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Abstract: This paper proposes an optimization algorithm to determine the optimal coherent
combination candidates of distributed local beams in a wireless sensor network. The beams are
generated from analog uniform linear arrays of nodes and headed toward the random directions
due to the irregular surface where the nodes are mounted. Our algorithm is based on one of
the meta-heuristic schemes (i.e., the single-objective simulated annealing) and designed to solve
the objective of minimizing the average interference-to-noise ratio (INR) under the millimeter
wave channel, which leads to the reduction of sidelobes. The simulation results show that
synthesizing the beams on the given system can form a deterministic mainlobe with considerable
and unpredictable sidelobes in undesired directions, and the proposed algorithm can decrease the
average INR (i.e., the average improvement of 12.2 dB and 3.1 dB are observed in the directions of
π
6 and 2π

3 , respectively) significantly without the severe loss of signal-to-noise ratio (SNR) in the
desired direction.

Keywords: collaborative beamforming; analog uniform linear array; millimeter wave channel;
simulated annealing

1. Introduction

Wireless sensor networks (WSNs) have been widely studied and applied for activity-monitoring
applications in military [1,2], weather [3,4], and commercial [5,6] areas. To share monitored data among
nodes in WSN, recent WSNs generally utilize the communication protocol designed for industrial,
scientific, and medical (ISM) or lower frequency bands. However, as the demand of high-capacity and
high-rate data exchange grows, the millimeter wave (mmWave) bands have also been considered as
the promising spectrum resources [7–10]. Although these frequency bands suffer from the severe path
loss caused by the atmospheric absorption and scattering [11], they are still attractive because their
small wavelengths allow to use phased array architectures such as uniform linear arrays (ULAs) [12]
and coprime arrays [13,14], which can be implemented in the WSN nodes [15–17].

Usually, the nodes are clustered within a small region and surrounded by far-away access points
(APs) [18]. When one of them, (i.e., a sink node S), needs to establish a direct uplink with one of
the APs, it is possible to solely use its own beam. However, because of the two reasons that the
longer transmission may cause a more serious path loss [19,20], and the small physical size and
low power supply of the nodes [21] limit the number of the radiating elements in ULAs, it is more
efficient to combine multiple beams from the neighbor nodes by utilizing the concept of a collaborative
or cooperative beamforming (CB). This approach was introduced in [22] to analyze the possibility
of extracting the directive beam from uniformly distributed nodes, and the cases of Gaussian and
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arbitrary distributions are also analyzed in [23] and [24], respectively. In addition, Tsinos et al.
proposed the novel methods to efficiently obtain the beamforming weight of the nodes [25–27],
and Jayaprakasam et al. deeply surveyed the fundamentals and applications of the CB. These studies
give us the verified result that the CB can provide a well-defined and deterministic mainlobe in the
direction of a desired AP. Unfortunately, unpredictable sidelobes caused by the random positions of
the nodes also affect unwanted results over the whole angular domain, which would result in the
unacceptable levels of interference in the directions of undesired APs. To minimize these malignancies,
some types of techniques have been suggested and examined in the various literatures. Ahmed et al.
formulated the combinatorial optimization problem with the node-selection scheme to prune the
sidelobes [28], Chen et al. utilized the decentralized cross-entropy optimization (CEO) having the
significantly reduced complexity compared to [29], Sun et al. adjusted the excitation amplitude and
phase of the nodes by the firefly algorithm [30], and Jayaprakasam et al. proposed the nondominated
sorting genetic algorithm II (NSGA-II) to solve the multi-objective amplitude and phase optimization
having the goal of minimizing the peak sidelobe level minimization and maximizing the directivity
simultaneously [31]. Although these schemes showed the prominent effects on reducing the sidelobe
levels in the undesired directions, they are confined to the case that the nodes are equipped with
omni-directional antennas and operate in the conventional frequency bands, which provides the
motivation of our paper.

