
sensors

Article

Virtual Antenna Array and Fractional Fourier
Transform-Based TOA Estimation for
Wireless Positioning

Zhigang Chen * , Lei Wang and Mengya Zhang

School of Electronic and Information Engineering, Xi’an Jiaotong University, No. 28 West Xianning Road,
Xi’an 710049, China; lei.wang@mail.xjtu.edu.cn (L.W.); zhangmengya0820@163.com (M.Z.)
* Correspondence: zgchen@mail.xjtu.edu.cn; Tel.: +86-29-8266-8772

Received: 7 December 2018; Accepted: 30 January 2019; Published: 2 February 2019
����������
�������

Abstract: In this paper, a novel virtual antenna array and fractional Fourier transform (FRFT)-based
2-dimension super-resolution time-of-arrival (TOA) estimation algorithm for OFDM WLAN systems
has been proposed. The proposed algorithm employs channel frequency responses (CFRs) at the
equi-spaced positions on a line or quasi-line moving trajectory, i.e., the CFRs of a virtual antenna
array, to extract multipaths’ TOA information. Meanwhile, a new chirp-like quadratic function is
used to approximate the channel multipaths’ phase variation across the space dimension, which is
more reasonable than the traditional linear function, especially for relatively big virtual antenna
array sizes. By exploiting the property of chirp-like multipaths’ energy concentration in the FRFT
domain, the FRFT can be first used to separate chirp-like multipath components, then the existing
TOA estimation methods in frequency domain can be further employed on the separated multipath
components to obtain the multipaths’ TOA estimates. Therefore, the proposed algorithm can make
more use of the multipaths’ characteristics in the space dimension, thus it can efficiently enhance the
multipath resolution and achieve better multipaths’ TOA estimation performance without requiring
a real antenna array. Simulation results demonstrate the effectiveness of the proposed algorithm.

Keywords: virtual antenna array; fractional fourier transform (FRFT); time-of-arrival (TOA)
estimation; channel frequency responses (CFRs); wireless positioning

1. Introduction

Indoor wireless positioning technology has increasingly attracted research interests [1,2] for its
wide and popular applications in the construction industry, health industry [3], people guidance and
so on. Geometric location based on time-of-arrival (TOA) is the most popular method for accurate
positioning systems [4]. The basic problem in TOA estimation is to extract the TOA of the Line-of-Sight
(LOS) path in wireless channels, which is usually interfered by Non-LOS (NLOS) paths in the multipath
environment [5]. Due to the serious NLOS multipath effects and the limited system bandwidth, the
conventional TOA estimation methods, such as the inverse Fourier transform (IFT)-based method,
cannot achieve higher estimation accuracy [6].

To improve the TOA estimation accuracy, several super-resolution TOA estimation methods based
on the channel frequency responses (CFRs), such as the multiple signal classification (MUSIC)-based
method [1], TLS-ESPRIT [7]-based method, matrix pencil (MP)-based method [8,9] and so on, employ
the eigenstructure or eigen-subspace of the CFRs to obtain TOA estimates. In contrast to the
conventional methods, these super-resolution methods exploit not only the property of multipaths’
linear phase variation across the frequency dimension but also the sparsity of the main channel
multipaths in the time-delay domain, so they can achieve higher accuracy than the conventional
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methods. Nevertheless, such super-resolution methods are susceptible to the noise since the noise
causes serious estimation errors of eigen-subspace or eigenvalues.

Furthermore, the 2-dimension super-resolution TOA estimation methods, such as the 2-dimension
MP method [10], joint beamforming and MUSIC-based method [11], and the 2-dimension (2D) MUSIC
method [12], employ both the channel frequency responses and the channel space responses to jointly
estimate the TOA and AOA. Besides the property of multipaths’ linear phase differences across the
frequency dimension and the sparsity of the main channel multipaths, the 2D super-resolution methods
also exploits the property of multipaths’ quasi-linear phase variation across the space dimension, hence
they can efficiently mitigate the noise effects and further improve the TOA estimation performance.
However, such 2D super-resolution methods are limited by the requirement of an antenna array to
obtain the channel space responses, and the assumption of quasi-linear phase variation property across
the space dimension, which implies that the antenna array size should be small enough.

Without requiring an antenna array and suffering from the limitation of its relatively small size,
a novel virtual antenna array and fractional Fourier transform (FRFT)-based 2D super-resolution TOA
estimation method has been proposed in this paper. By using the built-in Kinect or inertial sensors in
the mobile terminal (MT), the proposed method first obtains the CFRs at the equi-spaced positions on
a line or quasi-line moving trajectory as the CFRs of a virtual antenna array. Meanwhile, considering
that the size of virtual antenna array is not limited by the hardware and not precisely known, the
channel multipaths’ phase variation across the space dimension is approximated by a chirp-like
quadratic function, which is more reasonable than a traditional linear function. Based on the CFRs of a
virtual antenna array, the proposed method employs the FRFT [13] to separate and extract multipath
components in CFRs by exploiting the property of the chirp’s energy concentration in the FRFT
domain [14], then it uses the existing time-delay estimation methods, such as the IFT method and the
MP method [9], to estimate the TOAs of the separated multipaths. Therefore, by employing the virtual
antenna array idea, modeling the multipath phase variation as a quadratic function, the proposed
FRFT-based algorithm can make more use of the multipaths’ characteristics in the space domain and
achieve more robust TOA estimation performance without requiring an antenna array.

