obtained a higher classification rate when it was 

compared with similar algorithms. In [36], a set of machine-learning algorithms (MLA) are tested 

with different fusion schemes with the proposal of determining the best performance in pedestrian 

detection. The experimental results provide a false positive rate, AUC (Area Under Curve ROC is a 

metric to evaluate the performance of two classifiers), and provide an accuracy of 96.67%. An RGB 

camera and a LiDAR are fused for pedestrian detection. LiDAR is used to evaluate the value of depth 

perception for pedestrian detection. In the work, the detectors were trained on both input modalities 
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(from KITTI database) and various fusion strategies. The best performance was obtained by a late re-

scoring strategy that was designed to be sensitive to geometric context. The advance in GPUs has 

allowed algorithm execution times that would have been unthinkable a few years ago (i.e., CNN); 

there are numerous projects that use convolutional neural networks (CNN) to obtain high grades of 

data abstraction. In [37], multispectral information is used from a thermal camera and an RGB camera 

(TRGB channels) and a multi-layer fused CNN to detect pedestrians under adverse illumination 

conditions. The algorithm development on the basis of a multiple-layer fusion technique can 

significantly reduce the detection miss rate. In [38], the distance data with reflectance information 

from 3D LiDAR is fused by means of a CNN. Distance and intensity raw data from LiDAR are 

transformed to high-resolution (dense) maps, which allow direct implementation on CNNs, both as 

single or multi-channel inputs. The results of the CNN were tested with the KITTI dataset Vision 

Benchmark Suite [39]. 

4.2. Fusion Methods in Positioning Systems 

The precise determination of the position of a vehicle is a crucial aspect for navigation tasks in 

related areas such as autonomous vehicles, intelligent transporting systems and intelligent vehicles. 

The bibliography reports a huge number of applications where fusion methods are used with sensors 

belonging to both positioning systems and environment perception systems mentioned in this work. 

Traditionally, the Kalman filter and extended Kalman filter has been one of the most used 

algorithms to reduce the degree of uncertainty in sets of data supplied by different sources and to 

increase the accuracy in positioning systems. In [40], a real-time data fusion system for improving car 

positioning precision in urban environments is proposed. The proposed method uses the data from 

four-wheel speed sensors and low-cost GNSS with an EKF to fuse the data. The urban scenarios are 

prone to suffer low precision and transient unavailability of the GNSS signal. The main contribution 

of this work enables accurate car positioning during short GNSS signal outages. In [41], a fusion 

framework to obtain the cooperative positioning information from radar sensor data is presented. 

The framework fuses the information received from radar sensors by means of the KF method. The 

measurements recorded on a highway and a rural road demonstrate that the fusion of both 

information sources outperforms the positioning estimation using only the radar sensor  

In [42], a fusion method is presented, which integrates the information supplied by a stereo 

camera, a 2D LiDAR, and a GPS to obtain precise positioning of a vehicle. The proposed method uses 

a prelaminar stage, where an outlier-rejection invariant closest point method reduces the matching 

ambiguities of scan alignment during tasks of motion estimation with the 2D LiDAR. Finally, after 

the validation process, the information is fused by means of an unscented information filter. 

The particle filter (PF) is a method used to obtain a good estimation of vehicle position in non-

linear models. In [43], a robust fusion algorithm is presented, based on a particle filter using the 

entropy information theory. The fusion method uses a 3D urban area mapped previously (point cloud 

map) together with a 3D LiDAR with 32 channels, an IMU, and wheel odometry for obtaining the 

location of a vehicle in urban scenarios. The results have been compared with the offline ground-

truth obtained with a RTK-GPS. Another example is the location of a vehicle in urban areas by fusing 

the data and a PF as shown in [44]. In this case, the data input to the particle filter is composed of 

GPS, an IMU, a camera, and a digital map. The experimental results have shown that this system 

reliably localizes the vehicle, even while passing through tunnels, long urban canyons, and under an 

elevated railroad. 

The selection of the most suitable type of filter for data fusion will depend on the linearity of the 

model used. For linear models, the KF provides an optimal solution to the fusion problem. For non-

linear models, other techniques such as EKF, UKF, or PF are used to perform the linearization of the 

model. For example, in the field of perception systems, the non-linearity of the data produced by 

RADAR systems requires the use of EKF, UKF or PF filters. The bibliography reports comparisons in 

the performance of this type of filters; the best results in the estimation of non-linear models are 

produced with UKF [45,46]. 
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Fusion techniques based on features extraction that use classification algorithms (e.g., AdaBoost, 

SVM, etc.) are being overcome by the enormous degree of data abstraction achieved by CNNs. The 

ability to model any system, however complex it may be, through the insertion of thousands or 

millions of hidden layers with different kernels, coupled with the computational increase of the new 

GPUs, CNN will have a promising future as a data fusion technique. 

5. Simulation 

Modelling and simulation are well-established tools for analysis, design, acquisition and 

training in the automotive domain. Despite the heterogeneity of subsystems and disciplines involved 

in the development of an autonomous vehicle [9], there are many simulation methods that together 

allow covering of the entire development process. V-model and its variants have become the most 

common process models adopted in the automotive industry, guiding the development of systems 

on a variety of refinement levels with a multiple-stage validation and testing process [47]. By 

applying virtual simulation technologies at different abstraction levels, several “X”-in-the-Loop (XIL) 

(where “X” refers to any type of test included in the development process) testing setups can be 

performed: Model-In-the-Loop (MIL), Software-In-the-Loop (SIL), and Hardware-in-the-Loop (HIL). 