We assume the scenario that the nodes of the WSNs, operating in the mmWave band, are installed
on the irregular surface of the practical sensing area and equipped with ULAs steering beams toward
the desired direction, as shown in Figure 1. From simulation results, it is verified that the CB under
the given scenario not only provides the power improvement in the desired direction, but also
causes the considerable sidelobes. Thus, we design the combinatorial optimization for minimizing
the average interference-to-noise ratio (INR). Unlike the node-selection and excitation-adjustment
methods presented in [28–31], we utilize the beam-perturbation scheme which changes the steering
angles of the beams by controlling phase shifters. Due to the strong directivity of the mmWave
channel [11,12] and the intimate relation between the average INR and the sidelobe levels [28,29], it is
expected that reducing the average INR, collected from the undesired APs, leads to the decrease of the
sidelobe levels in the finite-discrete directions. To solve the problem in the efficient manner, we here
introduce a meta-heuristic method such as the simulated annealing (SA) having the advantages of low
memory capacity and scalability [32,33]. For the performance verification of our algorithm, we conduct
numerical simulations in terms of the SNR, average INR, and complexity and show that the proposed
algorithm remarkably reduces the average INR with the relatively low complexity. In summary,
the main contribution of our paper is verifying that the CB is useful to increase the transmission range
from the nodes being equipped with the ULAs to the desired AP and providing the optimization
algorithm to lower the interference in the undesired APs under the mmWave channel.

𝑥 
φ𝑗 

R 

𝑦 

Ω1 

(𝑥1, 𝑦1) 

(𝑥𝑖 , 𝑦𝑖) 

(A,φ𝑗) 

(𝑥𝐼𝑐 , 𝑦𝐼𝑐) 

Steered beams without considering the irregular surface 

Steered beams with considering the irregular surface 

ϕ 𝑖 φ𝑗  

𝑣 

𝑢 

Figure 1. System model.
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2. System Model

We consider a WSN, operating in mmWave spectrum band, with a cluster having I sensor
nodes C = {c1, · · · , cI} and A (A� I) APs A = {a1, · · · , aA} which are in directions of ϕ1, · · · , ϕA,
respectively. The sets of C and A can be used as the identifications (IDs) in the system. Under
the assumption that the two terminals are coplanar on the x − y plane, the ith node is located

at the coordinates of (ri, ψi) =
(√

x2
i + y2

i , tan−1
(

yi
xi

))
, and the jth AP is a Euclidean distance

ρi
(

ϕj
)
=
√

r2
i + r2

A − 2rAricos
(

ϕj − ψi
)
≈ rA − ricos

(
ϕj − ψi

)
away from the corresponding node

when ri � rA.
Due to the severe path loss within the cluster, the nodes need beamforming structures for the

optimal directional link by considering operations of neighbor nodes. However, because they suffer
from the limited battery-powered capacity, complex beamforming structures having multiple RF
chains, (e.g., digital and hybrid schemes [34]), have disadvantages in terms of long-term operations
of WSN. Thus, we apply a simple analog beamforming structure to each node, which is composed
of a ULA with N d-wavelength spaced isotropic elements, N phase shifters, and a single RF chain.
When the nodes are at the origin and the ULAs are parallel to the x-axis, their array factor can be
simply defined as

AF (φ) =
N−1

∑
n=0

ejknd[cos φ−cos ϑ] (1)

where φ ∈ [ − π, π ) is the azimuth angle, k = 2π/λ is the propagation constant, λ is the wavelength
at the operating frequency, and ϑ ∈ [ − π, π ) is the steering angle of the ULA. However, in most
cases, the positions of the nodes and the broadside directions of the ULAs are arbitrary. Therefore,
we modify (1) to

AF i (φ | ϑi) =
N−1

∑
n=0

e−jk{ρi(φ)−nd[cos(φ̃i(φ)−Ωi)−cos ϑi ]} (2)

with the following assumptions: (1) the leftmost element of the ULA is placed on (ri, ψi) following
the random distribution; (2) (ri, ψi) is the origin of the local u− v plane, where the u and v axes are
parallel to x and y axes, respectively; (3) the included angle Ωi between the u-axis and the line of
the elements follows the uniform distribution of U [−π, π ) due to the irregular surfrace where the
nodes are mounted. In addition, AF i (·) is the array factor of the ith node; φ̃i (φ) = cos−1 (âi,j · û

)
is

the local azimuth angle with respect to the u-axis, which is simply converged to φ under the far-field
condition; ϑi is the steering angle of ith node; âi,j is the unit radial vector from (ricosψi, risinψi) to
(rAcosφ, rAsinφ); and û = [1 0] is the unit vector in the direction of the u-axis.