The main contributions of this paper are as follows: (1) We present a novel virtual antenna
array system model for positioning by regarding the CFRs at the equi-spaced positions on a line or
quasi-line moving trajectory, which can be obtained by using built-in Kinect or inertial sensors in
the MT, as CFRs of a virtual antenna array. (2) The channel multipaths’ phase variation across the
space dimension is modeled as a chirp-like quadratic function instead of a traditional linear function.
Due to being high-order approximation, the chirp-like quadratic function suffers from much less
multipath phase model mismatch error for the unlimited and unspecified size of virtual antenna arrays.
(3) An FRFT-based 2D super-resolution TOA estimation method has been proposed. By exploiting
the chirp’s energy concentration property in the FRFT domain, the FRFT is employed to separate
chirp-like multipath components in the space domain, then the existing TOA estimation methods,
such as the IFT method and the MP method [9], are used to obtain multipaths’ TOA estimate. Thus,
the FRFT-IFT algorithm and the FRFT-MP algorithm have been developed. (4) Simulation results
demonstrate that the proposed method can achieve more robust TOA estimation performance than the
2D MP super-resolution TOA estimation method due to making more of the multipaths’ characteristics
in the space domain.

The rest of the paper is organized as follows. In Section 2, the virtual antenna array system model
is described. In Section 3, the properties of multipath components in the CFRs of a virtual antenna
array will be analyzed first by FRFT, and a novel FRFT-based TOA estimation algorithm will be then
developed based on these properties. Simulation results are presented in Section 4 to evaluate the
performance of the proposed method. Finally, conclusions are drawn in Section 5.
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2. Virtual Antenna Array System Model

For ease of exposition, we consider a basic OFDM WLAN system with single AP (Access Point)
and single MT. The following system model can be extended directly to the WLAN system with
multiple APs and multiple MTs. Suppose that the MT moves in a straight-line or quasi-straight-line
during a short period, which is usually the case with pedestrians‘ walking way in indoor environments.
If the MT’s acceleration, which can be measured by built-in Kinect or inertial sensors in the MT [15],
is smaller than a chosen threshold, the MT can be assumed to make uniform linear motion with
its speed imprecisely estimated due to the accumulated error. By simply taking positions at M
equi-interval moments during such short period of relatively small acceleration or even employing the
pedestrian dead reckoning method [16,17], we can obtain M equi-spaced positions on a straight-line or
quasi-straight-line moving trajectory of the MT and regard the CFRs at such positions as the CFRs of
a virtual antenna array. Suppose the central position of the trajectory as the position of interest and
call the CFRs at the M positions on the trajectory as the CFRs of a virtual antenna array at this target
position. Denote the distance between adjacent positions as ρ, i.e., the virtual antenna array element
spacing, which is assumed constant but not precisely estimated due to the imprecisely estimated speed
and the negligible incremental accumulated error in a short period. The channel impulse response
(CIR) between the AP and the MT at the m-th position of the moving trajectory is given by [9]

h(t, m) =
L

∑
l=1

bla(τm,l)δ(t− τm,l) m = −M
2

, · · · , 0, · · · ,
M
2
− 1 (1)

where L is the number of distinct propagation paths, bl and τm,l are the complex gain and the TOA of
the l-th path, respectively, a(τm,l) = e−j2π fcτm,l is the array response of the mth antenna to the l-th path.

Assume the direction of arrival (DOA) relative to the moving trajectory of the lth path at the
central position, i.e., the 0-th position on the trajectory as θl , which is shown in Figure 1, we have

τm,l =
1
c

√
(mρ)2 + (cτ0,l)2 − 2cosθl(mρ)(cτ0,l)

≈ 1
c
(cτ0,l − (mρ)cosθl +

1
2
(mρsinθl)

2

cτ0,l
) m = −M

2
, · · · , 0, · · · ,

M
2
− 1 (2)

where c is the speed of light, the approximation holds if the virtual antenna array size Mρ is deliberately
chosen to satisfy Mρ

2cτ0,l
� 1. This approximation is obtained by using second order Taylor series

expansion, thus it is more reasonable than the conventional linear function, i.e., the first order Taylor
series expansion of τm,l , considering the size of the virtual antenna array is unspecified and not limited
by the hardware.