Moreover, ISO 26262 itself does have some limited guidance on the use of simulation in verification 

activities. The safety process of ISO 26262 is based on a safety V-model. As such, it is not 

straightforward to match with an agile development process, which is the natural choice for AV 

development. Section 6, “Product Development at the Software level”, provides some directions on 

verification of the software architecture design and recommends “simulation of dynamic parts of the 

design”. Section 6 further notes that “software integration testing can be executed in different 

environments”, and lists as examples MIL tests, SIL tests, processor-in-the-loop tests, and HIL tests. 

Although the number of tools for the simulation of autonomous vehicles has increased in recent 

years, it is very difficult to select the best tool for a specific development. Features like open-source, 

multi-platform, personalization and documentation are desirable in all simulators. Furthermore, 

regarding the simulation of such robotic systems, one must take into account all the aspects of 

physical implementation to further simplify the transition from virtual- to real-world scenarios.  

The Agent paradigm has been introduced as well, as a way to address some of the current issues 

in autonomous-based driver behavior regarding its distribution capabilities, computing efficiency 

and scalability [48,49]. However, these are not found in all the simulation tools. Some of the solutions 

provide a series of toolchains to address the end-to-end process of an autonomous vehicle; others 

only contemplate some of the subsystems or functionalities (Advanced Driver Assistance Systems 

(ADAS), Simultaneous Localization And Mapping (SLAM), Driving, traffic, etc.). Most simulation 

tools are compatible with programming languages such as C/C++, Perl, Python, Java, LabVIEW, URBI 

or MATLAB 

Below we present the different approaches that can be taken into account to select a simulator 

for autonomous vehicles (vehicle tests, robotics, game engine, specific development), focusing on the 

perception subsystem. 

5.1. Vehicle Test Simulation  

As previously mentioned, achieving high fidelity autonomous driving requires testing of 

autonomous characteristics in every possible scenario. The design, implementation, and testing of 

vehicles in a wide range of use cases and in realistic traffic conditions are costly, time-consuming, 

complicated and, often, not reproducible. The integration of tests with the physical platform in these 

cases are unnecessarily complex and often carried out in the last stage of the development process. 

This makes prototype design, implementation, intensive testing and simulation with a real vehicle in 

the simulation circuit the most effective way to verify and validate the design idea. The simulation of 

Software-In-the-Loop (SIL) in the laboratory environment offers a safe way to prototype and 

implement the control and algorithms of vehicles. The incorporation of a vehicle and real sensors in 

the simulation loop (called Hardware-In-the-Loop or HIL) validates the design and reduces the time 

required for system verification.  
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Test engineering roles are plentiful, and that is because it is not easy to make sure everything 

works all the time in autonomous vehicles. But there are tools that accelerate the process. These 

software tools provide environments, templates and architectures to validate anything in the vehicle, 

be it in a consulting engineering or high-volume manufacturing environment. As has been 

commented previously, in the engineering of vehicles and therefore in autonomous vehicles, the 

development based on models is more widely accepted and more concretely the development 

following model V. This model is composed of different phases of development and testing: 

 The first step is a Model-In-the-Loop (MIL) [50] approach, which allows quick algorithmic 

development without involving dedicated hardware. Usually, this level of development 

involves high-level abstraction software frameworks running on general-purpose computers.  

 The second step is a Software-In-the-Loop (SIL) [51] validation, where the actual implementation 

of the developed model will be evaluated on general-purpose hardware. This step requires a 

complete software implementation very close to the final one. SIL testing is used to describe a 

test methodology, where executable code such as algorithms (or even an entire controller 

strategy), usually written for a particular mechatronic system, is tested within a modelling 

environment that can help prove or test the software. SIL testing and simulation can thus be a 

useful technique for software proving at earlier stages of the design.  

 The last step of this validation process is Hardware-In-the-Loop (HIL) [52], which involves the 

final hardware, running the final software with input and output connected to a simulator. HIL 

testing provides a way of simulating sensors, actuators and mechanical components in a way 

that connects all the I/O of the Electronic Control Units (ECU) being tested, long before the final 

system is integrated. It does this by using representative real-time responses, electrical stimuli, 

and functional use cases. Therefore, the integration of SIL and HIL in the simulator will allow 

designers and engineers to evaluate advances in the development cycle of the vehicle before the 

physical prototypes are built. 

 Another interesting solution that combines nearly all the advantages of the previous methods 

without most of their drawbacks is the Vehicle-Hardware-In-the-Loop (VeHIL) approach. This 

kind of test is a combination of the HIL and test-drive approaches. Functional as well as 

integration tests can be done easily and early in the development cycle. As the vehicle is 

physically locked on the chassis-dynamometer, this system greatly improves the safety of the 

tests. 

Although this type of V model development is applied to the entire development process of an 

autonomous vehicle, it is mainly used in the development of Advanced Driver Assistance 

Systems (ADAS), where more references to it are found. [47,53–56]. Most of the HIL tests of the ADAS 

functions are reduced to sending a series of simulated objects to the unit under test. Depending on 

the sensor systems involved, information on the kinematics of the object can be included, as well as 

whether the object is a vehicle, a pedestrian, or something else. In addition to the current sensor data, 

supplementary vehicle data from other ECUs may be required. Depending on the configuration, 

several real ECUs can be part of the test bed and connect through automotive network systems such 

as CAN, FlexRay or Automotive Ethernet. A consortium called ADAS iiT [57] demonstrated a recent 

example of a HIL test system that uses the platform-based approach for sensor fusion testing. This 

group demonstrated an ADAS test configuration that can synchronously simulate RADAR, LiDAR, 

communications and camera signals for an ADAS system. In one case, the configuration was able to 

simulate a virtual test unit using the CarMaker software (by IPG Automative) and VeriStand (by 

National Instruments). 