To combine the beams coherently in the direction of φ = ϕj, S starts sharing the data signal
and the synchronization bits [35] with the Ic collaborative nodes inside its maximum communication
radius R, denoted as the D = {d1, · · · , dIc}. Afterward, without the prior knowledge of Ωi, each
node di steers the beam toward ϑi = ϕj and retransmits the signal mixed with the closed-loop phase
offset Γi,j = ρi

(
ϕj
)

[22], where the two beam-alignment status can be extracted from a reference
position system such as the Global Positioning System (GPS) [36,37]. Then, without considering
mutual coupling effects among the nodes, the combined array factor is given as

AF t (φ) =
Ic
∑

i=1
AF i

[
φ | ϕj

]
ejkΓi,j

=
Ic
∑

i=1

N−1
∑

n=0
e−jk{ρi(φ)−ρi(ϕj)−nd[cos(φ−Ωi)−cos ϕj]}

=
Ic
∑

i=1

N−1
∑

n=0
e

jk
{

2 sin
(

ϕj+ϕ

2 −ψi

)
sin
(

ϕj−ϕ

2

)
+nd[cos(φ−Ωi)−cos ϕj]

}
,

(3)
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and the power pattern is also represented as

P (ϕ) = |AF t (ϕ)|2 . (4)

Without the loss of generality, the directions of the desired and undesired APs are assumed to
be ϕ1 = 0, ϕ2 = π/3, ϕ3 = 2π/3, and ϕ4 = π henceforth. To verify the feasiblity of combining the
multiple beams, the power levels observed in those directions are illustrated in Figures 2 and 3. As seen
in Figure 2, the higher value of Ic (i.e., increasing the number of the nodes) significantly contributes
to the improvement of P (ϕ1) due to the increased node density over the given area. However, it is
also verified that N (i.e., the elements of the ULAs) is irrelevant to P (ϕ1). This phenomenon can be
explained by the fact that the beams are randomly headed, and consequentially part of the beams
cannot illuminate the desired AP. In addition, because of the previously mentioned reasons that the
beams are randomly positioned and headed, the higher value of Ic and N increases the average power
level of the sidelobes in Figure 3.
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Figure 2. Simulation results of the system model with various N and IC - Power levels, P (ϕ1), in the
desired direction of ϕ1 = 0.
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3. Proposed Algorithm

As the first step of designing the practical algorithm to suppress the sidelobes, we consider the
channel model first. Because the mmWave channel is sparse, it can be geometrically modeled as [38,39]

hi,j
(

ϕj | ϑi
)

=
√

1
K′i,j

[√
Ki,jβ

1
i,jAF i

(
ϕj | ϑi

)
+

Li,j

∑
`=2

β`i,j√
Li,j
AF i

(
ϕ`

i,j | ϑi

)]
=

√
1

K′i,j

[√
Ki,jβ

1
i,j

N−1
∑

n=0
e−jk{ρi(ϕj)−nd[cos(ϕj−Ωi)−cos ϑi]}

+ 1√
Li,j

Li,j

∑
`=2

N−1
∑

n=0
β`

i,je
−jk

{
ρi

(
ϕ`

i,j

)
−nd

[
cos
(

ϕ`
i,j−Ωi

)
−cos ϑi

]}]
.