From (1) and (2), the estimated CFR for the nth subcarrier and the m-th position on the moving
trajectory at the receiver side can be expressed as

Ĥm,n = Hm,n + Wm,n

=
L

∑
l=1

ble−jωcτm,l e−j2π∆ f τm,l + Wm,n

≈
L

∑
l=1
{ble−jωc(τ0,l−mρcosθl/c+(mρsinθl)

2/(2τ0,lc2))· (3)

e−j2πn∆ f (τ0,l−mρcosθl /c+(mρsinθl)
2/(2τ0,l c2))}+ Wm,n

m = −M
2

, · · · ,
M
2
− 1; n = 0, 1, · · · , N
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as in [10], where ωc = 2π fc is the carrier angular frequency, ∆ f , N and Wm,n denote the OFDM
subcarrier spacing, the subcarrier number and the additive white Gaussian noise (AWGN), respectively.
For simplicity, the CFR can be also written as

Ĥm,n ≈
L

∑
l=1
{blejϕl(n)+j2π fl(n)mρ+jπµl(n)(mρ)2}+ Wm,n (4)

where

ϕl(n) = −(ωc + 2πn∆ f )τ0,l

fl(n) = ( fc + n∆ f )cosθl/c (5)

µl(n) = −( fc + n∆ f )(sinθl)
2/(τ0,lc2)

Figure 1. The TOAs of the l-th path at equi-spaced positions on a line moving trajectory.

3. Fractional Fourier Transform Based TOA Estimation

It can be observed from (4) that the phases of multipath components in CFRs {Hm,n}M,N
m=1,n=1

across the frequency dimension vary linearly, while the phase variations of multipath components
in CFRs across the space dimension approximate quadratic functions, in other words, the CFRs over
the space dimension can be equivalently viewed as L superimposed chirp-like multipath components.
Consequently, the FRFT in the space domain and the frequency domain processing method, such as
the IFT or MP method, can be jointly employed to extract multipath components’ parameters.

In this section, the multipath components of the CFRs will be analyzed first by employing FRFT
across the space dimension, and a novel FRFT-based multipath TOA estimation algorithm will be
then developed.

3.1. Properties of Multipath Components in FRFT Domain

To separate and extract the chirp-like components, a typical discrete fractional Fourier transform
(DFRFT) [18] will be implemented on the CFRs at each subcarrier across the space dimension as

Ĥn(α, u) = F α({Hm,n}
M
2 −1

m=−M
2
) +F α({Wm,n}

M
2 −1

m=−M
2
)

=
Aα√

M
ejπu2cotα

M
2 −1

∑
m=−M

2

{e−j2πucsc(α)/
√

Mejπu2cot(α)/M Hm,n} (6)

+Wn(α, u) n = 0, 1, · · · , N

where α = pπ/2 and p is the FRFT order, Aα =
√

1−jcot(α)
2π , F α(•) denotes the DFRFT operation of

order α = pπ/2,Wn(α, u) is the transformed AWGN by DFRFT.
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By substituting (4) into the first part of (6), the noise-free transformed CFRs by DFRFT can be
expressed as

Hn(α, u) ≈ Aα√
M

ejπu2cotα
M
2 −1

∑
m=−M

2

{e−j2πumcsc(α)/
√

Mejπm2cot(α)/M·

L

∑
l=1
{blejϕl(n)+j2π fl(n)mρ+jπµl(n)(mρ)2}}

=
Aα√

M
ejπu2cotα

L

∑
l=1
{blejϕl(n)

M
2 −1

∑
m=−M

2

{ej2π[−ucsc(α)/
√

M+ fl(n)ρ]m·

ejπ[cot(α)/M+µl(n)ρ2]m2}}n = 0, 1, · · · , N (7)

Define the DFRFT signal in (7) contributed only by the l-th multipath component as Sl,n(α, u)

Sl,n(α, u) = clejϕl(n)
M
2 −1

∑
m=−M

2

{ej2π[−ucsc(α)/
√

M+ fl(n)ρ]m · ejπ[cot(α)/M+µl(n)ρ2]m2}

n = 0, 1, · · · , N (8)

where

cl =
Aα√

M
ejπu2cotαbl

Then it can be derived that Sl,n(α, u) possesses the following properties.

Property 1. Due to the chirp’s energy concentration property in the DFRFT domain [14], Sl,n(α, u) has
a distinguishable peak in the (α, u) plane, the peak, and its coordinate (άl(n), úl(n)) correspond to

Sl,n(άl(n), úl(n)) ≈ Aάl(n)
√

Mejπ(úl(n))2cot(άl(n))blejϕl(n)

άl(n) = arccot(−µl(n)Mρ2) (9)

úl(n) = fl(n)
√

Mρ/csc(α̂l(n))

Property 2. It can be proved that ∑N
n=1|Sl,n(α, u)|2 achieves its maximum value at (άl(

N
2 ), úl(

N
2 )), i.e.,

(άl(
N
2
), úl(

N
2
)) ≈ argmax

(α,u)

{
N

∑
n=1
|Sl,n(α, u)|2

}
(10)

and decreases rapidly with |α− άl(N/2)| or |u− úl(N/2)| increasing (See Appendix A for the derivation).