To select an XIL simulator, several factors must be taken into account: 

 Availability and compatibility of models: The main companies provide you with convenient and 

powerful solutions to run complex physical models designed with Simulink [58], Stateflow [59], 

Simscape [60], or any other MathWorks [61] software tool on highest performance multi-core 

CPUs, GPU and FPGAs. The majority of companies offer Open Models; on other occasions, it 

will be necessary to develop a custom model or buy one. 



Sensors 2019, 19, 648 14 of 29 

 Subsystems which can be tested: simulators were built according to a specific purpose. For 

example, a Micro HIL system offers a simpler and more economical solution; the strategy is 

restricted to the analysis of ECU outputs, when excited by specific controlled inputs. 

 Real-time simulation communications protocols available, including CAN, FlexRay, ARINC 429, 

MIL-STD-1553, EtherCAT, real-time UDP and XCP. 

 Compliant with ISO 26262: The development of high-integrity systems within the automotive 

industry is characterized by demonstrating compliance with ISO 26262, an international 

standard for road vehicle functional safety. 

To perform this type of simulation, many of the works found in the literature mainly make use 

of MathWorks tools [62]. MathWorks is the leading developer of mathematical computing software. 

MATLAB, the language of technical computing, is a programming environment for algorithm 

development, data analysis, visualization, and numeric computation. Simulink is a graphical 

environment for simulation and Model-Based Design for multi-domain dynamic and embedded 

systems. In particular, Simulink models are used in the development of most pre-ADAS vehicle 

controllers, and can even be deployed directly to ECUs (following a code generation process). 

Recently Matlab extended its capabilities for ADAS development with the Autonomous Driving 

Toolbox, available from the 2017b release. This toolbox provides algorithms and tools for designing 

and testing ADAS and autonomous driving systems. It allows engineers to automate ground-truth 

labelling, generate synthetic sensor data for driving scenarios, perform multi-sensor fusion, and 

design and simulate vision systems.  

Table 3 shows some of the simulators or simulation platforms used for the validation and testing 

of autonomous vehicles, following a model-based approach. 

Table 3. Summary of the main features of simulator platforms for AV. 

Simulators 

   XIL 

License 
Open 

Models 

ISO 26262 

Compliant 
MIL SIL HIL 

PaTAVTT [63] GPL x U   x 

Simulink &Matlab [61] Commercial - X x x x 

dSpace GmbH [56] Commercial - X x x x 

LabVIEW [64] Commercial - X x x x 

CarSim [65] Commercial u X x x x 

CAT Vehicle [66] GPL/ Open Source x U x x x 

*Table Legend: x - Yes | u – Unknown or couldn’t be determined | - – No 

5.2. Games and Physic Engines for Simulation  

A common alternative to using a dedicated simulator for vehicle and robot simulation is to 

repurpose an available game engine for simulation and research [67]. However, in general, any 

available game engine could conceivably be used for the purpose of simulation. 

A game engine is the software part of a computer game that contains a 2D or 3D graphic 

representation (rendering engine), representations of physical laws (physics engine), or collision 

detection (and collision response), sound, scripting, animation, artificial intelligence, networking, 

streaming, memory management, threading, localization support, scene graph, and may include 

video support for cinematic. The most modern game engines also include support for Virtual Reality 

(VR) simulation. Game engines are generally independent of the specific scenarios or applications for 

which they were originally developed, and the source code of some game engines is partially open. 

Therefore, researchers can use the source codes of the game engine to create completely new scenarios 

and applications. 

Some of the key features that game engines provide, which are favorable to robotics and 

autonomous vehicles researchers [68], are listed below:  
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 Physical fidelity: Realistic simulation, suitable for virtual-reality environments, such as a driving 

simulator; most recent game engines feature both rigid and soft body dynamics, some of them 

even use a new dedicated hardware named Physics Processing Unit (PPU). Cutting-edge 

lightning effects, polygon rendering, and realistic destructible environments are also 

present/considered 

 Distributed architecture: Support for multiple processor cores is included in earlier frameworks 

for maximum computational resources exploitation. It is possible to simulate multiple entities 

in multiple networked computers, distributing the processing power over all nodes.  

 Cutting-edge graphics: Use of game engines will significantly increase the level of detail and 

realism of the environment; relating to camera sensor simulation, higher resemblance from the 

virtual to the real world can be achieved.  

 Scriptable environment: Featuring simple but powerful scripting languages, game engines can 

be rapidly extended to support a new type of sensor, or an optimized statistics module 

The main problem with game engine simulators is that they may not be high fidelity. A game 

engine allows you to test the dynamics based on behavior, but when a high-fidelity simulation is 

required, you must use models or software that contains a mathematical representation of the 

subsystems to achieve realistic calculations. This software is often validated with HIL tests, used to a 

large extent in the evaluation of computer-based test equipment. The high-level algorithms for 

trajectory planning, vision processing and interactions of multi-agent systems are examples of 

suitable fields for use with simulators based on game engines. 

The principal game engines used in the development of autonomous vehicle simulators, or for 

some of its subsystems, are:  

Unity 3D [69] is an open source Game Engine, which is primarily used to develop video games 

and simulations for computers, consoles and mobile devices. The Unity graphics engines use 

OpenGL, Direct3D, OpenGL for Embedded Systems (OpenGL ES) for mobile platform (iOS, 

Android) and various APIs. The Unity engine provides built-in support for PhysX physics engine 

with real-time cloth simulation on skinned meshes, collision layers, and thick ray casts. 