(5)

where Ki,j is the Ricean K-factor between the node di and the AP aj, K′i,j = 1 + Ki,j, β`
i,j ∼ CN (0, 1) is

the complex Gaussian channel coefficient of the `th path, ϕ`
i,j ∼ U [ − π, π ) is the angle of departure

(AoD) of the the non-line-of-path (NLOS) paths, and Li,j ∼ U [2, 4] is the integer number of the paths.
Additionally, using (5), the combined signal at aj is given as

yj
(
ϑ, Γj

)
=

Ic

∑
i=1

√
Pizhi,j

(
ϕj | ϑi

)
ejkΓi,j + n, (6)

where ϑ = [ϑ1, · · · , ϑIc ] and Γj =
[
Γ1,j, · · · , ΓIc ,j

]
are the vectors of the steering angles and the phase

offsets, individually; Pi is the transmission power of the ith node; z is the data signal satisfied with
E
{
|z|2
}

= 1; and n ∼ CN
(
0, σ2

n
)

is the additive white Gaussian noise (AWGN) observed at aj.
Then, the INR for j 6= 1 are given as

ξ j (ϑ, Γ1) =

∣∣yj (ϑ, Γ1)− n
∣∣2

σ2
n

=

∣∣∣∣ Ic
∑

i=1

√
Pizhi,j

(
ϕj | ϑi

)
ejkΓi,1

∣∣∣∣2
σ2

n
,

(7)

and the average INR is defined as

Ξ (ϑ, Γ1) =
A
∑

j=2
ξ j (ϑ, Γ1) / (A− 1)

=
A
∑

j=2

∣∣yj (ϑ, Γ1)− n
∣∣2 /

[
σ2

n (A− 1)
]

=
A
∑

j=2

∣∣∣∣ Ic
∑

i=1

√
Pizhi,j

(
ϕj | ϑi

)
ejkΓi,1

∣∣∣∣2 /
[
σ2

n (A− 1)
]

.

(8)

To minimize the average INR, we open the combinatorial optimization problem with the objective
function of O (ϑk) , Ξ (ϑk, Γ1) as follows:

ϑopt = arg max
ϑk

O (ϑk) . (9)

Here, ϑk = [ϑ1,k, · · · , ϑIc ,k] is the state vector to change the combination of the beams in a discrete

manner, and ϑi,k ∈
{
−π + π

N , · · · ,−π +
π(2mi,k−1)

N , · · · ,−π + π(2N−1)
N

}
is the steering angle having

the approximate 3-dB beamwidth of 2π/N [40].
To find the global optimum of (9), all of the N Ic combinations should be exhaustively searched

due to its non-convex characteristic. However, this approach imposes the impractical overhead on
the system. Therefore, we utilize SA to ensure not getting stuck in local optima and approach good
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approximations to the global optimum efficiently. The SA emulates the metal annealing process,
the goal of which is to reach a stable ground state. Similar to conventional methods (e.g., local
search), the SA is basically based on the greedy transition from the current state ϑk to a better
state ϑk+1 for ϑk 6= ϑk+1, where both of the states are randomly created. However, even when
∆O = O (ϑk+1)−O (ϑk) ≤ 0 is not met, it uniquely allows the probabilistic transition toward a worse
ϑk+1 by the Metropolis criterion [41], such as

exp

(
−∆O

Tf

)
≥ η, (10)

where η ∼ U [0, 1], and Tf is the current temperature. With the two transition mechanisms, the SA
starts running the inner loop for the Rtot iterations at the initial temperature T0. After finishing the
inner loop, the outer loop for cooling the temperature from T0 to T1 by the geometric temperature
schedule of T1 = T0 × ρ with ρ ∈ {0.5, · · · , 0.99} is run, and another inner loop is repeated at T1.
This process continues until Tf decreases to TF, which is sufficiently low for the rare acceptance of
new worse states. In addition, Rtot at Tf is adaptively determined as RB + bRBFc to be close to the
stationary distribution at the given temperature, where RB is the fixed number of the iterations, b·c is
the flooring function, F = 1− exp

[
− (OH−OL)

OH

]
, and OH and OL are the highest and lowest values of

the objective function at Tf−1, respectively [42]. Based on the above description, the SA can minimize
the average INR effectively through the following steps.

Step 1: Initialization.