Property 3. It can also be proved that if the Euclidean distance between any two of {(άl(
N
2 ), úl(

N
2 ))}L

l=1 is
sufficiently large, ∑N

n=1|Hn(α, u)|2 = ∑N
n=1|∑L

l=1Sl,n(α, u)|2 has L distinguishable peaks corresponding to
the L multipath components in the (α, u) plane and the peaks’ coordinates correspond to {(άl(

N
2 ), úl(

N
2 ))}L

l=1
(See Appendix B for the derivation).

3.2. DFRFT Based Multipath TOA Estimation

Based on the above properties of multipath components in (8), the parameters of multipath
components can be estimated through searching for the peaks of CFRs in the FRFT domain.
However, the estimation error caused by interferences and/or AWGN cannot be neglected in cases of
insufficiently large virtual antenna size M× ρ or at low SNRs.
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Due to the Property 3 above, an averaging method over N subcarriers can be used to reduce the
estimation error caused by noise. Furthermore, a successive interference cancellation (SIC) method
can be employed to mitigate the interference effects as in [19]. Thus, the parameters of multipath
components will be obtained by combining the SIC method and the averaging method.

Without loss of generality, we assume that the amplitudes {|bl |}L
l=1 of L paths in the channel

satisfy |b1| > |b2| · · · |bL|. Considering the SIC and averaging-based multipath parameters estimation
is composed of L′ similar iterative steps, only the steps in the l′-th iteration are exemplified as follows.
Assume the initial filtered CFRs H̃(0)

m,n = Ĥm,n.

3.2.1. Searching for the Peak

Given the filtered CFRs H̃(l′−1)
m,n in the (l′ − 1)-th step, the peak of ∑N

n=1|H̃
(l′−1)
n (α, u)|2 in the (α, u)

plane at the l′-th iteration can be expressed as

(α̂(l
′), û(l′)) = argmax

(α,u)

{
N

∑
n=1
|H̃(l′−1)

n (α, u)|2
}

= argmax
(α,u)

{
N

∑
n=1
|F α({H̃(l′−1)

m,n }
M
2 −1

m=−M
2
)|2
}

(11)

The estimated peak corresponds to the strongest multipath component in the filtered CFRs H̃(l′−1)
m,n ,

i.e., the l′-th strongest multipath component in the CFRs {Ĥm,n}
M
2 −1

m=−M
2

. According to the Property 3

above, it approximates the peak of the DFRFT of the l′-th multipath component at the N/2-th subcarrier
in the (α, u) plane.

(α̂(l
′), û(l′)) ≈ (άl′(

N
2
), úl′(

N
2
)) (12)

Since the DFRFT transformed signal for each subcarrier means averaging the noise over M
positions on the trajectory and the summation averages the noise energy over N subcarriers,

∑N
n=1|H̃

(l′−1)
n (α, u)|2 contains the averaged noise energy across both the frequency and space

dimensions, thus the noise effects on the estimation (α̂(l
′), û(l′)) can be reduced greatly considering

that the subcarrier number and the number of the virtual antenna array elements are usually large.
From (5) and (9), the peak of the DFRFT of the l′-th multipath component at the n-th subcarrier in

the (α, u) plane can be derived as

ˆ́αl′(n) = arccot(
fc + n∆ f

fc + N∆ f /2
cot(α̂(l

′)))

ˆ́ul′(n) =
fc + n∆ f

fc + N∆ f /2
csc(α̂(l

′))

csc( ˆ́αl′(n))
û(l′) (13)

3.2.2. Estimating the TOA of the Strongest Multipath

From the relationship between the peaks of the DFRFT of the CFRs and the parameters of L
multipath-chirp components in (7), the peak of the DFRFT at the n-th subcarrier is compensated as

´̃H(l′−1)
n ( ˆ́αl′(n), ˆ́ul′(n))

= H̃(l′−1)
n ( ˆ́αl′(n), ˆ́ul′(n))A∗ˆ́αl′ (n)

e−jπ( ˆ́ul′ (n))
2cot ˆ́αl′ (n)

≈ |A ˆ́αl′ (n)
|2
√

Mbl′ e
jϕl′ (n) + ´̃Wn( ˆ́αl′(n), ˆ́ul′(n))+

{
L

∑
l=l′+1

Sl,n( ˆ́αl′(n), ˆ́ul′(n))} · A∗ˆ́αl′ (n)
e−jπ( ˆ́ul′ (n))

2cot ˆ́αl′ (n)︸ ︷︷ ︸
In

(14)
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where the approximation holds since the first l′− 1 strongest multipath component are almost removed
in the previous l′ − 1 iterations, the first term in the right hand represents the compensated DFRFT
of the strongest multipath component, ´̃Wn( ˆ́αl′(n), ˆ́ul′(n)) and In are the compensated and filtered
AWGN and interferences caused by the remaining multipath components, respectively.