Unreal Engine [70], is, like Unity, a popular general-purpose games development engine. It 

provides a scripting engine, physics engine, and highly realistic video capabilities 

Blender [71] is an open source 3D modelling and rendering application whose main purpose is 

the creation of computer generated images and animations. Though it is not designed as a tool for 

simulation, it provides many features that facilitate the development of such an application. A 

community of robotics researchers who use Blender for some simulations already exists, and there is 

a drive to improve on this functionality. Blender has BlenSor [72], a Free Open Source Simulation 

Package for Light Detection and Ranging (LiDAR/LADAR) and Kinect sensors 

Cry Engine [73]: Since version 5.2, CryPhysics has supported multiple physical entity grids 

In the case of simulation for a perception system, the most important component is the physics 

engine, which will allow modeling of the perception system of an autonomous vehicle with less 

fidelity. Physical simulators work according to the detection of collisions. These differ in the way they 

react in a collision. They usually work in two ways, where the collision is detected a posteriori or a 

priori. Collision detection refers to the problem of calculating the detection of the intersection of two 

or more objects. 

As possible physics engines, we found Open Dynamics Engine (ODE) [74], a high-performance, 

open source library for dynamic simulation of rigid bodies. It is fully equipped, stable and with an 

easy to use C/C + + platform. It has some very useful methods, such as the method of approaching 

friction. An advantage is that it is a free and open source. ODE uses a Euler integrator and fixed time 

stepping. It provides an additional 2D constraint, and has been ported to a large number of platforms. 

Bullet physics [75] is a powerful open source physics engine. It differs from other physics engines 

such as Box2D, Chipmunk, or Sprite Kit’s physics engine. This physics engine is 3D and includes 3D 

collision detection, soft body dynamics, and rigid body dynamics. It also includes a partial graphics 

processing unit (GPU) for physics implementation. 
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A very powerful and free physics engine is NVidia PhysX [76]. PhysX is a proprietary 

middleware or middleware layer engine and a development kit designed to perform very complex 

physical calculations. Physical middleware engines allow videogame developers to use abstraction 

during development, as PhysX provides specialized functions in complex physical simulations, 

which results in high code writing productivity. 

5.3. Robotics Simulators 

Robotics simulators are also used in the simulation of autonomous vehicles. Different works [77–

79] mention that to be able to consider a robotics simulator useful in the domain of autonomous 

vehicles, they must provide modeling of all sensors and actuators present in an autonomous vehicle. 

They must also provide an environment as realistic as possible to simulate and test algorithms of 

acquisition and fusion of data from the sensors, navigational planning, and control of the steering 

and traction system. Bearing this in mind, the following criteria represent the most important aspects 

to consider when selecting a robotics platform in an autonomous vehicle approach: 

 3D rendering: The visual robustness of the simulation 

 License: Whether the simulator has a General Public License (GPL), or a commercial one 

 External Agent Support: In order to control a vehicle using an agent-based methodology, the 

simulator should feature a distributed architecture at the control level 

 Sensor noise:  Simulators that are able to calculate random noise at the outputs of the sensors 

will allow for more realistic testing of the decision-making systems that need to deal with non-

ideal nature that real sensors have 

 Parallelism/Distribution: In order to distribute processing power over processor cores or 

networks  

 Level of Maturity: If the simulator is already widely used and validated 

 Fault-tolerance: When a hardware module fails, higher level modules should rapidly make 

decisions whether to stop or modify the control system. When developing a final product, such 

behavior should be strictly tested 

 Realistic Scenario Simulation: The level of realism to simulate difficult context scenarios e.g. 

snow, day and night, and wind, not only interactively but also physically, i.e. affecting the 

sensorial input: 

o Environment affecting sensors—harsh weather conditions and hazardous terrains can 

affect sensors in various ways; for example, fog or darkness affecting the visibility of an 

optical camera, or intense weather causing echoes in laser scanners. Simulators might 

include these factors in the calculation of sensor values 

o Environment affecting physics—weather and ground conditions can also affect the 

performance and control of the vehicle in various ways; for example, loose gravel, rain, 

or snow making the roads more slippery 

 Techniques for HIL simulation have been recently applied to the automatic generation of 

complex controllers for robots. A robot uses its own real hardware to extract sensor and 

actuation data, then uses this data to infer a physical simulation (self-model) containing aspects 

such as its own morphology as well as characteristics of the environment. Algorithms such as 

Back-to-Reality (BTR) and Estimation Exploration (EEA) have been proposed in this context.  

One of the key aspects to take into account when selecting a robotic simulation framework is the 

type of compatible sensors and implementation of their mathematical model. Some current robotics 

simulation platforms incorporate data simulation sensors such as Gazebo [80], V-REP [81], or Webots 

[82] (see Table 4 for a broader list). Another aspect to take into account is the widespread use of some 

frameworks or middleware in robotics (for example, ROS [83] or YARP), which make use of 

simulators conditioned by the characteristic of being compatible with the middleware. The Robot 

Operating System (ROS) is a mature and flexible framework for robotics programming. ROS provides 

the required tools to easily access sensors data, process that data, and generate an appropriate 

response for the motors and other actuators of the robot. The whole ROS system has been designed 
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to be fully distributed in terms of computation, so different computers can take part in the control 

processes, and act together as a single entity (the robot). 

Gazebo [80] is an open source simulator that offers the ability to simulate robot systems in 

complex environments. It is one the most popular simulation platforms for the robotic simulation 

research work. Gazebo has a modular design that allows different physics engines to be used, along 

with high-quality graphics, sensor models, and the creation of 3D worlds and graphical interfaces. 

Gazebo is built on top of the rendering engine Ogre3D to provide more realistic environments. The 

use of plugins expands the capabilities of Gazebo to include abilities such as dynamic loading of 

custom models and the use of stereo cameras, LiDAR, GPS, IMU or RADAR sensors. Being an open 

source product, there is a large and active robot community supporting and improving the product. 