By substituting (5) into (14), the compensated DFRFT at the peak ( ˆ́αl′(n), ˆ́ul′(n)) in (14) can be
further expressed as

´̃H(l′−1)
n ( ˆ́αl′(n), ˆ́ul′(n))

≈ dl′ e
−j2πn∆ f τ0,l′ + ´̃Wn( ˆ́αl′(n), ˆ́ul′(n)) + In (15)

with

dl′ = |A ˆ́αl′ (n)
|2
√

Mbl′ e
−jωcτ0,l′ (16)

From (15), ´̃H(l′−1)
n ( ˆ́αl′(n), ˆ́ul′(n)) can be viewed as a new channel frequency response at the n-th

subcarrier. Due to the energy concentration property of DFRFT and the uniformly distributed noise in
the DFRFT domain, the strongest multipath component dominates the compensated DFRFT of the n-th
subcarrier at the peak ( ˆ́αl′(n), ˆ́ul′(n)). Hence, this new channel has a dominated multipath of interest,
which has the same TOA τ0,l′ as the l′ multipath.

Therefore, the existing TOA estimation methods, such as the IFT method or the MP-based

method [9], can then be directly used on { ´̃H(l′−1)
n ( ˆ́αl′(n), ˆ́ul′(n))}N

n=1 to obtain the estimate of the
strongest multipath’s TOA in this iteration, which is denoted as τ̂0,l′ . Moreover, the estimate of the
strongest multipath’s TOA is irrelevant to the virtual antenna array element spacing ρ from (16). It is
worth mentioning, although the MP-based TOA estimation is susceptible to the noise, it can remove
most interference in such new equivalent channel, especially at high SNRs.

3.2.3. Cancelling the Strongest Component

Furthermore, the filtered CFRs H̃(l′−1)
m,n at the n-th subcarrier in the (l′ − 1)-th step will be

transformed by DFRFT of order ˆ́αl′(n) as

H̃(l′−1)
n ( ˆ́αl′(n), u) = F ˆ́αl′ (n)({H̃(l′−1)

m,n }M
m=1) n = 0, 1, · · · , N (17)

For each u in a neighborhood of ˆ́ul′(N/2), [H̃(l′−1)
0 ( ˆ́αl′(0), u), · · · , H̃(l′−1)

N−1 ( ˆ́αl′(N − 1), u)] is
formed as a new equivalent CFR vector over N subcarriers. Similarly, it can be derived from (7) that
the l′-th multipath component is dominant in such formed CFR vector. Again, the IFT or MP-based
multipath parameters estimation method [9] can be employed on such a CFR vector to obtain the TOA
and the complex gain of its strongest multipath component, which are denoted as τ̃0,l′(u) and b̃0,l′(u).
Consequently, the DFRFT at u can be filtered by cancelling this strongest multipath component from
such a CFR vector as

H̃(l′)
n ( ˆ́αl′(n), u)

= H̃(l′−1)
n ( ˆ́αl′(n), u)− b̃0,l′(u) ∗ e−j2πn∆ f τ̃0,l′ (u)

n = 0, 1, · · · , N (18)

if the TOA estimate difference |τ̃0,l′(u)− τ̂0,l′ | is smaller than a chosen threshold.

Then the filtered DFRFT H̃(t)
n ( ˆ́αl′(n), u) is transformed back to the frequency domain by DFRFT

of order − ˆ́αl′(n). Hence, the filtered CFRs in the l′-th iteration can be expressed as

H̃(l′)
m,n = F− ˆ́αl′ (n)(H̃(t)

n ( ˆ́αl′(n), u)) n = 0, 1, · · · , N (19)
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The above procedures will repeat until the amplitude of the detected multipath component is
smaller than a certain threshold. Finally, the TOA of the direct multipath can be estimated as the
minimum one among {τ̂0,l′}L′

l′=1.

4. Simulation Results and Discussions

4.1. Simulation Settings

To evaluate the performance of the proposed algorithm, we have conducted computer simulations
in a relatively simple 9 m × 7 m × 4 m (length × width × height) three-dimension indoor WLAN
environment, in which there are 1 AP located at (0.5, 4.5, 2.5) and four mixed cement and glass
walls. The 2-dimension layout of the indoor WLAN environment is shown in Figure 2. The classical
ray-tracing propagation model [20] is adopted in the simulations to generate the CIRs at indoor
positions, and the dielectric constant and electrical conductivity of concrete and glass are respectively
εr1 = 8, σ1 = 0.01 and εr2 = 2, σ2 = 0.001, and the system measurement noise is Gaussian.
For simplicity, only the indirect paths created by a single specular reflection from a side wall and the
direct path are considered in the simulations. The carrier frequency, subcarrier number, and subcarrier
spacing are assumed as 5.0 GHz, 64, and 625 KHz, respectively./ 2 1M  2 2 22 2 21,1 1, 1,1,1 1, 1,0,1 0, 0,1,1 1, 1,,1 , ,                                                                                             M M M

M M M
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Figure 2. The 2-dimension layout of the indoor WLAN environment.

Two kinds of scenarios have been studied in the simulations: LOS scenarios and NLOS scenarios.
In the LOS scenarios, all the multipaths’ gain are generated according to the ray-tracing propagation
model, thus the LOS multipath is the strongest one among all the multipaths. In the NLOS scenarios,
all multipaths except the LOS multipath have the same gain as in LOS scenarios, while the LOS path is
additionally attenuated by 15 dB to simulate the presence of human body or some barrier between the
AP and MT according to [21,22].

To average the LOS path TOA estimation performance over space, the target positions, i.e., the
central positions of MT’s moving trajectories, are set as uniformly spaced positions with the distance
of 1.5 m between neighboring central positions in this indoor environment, thus there are 20 uniformly
spaced target positions also shown in Figure 2. Based on the CFRs at the positions equi-spaced on
a line trajectory, the direct path’s TOA at the central position of the corresponding line trajectory is
obtained as the target TOA estimate in the simulations. The mean square error (MSE) of the LOS path’s
TOA estimate (unit: ns) is employed as the performance measurement and all results are obtained
by averaging 400 independent simulations: 20 independent simulations at each one of 20 uniformly
spaced target positions.

In the simulations, we compare the performance of the proposed algorithms, the FRFT-IFT
algorithm and the FRFT-MP algorithm, with the 2D MP-based super-resolution TOA estimation
algorithm [10]. In each iteration of the proposed algorithms, the DFRFT is implemented on the CFRs



Sensors 2019, 19, 638 9 of 14

across the space domain at each subcarrier according to (6) with {α = pπ/2, p = q/800}800
q=−800,

{u = m/
√

M}
M
2 −1

m=−M
2

and M = 60, and the parameters of the strongest multipath components is

extracted by searching the peak in the discretized FRFT domain according to (11), then the FRFT-IFT
algorithm and the FRFT-MP algorithm respectively employ the IFT scheme and MP scheme [9] to
estimate the strongest multipath’s TOA, the neighborhood of the peak in the u domain is set as the
whole u domain and the TOA estimate difference threshold is set as 1ns in the step of cancelling the
strongest component. The iteration repeats until the energy of the extracted component is 20 times less
than that in the first iteration.

4.2. Simulation Results

It is worth noting that the performance of the three algorithms are mainly dependent on the
noise, the multipath components interference and the mismatch errors of the multipaths’ phase model.
In other words, the performance of the LOS path TOA estimation depends on the ‘SINR’ of the LOS
path component, i.e., the ratio of the LOS path energy to the sum of the energy of noise, the multipath
components interference and the mismatch errors. Since the 2D MP method almost removes the multipath
interference in both frequency and space domain, the performance of the 2D MP TOA estimation algorithm
is mainly relevant to the noise and the multipaths’ phase model mismatch errors. Due to adopting the
quadratic function as the multipath phase variation model across the space dimension, the two proposed
algorithms: the FRFT-IFT algorithm and the FRFT-MP algorithm, suffer from much less multipaths’ phase
model mismatch errors. Besides the mismatch errors and the noise, the FRFT-IFT algorithm is also subject
to multipath components interference caused by the insufficient virtual antenna array size, while the
FRFT-MP method can remove most of the multipath interference by employing MP-based TOA estimation
method [9] in frequency domain, thus it is only subject to the residual multipath components interference.
Moreover, the ‘SNR’ in the following simulations means the ratio of the sum of all the multipaths’ energy
to the noise energy, whereas the ‘SNR of the LOS path component’ means the LOS path energy to the
noise energy.

Figure 3 demonstrates the MSE of the TOA estimation versus SNR in LOS scenarios and NLOS
scenarios, respectively. In the simulations, the virtual antenna array size are assumed as Mρ = 60× 2 cm.
From Figure 3, it is obvious that the proposed algorithms: the FRFT-MP algorithm and the FRFT-IFT
algorithm generally outperform the 2D MP algorithm since the proposed algorithms can make more of
the multipaths’ characteristics in the space domain. Figure 3a shows that the two proposed algorithms
perform better than the 2D MP algorithm in NLOS scenarios, especially at low SNRs, because in
such scenarios the noise dominates the MSE performance at low SNRs, and the proposed methods
concentrate the LOS multipath energy by FRFT, thus can achieve higher ‘SINR’ of the LOS path
component than the 2D MP method, while the 2D MP method suffers from noise threshold effects [23].