One of the advantages of Gazebo is that it is already included in the ROS bundle. Gazebo is informally 

part of the ROS, a set of libraries and open source software tools that allow the user to create a robotic 

application. ROS and Gazebo are becoming more popular for the development of AVs. There have 

been a multitude of studies designing methods for validating the physics and sensor simulations of 

Gazebo; for example, in the latest edition of ROSCon Conference [84], BMW presented several works 

[85,86] that focus on the simulation of autonomous vehicles. The TSC prototype Basic Autonomous 

Control Systems (B-ACS) for the LUTZ pods has been developed using ROS and simulated using 

Gazebo. 

The robot simulator V-REP [81], with an integrated development environment, is based on a 

distributed control architecture. Each object/model can be individually controlled via an embedded 

script, a plugin, a ROS or BlueZero node, a remote API client, or a custom solution. This makes V-

REP very versatile and ideal for multi-robot applications. Controllers can be written in C/C++, Python, 

Java, Lua, Matlab or Octave. 

Webots is a commercial robot simulator developed by Cyberbotics used in more than 800 

universities and research centers worldwide. It has reached a fairly stable state and supports a wide 

range of hardware. Webots makes use of ODE (Open Dynamics Engine) for the detection of collisions 

and dynamic simulation of the rigid body. The ODE library allows the physics of the objects to be 

simulated. Note that the physics plugins can be programmed only in C or C++. The software also 

provides a large collection of sensors, including a distance sensor, light sensor, cameras, LiDARs, 

GPS, accelerometer, and force-sensor. 

Microsoft Robotics Developer Studio (MRDS) is a Windows-based robotics platform from 

Microsoft Company using .NET based technology. It features visual programming, web and 

windows-based interfaces, 3D simulation with advanced physics, as well as easy access to robot’s 

sensors and actuators in a number of languages. In addition to providing support for Microsoft Visual 

Studio 2010, Microsoft Robotics Developer Studio 4 provides a Visual Programming Language (VPL), 

which allows developers to create applications simply by dragging and dropping components onto 

a canvas and wiring them together. Princeton University's DARPA Urban Grand Challenge 

Autonomous Car [87] was programmed with MRDS. It is oriented towards educational projects with 

a low degree of complexity. 

Apart from robotic simulation platforms, there are other simulators in the robotic domain, which 

are relevant for research. Among them are USARSim [88], BlenSor [72] and MORSE [89]. USARSim 

is a free simulator based on the cross platform Unreal Engine. It was released under the GPL license,  

physics is simulated using the Karma Physics. USARSim comes with several detailed models of 

robots available for use in simulations; however, it is possible to create custom robot components in 

external 3D modeling software and specify physical attributes of the components once they are 

loaded into the simulator. BlenSor is a Free Open Source Simulation Package for Light Detection and 

Ranging (LiDAR/LADAR) and Kinect sensors. BlenSor is not designed for real-time simulation, as it 

is a precise simulation and with complex scenarios, it takes time. BlenSor is not based on the Blender 

game engine (or any other) and can simulate complex scenarios. It is designed to produce data for 

offline data processing. They are designed for the simulation of robotic environments and also 

implement a laser range scanner. MORSE is a generic simulator for academic robotics. In MORSE, 

simulations are small Python scripts that describe the robots and the environment. MORSE provides 
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several command-line tools to create stubs, and it takes virtually no time to get a first simulation 

running. It provides a set of standard sensors (cameras, laser scanner, GPS, odometry, ...), actuators 

(speed controllers, high-level waypoints controllers, generic joint controllers) and robotic bases 

(quadrotors, ATRV, Pioneer3DX, generic 4-wheel vehicle, PR2, ...). MORSE is designed to interact 

directly with the evaluated software exactly as it is, without the need of any modifications to the 

software. This philosophy takes after the “Hardware-in-the-Loop” simulations, in which the 

evaluated components are run on the target hardware and interact with the simulator with the very 

same protocols than the ones of the actual robot sensors and actuators, in order to make the shift from 

simulations to actual experiments totally transparent. In Table 4, we compare the main features of 

these robotic simulator platforms. 

Table 4. Summary of the main features of robotic simulator platforms for AVs. 

Simulator 

Platforms 
License Simulation engine Graphical engine External Agent 

Gazebo GPL/ Open Source 
ODE, Bullet, 

Simbody Art 
Ogre3D Yes 

V-Rep 
GPL/ Open Source, 

Commercial 
ODE, Bullet, Vortex OpenGL Yes 

Webots Commercial ODE - Yes 

MRDS Commercial PhysX DirectX  No 

USARSim GPL Unreal Engine Karma Yes 

BlenSor GPL/ Open Source - OpenGL No 

MORSE GPL/ Open Source Blender, Bullet OpenGL Yes 

In Table 5, we can compare which sensors are simulated by these generic robot simulators and 

the sensors equipped. 

Table 5. Summary of the main sensors simulated by robotic simulator platforms for AVs. 

Simulator 

Platforms 
GPS IMU LIDAR Ultrasonic Radar Infrared 

Stereo 

Camera 

ToF 

Camera 

Gazebo x x x x x x x x 

V-Rep x x x x x x x u 

Webots x u x x - x x - 

MRDS x u x x u x u u 

USARSim x x x x x x x u 

BlenSor x x x x u u x x 

MORSE x x x - - x x u 

*Table Legend: x - Yes | u – Unknown or couldn’t be determined | - – No 

5.4. Perception Simulator  

As can be seen in the previous sections, there are multiple generic solutions to validate and 

simulate an autonomous vehicle (using simulators in the loop, using a robotics platform, or a game 

engine among others). Because an autonomous vehicle bases all its decision-making on the feedback 

received from the sensors, it is clear that the virtualization of the different sensors is key to any 

simulation platform for autonomous vehicles. However, for a simulation to be the most identical to 

reality, perfect models are needed to minimize the reality gap [90,91]. However, in some cases, the 

results obtained with generic simulators do not reach the expected degree of satisfaction or simply 

do not contemplate all the causality that is needed. For these cases, the best option is to develop a 

virtual simulation environment specifically dedicated to one’s own needs. 
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The virtual environment consists of an approximate vehicle model or sensor model, a simulated 

world and simulated sensors. The most important component that creates a virtual environment is 

the simulator. In Figure 8, the typical software architecture of a simulator is shown. 

 

Figure 8. Typical software architecture of a simulator. 

In some cases, a simulator that realistically represents the physics of an environment — things 

like force and mass, friction and air drag — is sufficient. For development of perception algorithms, 

however, a simulator must feature a photorealistic representation of the environment, meaning that 

the simulated environment must actually look like the real world. 

Modern simulators tend to provide the following features: 

 Fast prototyping 

 Physics engines for realistic movements. Most simulators use Unity (AirSim), Unreal Engine 

(Carla, USARSim), ODE (Gazebo, LpzRobots, Marilou, Webots) or PhysX (MRDS, 4DV-Sim). 

 Realistic 3d rendering. Standard 3d modeling tools or third party tools can be used to build the 

environments. 

 Dynamic with scripting. C, C++, Perl, Python, Java, URBI, MATLAB or Python are a few of the 

languages usually used with the most common simulators. 

In Table 6 and Table 7, we compare the main features of these simulators and which sensors can 

be simulated by these simulators and the sensors equipped. Many of the simulators oriented towards 

autonomous vehicles found in existing literature are intended for traffic simulators and driving 

simulators [85,92–97] that allow training and validating autonomous driving from an algorithm and 

artificial intelligence point of view. The Agent paradigm has been introduced as well, as a way to 

address some of the current issues in autonomous-based driver behavior regarding its distribution 

capabilities, computing efficiency and scalability Agent-based modelling and simulation (ABMS) is 

a relatively new approach to modelling systems composed of autonomous, interacting agents. Agent-

based modelling is a way to model the dynamics of complex systems and complex adaptive systems. 

Such systems often self-organize themselves and create emergent orders. Agent-based models also 

include behavior models (human or otherwise) and are used to observe the collective effects of agent 

behaviors and interactions. The development of agent modelling tools, the availability of micro-data, 

and advances in computation have made a growing number of agent-based applications possible 

across a variety of domains and disciplines. These simulators can be used in the design and 

simulation of ADAS and that is why some of these simulators also include a perception subsystem, 

although it is usually a secondary part of the simulator, with models of pseudo-sensors or in the best 

of cases with a basic LiDAR model (given the importance of this sensor in autonomous vehicles). 

Although these driving simulators are not the objective of this work, the most significant ones have 

been included as an example. 
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Table 6. Summary of the features of specific simulators for AVs. 

Simulator License 
Physics 

Engine 

Graphic 

Engine 

Scripting 

Language 

External 

Agent 
Notes 

CARLA [93] 

GPL/ 

Open 

Source 

Unreal 

Engine 
GPU Python Yes Driving 

AirSim 

GPL/  

Open 

Source 

Unreal 

Engine 
u 

C++, 

Python, C#, 

Java 

Yes 
Driving / 

HIL,SIL 

DeepDrive [98] 

GPL/ 

Open 

Source 

Unreal 

Engine 
u C++, Python Yes Driving 

Udacity * [99] 

GPL / 

Open 

Source 

Unity u C++, Python u Driving 

Constellation 

[100] 
Restricted 

PhysX/ 

CUDA 
GPU 

C/C++, 

Python 
Yes 

Cloud, HIL, 

VR 

Carcraf/Waymo 

[101] 
Restricted u u u Yes Driving 

SIMLidar [102] 

GPL/ 

Open 

Source 

u u C++ u LiDAR 

Helios [103] 

GPL / 

Open 

Source 

JMonkey 

Engine 
OpenGL Java u LiDAR 

GLIDAR [104] 
GPL/Open 

Source 
 OpenGL C++ u LiDAR 

RADSim [105] Comercial u u MATLAB u RADAR 

SIMSonic 
GPL/Open 

Source 
u u R u Ultrasonic 

* Table Legend: u–Unknown or could not be determined.  

Table 7. Summary of the main sensors simulated by specific simulators for AVs. 

Simulator GPS IMU LIDAR Ultrasonic Radar Infrared 
Stereo 

Camera 

ToF 

Camera 

CARLA  x - x - - - x - 

AirSim x x x u U u u u 

DeepDrive x  x - X   - 

Udacity *  x x x u U x u u 

Constellation x x x x X x x u 

Carcraft 

/Waymo 
x x x x X x x u 

SIMLidar - - x - - - - - 

Helios  - - x - - - - - 

GLIDAR  - - x - - - - - 

RADSim  - - - - X - - - 

SIMSonic - - - x - - - - 

* Table Legend: x-Yes | u–Unknown or could not be determined | - – No 

It should be noted that main vehicle manufacturers are working on their own prototypes of 

autonomous vehicles and also have their own products for validation, verification, testing and 

simulation.  
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Toyota has its own vehicle Platform3.0, developed by the Toyota Research Institute (TRI); the 

platform is built on a Lexus LS 600. The main advancement of the Platform3.0 is in its sensor systems, 

which have increased in quantity and definition, converting this model in an automated car to the 

greatest perception capacity. It uses a LiDAR system with 360 degrees of vision and a range of 200 

meters. Toyota has also collaborated in the development of the CARLA simulator [93]. BMW is 

another brand that is betting strongly on autonomous technology. BMW iNext is the brand's 

proposal. For simulation, they have opted for a robotics framework and middleware. BMW has even 

established its own Autonomous Driving Campus in Munich [106].  