In LOS scenarios and high SNR cases in NLOS scenarios, the 2D MP algorithm and the FRFT-IFT
algorithm are mainly subject to the mismatch error of the quasi-linear phase model and the multipath
components’ interference, respectively, since the SNR of the LOS path component is sufficiently high
in such cases. This explains that both these two methods have error floor effects at high SNRs in NLOS
scenarios as shown in Figure 3a and their performance improves slightly with SNR increasing in LOS
scenarios as shown in Figure 3b. The FRFT-MP method can mitigate the multipath interference by
employing MP-based TOA estimation method [9], thus the FRFT-MP method has the lower error
floor as shown in Figure 3a. On the other hand, since the MP scheme is susceptible to the noise, the
FRFT-MP method performs worse than the FRFT-IFT method at low SNRs in both NLOS and LOS
scenarios, as shown in Figure 3a,b.
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Figure 3. Mean square error versus SNR in NLOS scenarios and LOS scenarios, respectively.

Figure 4 demonstrates the MSE of the TOA estimation versus different sizes of virtual antenna
array at SNR = 25 dB. Please note that the SNR of the LOS path component is not very high due to the
relatively weak LOS path component in NLOS scenarios. As the virtual antenna array size increases,
more multipaths’ characteristics in the space domain can be exploited to enhance the ‘SINR’ of the
LOS path component until the multipaths’ phase model mismatch errors are not negligible at cases
of relatively big virtual antenna array size in NLOS scenarios. This explains that the performance
of the three algorithms improve with the virtual antenna array size increasing from 60 × 0.5 cm to
60 × 2.5 cm, but they are worsened at the case of virtual antenna array size 60 × 3 cm in NLOS
scenarios, which are shown in Figure 4a. Moreover, Figure 4a shows that the two proposed methods
outperform the 2D MP method, because the proposed methods concentrate the LOS path energy and
suffer from less model mismatch errors, thus achieve higher ‘SINR’ of the LOS path component.
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Figure 4. Mean square error versus virtual antenna array size in NLOS scenarios and LOS scenarios,
respectively.

At high SNRs in LOS scenarios, the SNR of the LOS path component is much higher than that in
NLOS scenarios due to the dominant LOS path, hence all the three methods perform much better in
LOS scenarios than in NLOS scenarios by comparing Figure 4b with Figure 4a. It can be seen from
Figure 4b that the performance of the 2D MP algorithm and the FRFT-MP method only improves
with virtual antenna array size increasing from 60 × 0.5 cm to 60 × 1.0 cm and then it is worsened
with virtual antenna array size increasing from 60 × 1.0 cm to 60 × 3.0 cm, and the FRFT-IFT method
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performs better with virtual antenna array size increasing from 60 × 0.5 cm to 60 × 2.0 cm and
performs worse with virtual antenna array size increasing from 60 × 2.0 cm to 60 × 3.0 cm, because
the multipaths’ phase model mismatch errors dominate the performance of the three methods in most
virtual antenna array sizes considering the ‘SINR’ of the LOS path component is considerably high in
LOS scenarios. Figure 4b also shows that the performance of the proposed algorithms are generally
inferior to that of the 2D MP algorithm, especially at cases of relative small virtual sizes, since the
performance of the 2D MP algorithm in LOS scenarios is dominated by only the LOS path’s phase
model mismatch error, which is greatly less than the multipaths’ phase model mismatch errors in
NLOS scenarios. Besides the LOS path’s phase model mismatch error, the proposed FRFT-IFT method
and the FRFT-MP method are also affected by the multipath interference and the residual multipath
interference, respectively.

Considering that the virtual antenna array size is imprecisely determined and is deliberately
chosen as big as allowed to make more of the multipath characteristics, and whether the indoor
environment is NLOS or LOS scenarios is unknown, the proposed algorithms, especially the FRFT-MP
algorithm, can achieve more robust performance than the 2D MP algorithm by taking the above
simulation results into account.

5. Conclusions

In this paper, a novel virtual antenna array and fractional Fourier transform-based 2-dimension
super-resolution TOA estimation algorithm was presented without requiring a real antenna array.
By employing the virtual antenna array idea and modeling the multipath phase variation as a quadratic
function, the proposed algorithm can make more use of the multipaths’ characteristics in the space
dimension, thus it can enhance the multipath resolution and achieve more robust TOA estimation
performance, especially in NLOS scenarios. Simulation results confirm the effectiveness of the
proposed algorithm.
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The following abbreviations are used in this manuscript:

FRFT fractional Fourier transform
DFRFT discrete fractional Fourier transform
TOA time-of-arrival
CFR channel frequency responses
IFT inverse Fourier transform
MP matrix pencil
MUSIC multiple signal classification
LOS Line-of-Sight
NLOS Non-Line-of-Sight
AP Access Point
MT mobile terminal
CIR channel impulse response
AWGN additive white Gaussian noise
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Appendix A. Proof of the Property 2 of Sl,n(α, u)

The part of the DFRFT signal in (7) contributed by the lth multipath component is given by

N

∑
n=1
|Sl,n(α, u)|2 =

N

∑
n=1
{Sl,n(α, u)}{Sl,n(α, u)}∗

=
N

∑
n=1
{|cl |2

M

∑
m=1

M

∑
k=1
{ej2π[−ucsc(α)/

√
M+ fl(n)ρ](m−k)·

ejπ[cot(α)/M+µl(n)ρ2](m2−k2)}} (A1)