FORD and SEAT are also in the list of vehicle brands that are committed to autonomous driving. 

On the other hand, companies in the electronics, computer and information technology sectors 

such as Apple or Google also have their own proposals. Google has developed Wymo with level 4 

autonomy. Google has a series of proprietary tools, among which we highlight the Carcraft simulator 

[101], which supports a large number of sensors (RADAR, LiDAR, ultrasonic, ...). NVIDIA, one of the 

most important GPU development companies (Graphics Processing Unit) has its own autonomous 

vehicle development platform (NVIDIA DRIVE AGX), NVIDIA DRIVE [107], which offers 

specialized software for sensor perception and fusion, and complements the NVIDIA DRIVE 

CONSTELLATION ™ simulator. NVIDIA DRIVE Constellation ™ is a data center solution that 

integrates powerful GPUs and DRIVE AGX Pegasus ™. The advanced visualization software running 

on GPUs simulates cameras, radars and LIDARs as inputs to DRIVE AGX Pegasus, which processes 

the data as if you were actually driving on the road. 

The efforts required to bring autonomous cars to the masses are so immense that car and 

technology companies are unable to achieve it alone. The Volkswagen Group of America and major 

players in the automotive innovation industry like Bosch and NVIDIA have joined forces to pool 

their resources and expertise in a bid to accelerate the development of driver-less technology. 

6. Legislation  

6.1. Standardization Concepts for Autonomous Driving 

The systems that provide the autonomous driving capabilities are formed by sensors and 

actuators that communicate through networks and are controlled by microcontrollers, which makes 

software a key factor. With tens of millions of lines of code (code for applications, operating systems 

and middleware), aspects related to security and protection arouse great concern. In order to regulate 

the aforementioned aspects, the specific standard for car protection ISO 26262 [108] has been 

developed. It is an adaptation of the functional protection standard IEC 61508, which focuses on the 

needs of the electrical and electronic systems installed in passenger cars, and applies to all activities 

within the lifecycle of these systems related to protection, including software quality requirements. 

The standard uses Automotive Safety Integrity Levels (ASIL) to offer a measure of the risk 

associated with a subsystem. These levels go from A to D, A being the lowest level of integrity and D 

the highest, that is, the most demanding with the most requirements. 

The parameters of risk severity, probability of exposure, and controllability determine the ASIL. 

The parameter of controllability requires special attention. It is assumed that the driver is in proper 

driving conditions, has the proper training for driving (driving license) and complies with all 

applicable legal regulations, including corresponding requirements to avoid risks with other road 

users; the driver must comply with traffic laws. It is necessary to adapt the laws, so that when an 

automatic driving system is in operation, the driver does not have to pay attention, unless the system 

requests his intervention. The correct operation of the notification to the driver and the request for 

human control is essential. If the notification fails, it is possible that the human driver is not paying 

attention and cannot avoid the danger. If the request fails, the system should continue to carry out 

the control instead of allowing the driver to intervene. 

These situations should always be assigned to the highest control class (C3), which means that 

less than 90% of drivers or other road users are generally able, or barely able, to avoid the hazard. 
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Part 6 of the 26262 standard is dedicated to the software development process to produce code 

reliable enough to run a system and meet the required ASIL level.  

The J3016 standard of the SAE (Society of Automotive Engineers) divides the driving automation 

into six classes: from non-automatic (level 0) to fully automatic (level 5). SAE levels 3 or higher, are 

based on software to collect data from the sensors in order to create a model of the environment and 

then, depending on the objective, decide on how to assist the driver or control the vehicle. It also 

covers other critical tasks, such as determining if the sensors are working correctly, when to notify 

the driver and when to activate the request for human control. It is vital that this software responds 

reliably. Other software tasks, such as modeling the sensor data, may be less critical, but even this 

will require analyzing the risk. 

The aforementioned safety and protection aspects for all the agents involved in the automation 

of driving are being analyzed in depth by the competent authorities in traffic and road safety. In the 

following section, an analysis of the current legislation regarding autonomous driving is made. 

6.2. Legal Aspects of Autonomous Driving 

Like all the technologies that allow the automation of tasks performed by humans, autonomous 

driving is perceived by them as a generator of different risks, which can hinder its acceptance; we 

can classify these risks as technological risks, social risks, economic risks and adaptation risks [109]. 

Among potential technology risks, Renn [110] highlights five: Security, liability, privacy, 

cybersecurity and industry influence. The responsibility of minimizing the impact of the 

aforementioned risks falls on the different governments, the only ones with the capacity to generate 

the appropriate policies and legislation; the legislators work on it at different rates, as we explain 

below. 

The legislation that is being produced to regulate the use of autonomous driving focuses mainly 

on levels 4-5 of AV automation as proposed by the Society of Automotive Engineers (SAE) and tries 

to overcome the biggest legal obstacle established by the United Nations Vienna Convention on road 

traffic, which forces the control of the vehicle to be in the drivers’ hands permanently and under any 

circumstance. 

Table 8 shows a list of countries whose governments are decisively involved in generating 

legislation to regulate the circulation of autonomous vehicles, the state of legislation (approved, billed 

or drafted) and legislative orientation, according to Li's proposal [109]. 

Table 8. Summary of the main AV legal regulation. 