= |cl |2
M

∑
m=1

M

∑
k=1
{e
−j2πucsc(α)(m−k)√

M e
jπcot(α)(m2−k2)

M ·

N

∑
n=1
{ej2π fl(n)ρ(m−k)ejπµl(n)ρ2(m2−k2)}}

From (5), it can be observed that both fl(n) and µl(n) are linear to n. Hence, we have

N

∑
n=1
{ej2π fl(n)ρ(m−k)ejπµl(n)ρ2(m2−k2)}

≈ dl,m,k · ej2π fl(N/2)ρ(m−k)ejπµl(N/2)ρ2(m2−k2) (A2)

with

dl,m,k =

N
2

∑
n=− N

2 +1

e
(j2πn∆ f ( cosθl ρ(m−k)

c +
(sinθl )

2ρ2(m2−k2)
2τ1,l c2 ))

=

N
2

∑
n=− N

2 +1

cos(2πn∆ f (
cosθlρ(m− k)

c
+

(sinθl)
2ρ2(m2 − k2)

2τ1,lc2 ))

≈ Ncos(πN∆ f (
cosθlρ(m− k)

c
+

(sinθl)
2ρ2(m2 − k2)

2τ1,lc2 ))

≈ N (A3)

where the first approximation is derived by using trigonometric function series summation, the second
approximation holds since Mρ is deliberately selected to satisfy Mρ� τ1,lc and Mρ� 2c

N∆ f generally
holds in narrowband positioning systems.

By substituting (A2) into (A1), we have

N

∑
n=1
|Sl,n(α, u)|2

≈ |cl |2
M

∑
m=1

M

∑
k=1
{dl,m,kej2π[−ucsc(α)√

M
+ fl(

N
2 )ρ](m−k)· (A4)

ejπ[ cot(α)
M +µl(

N
2 )ρ2](m2−k2)}

Hence, the coordinate (α̂, û) of the peak of ∑N
n=1|Sl,n(α, u)|2 is given by

α̂ = arccot(−µl(N/2)Mρ2) = άl(
N
2
)

û = fl(N/2)
√

Mρ/csc(α̂l(N/2)) = úl(
N
2
) (A5)
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from (A4).
By substituting (A2) into (A4), ∑N

n=1|Sl,n(α, u)|2 can be further approximated as

N

∑
n=1
|Sl,n(α, u)|2 ≈ N|cl |2·∣∣∣∣∣ M

∑
m=1

ejπ{[−2ucsc(α)√
M

+ fl(
N
2 )ρ]me[

cot(α)
M +µl(

N
2 )ρ2]m2}

∣∣∣∣∣
2

(A6)

= N|cl |2
∣∣∣∣∣ M

∑
m=1

ejπ{[ 2úl (
N
2 )csc(άl (

N
2 ))−2ucsc(α)

√
M

)ρ]me[
cot(α)−cot(άl (

N
2 ))

M ρ2]m2}
∣∣∣∣∣
2

According to the DFRFT property, it is not difficult to derive from (A6) that ∑N
n=1|Sl,n(α, u)|2

decreases rapidly with |α− α̂l(N/2)| or |u− ûl(N/2)| increasing.
Therefore, the Property 2 of Sl,n(α, u) is proved.

Appendix B. Proof of the Property 3 of Sl,n(α, u)

The summation of DFRFT of CFRs over N subcarriers can be expressed as

N

∑
n=1
|Hn(α, u)|2 =

N

∑
n=1
|

L

∑
l=1
Sl,n(α, u)|2

=
N

∑
n=1
{

L

∑
l=1
Sl,n(α, u)

L

∑
l′=1
{Sl′ ,n(α, u)}∗}

=
N

∑
n=1
{

L

∑
l=1
|Sl,n(α, u)|2 +

L

∑
l=1

L

∑
l′ 6=l
Sl,n(α, u){Sl′ ,n(α, u)}∗} (A7)

=
N

∑
n=1

L

∑
l=1
|Sl,n(α, u)|2 +

N

∑
n=1
{

L

∑
l=1

L

∑
l′ 6=l
Sl,n(α, u){Sl′ ,n(α, u)}∗}

≈
L

∑
l=1

N

∑
n=1
|Sl,n(α, u)|2

where the approximation holds because the cross term between any two of {Sl,n(α, u)}L
l=1

is negligible due to the large Euclidean distance between any two of {(άl(
N
2 ), úl(

N
2 ))}L

l=1.
Furthermore, ∑L

l=1∑N
n=1|Sl,n(α, u)|2 has L distinguishable peaks corresponding to the peaks of

{∑N
n=1|Sl,n(α, u)|2}L

l=1, i.e., {(άl(
N
2 ), úl(

N
2 ))}L

l=1.
Therefore, the Property 3 is proved.
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