Country 
Prevention 

Oriented 

Control 

Oriented 

Toleration 

Oriented 

Adaptation 

Oriented 

Australia (NTC) 

Approved 

Bill 

Draft 

Bill, 2017 

Approved, 2016 

Onboard driver 

 Draft, 2017 

China (NTCAS)  
Bill, 2016 

Approved, 2016 
  

France     

Germany  Approved, 2017 Draft, 2017  

Japan 
Approved, 2016 

Onboard driver 
   

New Zealand     

South Korea  Approved, 2016   

Sweden     

The Netherlands  Approved, 2016   

Singapoore (RTA)  
Approved,2017 

No driver 
 Bill, 2017 

UK (CCAV)   
Approved, 2017 

Onboard driver 
Draft, 2018 
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USA (Alaska) 

(NHTSC) 
 Approved, 2016   

USA (Arizona) 

(NHTSC) 
 Approved, 2016   

USA (California) 

(NHTSC) 
 Approved, 2015   

USA (Florida) 

(NHTSC) 
 Approved, 2015   

USA (Nevada) 

(NHTSC) 
 Approved, 2017   

USA (rest of 

States) 
 Bill, 2018   

6.3. AV Testing Possibilities 

As explained in the previous section, the various factors involved in the regulation of AV 

circulation means the development of legislation that regulates this activity becomes a complex and 

slow task. This difficulty largely hampers the deployment of a technology that has already reached a 

high degree of maturity. 

One of the main issues presented by the lack of legislation is limitation in the testing of 

autonomous vehicles on roads open to traffic. 

Table 9. Permitted access to public roads for AVs. 

Country No Access Partial Access High Access 

Australia  X  

China  X  

France  X  

Germany   X 

Japan  X  

New Zealand   X 

South Korea   X 

Sweden   X 

The Netherlands   X 

Singapore   X 

UK  X  

USA (Alaska)   X 

USA (Arizona)   X 

USA (California)   X 

USA (Florida)   X 

USA (Nevada)   X 

USA (rest of States)  X  

Remaining countries X   

As summarized in Table 9, only a small set of 17 countries/states around the world allow partial 

access to public roads by autonomous vehicles for testing purposes and, among them, only 11 allow 

unrestricted access. 

Legislation limiting liability for possible accidents caused by autonomous vehicles is also 

concerned with establishing standards for the development of tests in real traffic conditions. Thus, 

institutions such as the European Road Transport Research Advisor Council (ERTRAC, Europe), the 

National Highway Traffic Safety Commission (NHTSA, USA), the Center for Connected and 

Autonomous Vehicles (CCV, UK) or the National Transport Commission (NTC, Australia) establish 

conditions under which the tests must be carried out. In general, the established rules are very 
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restrictive in that it is necessary to communicate in advance the nature of the tests (details of the tests 

to be performed, equipment, routes, safety measures adopted, etc.). 

All this generates great complexity, both in the administrative procedures and necessary security 

deployment, which causes the tests to be expensive and not as abundant as would be desirable by 

the developers of this technology. That is why companies make great use of simulation techniques 

for the development of systems for autonomous driving. 

7. Conclusions 

Advances in the field of vehicles with a high degree of automation are growing very rapidly, as 

can be seen from the study carried out in this review on perception systems. Every so often, new 

sensors appear (e.g. solid state LiDAR or MMW RADAR,) applied to autonomous driving or 

technologies that were unthinkable a few years ago beyond the use of research centres or large 

companies (e.g. rotational 3D LiDAR). The different electromagnetic spectrum bands used by the 

sensors studied in this work give each type of sensor advantages and disadvantages that limit its 

application. For example, MMR is used for tracking objects, calculation of relative speeds or in ADAS 

systems for detection of objects in blind spots; they also have an excellent response in all types of 

weather conditions. 3D LiDARs have a high spatial resolution and high precision that make them the 

perfect element for navigation and mapping the environment. Visible cameras have a chromatic 

reproduction that makes them vital when it comes to discerning between the objects present on the 

road (pedestrians, vehicles, signs, etc.). The new generation of thermal cameras allow operation in 

total darkness or in very bright environments with total precision. The analysis of the spider charts 

shown in Figure 7 shows that there is no perfect sensor, so it is necessary to carry out sensorial fusion 

by means of specific algorithms that make it possible to alleviate the defects of each sensor and 

combine their advantages. We must highlight the good results that are being obtained in the area of 

data fusion with CNN. In the area of positioning systems, RTK systems that offer centimetre accuracy 

at the expense of using base stations that correct the GNSS signal should be highlighted. In this area, 

there are efforts in the deployment of this type of infrastructure to give precise coverage to the new 

fleet of autonomous vehicles that in a short space of time will flood cities. 

Autonomous driving is a challenge that involves different risks for road users. The deployment 

of technology that enables the automation of driving requires very exhaustive tests in real driving 

and road conditions, tests that in most countries cannot be carried out either in the quantity or in the 

actual driving conditions that would be required due to the absence of appropriate legislation, as 

explained in Section 6. This gap is largely covered by simulation. 

As observed in Section 5, the simulation possibilities of an autonomous vehicle are very broad. 

Over 200 works have been found related to the simulation of autonomous vehicles. The options are 

reduced when the simulation is focused on the Perception System, in this case around 50 of the works 

consulted. Not all the works have been studied, only those with an impact factor (publications in 

congresses or research journals, which have passed a peer review) have been taken into account. On 

the other hand, we consulted the proposals offered by companies dedicated to modelling and 

simulation, robotics, and automation. 

Undoubtedly, the most widespread simulators used in the field of research are robotics 

simulators. This is logical, considering that autonomous vehicles are a branch of robotics. However, 

not all robotic simulators are prepared to provide the necessary realism required in these cases. That 

is why the tendency is to use customized solutions using existing modelling and simulation 

platforms. 
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