As the first step, S sets the control parameters of the SA, T0, Tf , ρ, and µ, to the default values
and broadcasts the initialization message. Here, µ is the predetermined acceptable INR in the undesired
APs, and, for simplicity, it is equally set over the whole undesired APs. When each di receives the
message, it generates the beam the beam whose ϑi,1 ∈ ϑ1 is closest to ϕ1. If ϕ1 is in the middle between
the two consecutive steering angles, one of them is selected. Go to Step 2-2.

Step 2: Optimization.

- Step 2-1: Beam Perturbation(BP). S starts the BP process from broadcasting the beam perturb
message to D. When each di receives this message, it steers the beam toward ϑi,k randomly chosen

from
{
−π + π

N , · · · ,−π +
π(2mi,k−1)

N , · · · ,−π + π(2N−1)
N

}
. After switching the beam, the node

responds by the offer message containing di at a randomly delayed time [28], and S responds by
the approval message. This step repeats until S receives the offer message from all elements of D or
the scheduled time is over.

- Step 2-2: Sound. D simultaneously transmit the sounding message z. All of the APs measure
and send their ξ j (ϑk, Γ1) to a linked radio network controller (RNC). The RNC feeds O (ϑk) back
to S, and S records O (ϑk).

- Step 2-3: Transition. Once S receives the feedback signal, it checks whether the condition of
O (ϑk) ≤ µ is met. If so, go to Step 2-5. Otherwise, the decision of the acceptance or rejection of
the state transition is conducted. If O (ϑk−1) is not ready for this decision, go back to Step 2-1.
If ready, O (ϑk−1) is replaced with O (ϑk) when the transition is accepted. After then, go back to
Step 2-1.

- Step 2-4: Cooling Temperature. The inner loop from Step 2-1 to Step 2-3 is repeated at
the temperature Tf for the R iterations. After the loop is terminated, Tf is reduced to ρTf .
Then, go back to Step 2-1 and run another loop at Tf+1.
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- Step 2-5: Optimization termination. When the temperature finally reaches TF or O (ϑk) ≤ µ is
met, the whole optimization process finishes, and the well-optimized combination of the beams
ϑopt will be obtained.

4. Simulation Results

This section shows simulation results to evaluate the proposed scheme in terms of the SNR,
average INR, and search complexity. Prior to the detailed studies, the system and channel are modeled
as follows:

(1) System: Let the 64 sensor nodes be uniformly distributed [22] over a disk having the radius
R = 1λ and equipped with the λ

2 spaced ULAs. We assumed that they have the same transmission

power P = σ2
nη
Ic

, where the power budget η is equal to 20 dB.
(2) Channel: Because the mmWave channels are commonly exposed to strong directivity [43],
∀i,jhi,j (·) are assumed to be under the line-Of-Sight (LOS) dominant scenario with Ki,j = 13.2 dB.

(3) Optimization: In addition, in all simulations, T0, Tf , RB, and ρ are fixed to 104, 10−5, 102, and 0.8,
respectively. As studied in [44,45], these parameters depend on the nature of the problem. Thus,
a sensitivity analysis is used to choose the above values which are initial parameters to provide
a good balance between exploration and exploitation of the search space. We omit the detailed
procedure here due to the limited pages of this paper. Unfortunately, this empirical approach
may result in the considerable simulation time consumption. Thus, an analytical and systematic
method to determine the control parameters will be researched in our next paper.

Figures 4 and 5 show the average INRs and SNRs to verify the validation of the proposed
algorithm. From the two figures, the appreciable reductions of the average INRs (e.g., 15.8 dB when
N = 3 and µ = 10 dB) are observed when our algorithm is applied. Especially, compared to the
node selection scheme in [28], which is widely used to suppress the sidelobes in the CB, the proposed
algorithm provides the better performance under the lower predetermined threshold (i.e., µ ≤ 15 dB)
in virtue of its probabilistic greedy exploration. Furthermore, while the former causes the severe loss
of the SNRs due to its innate characteristic of node selection, the latter provides the constant SNR
regardless of N and µ. In addition, Figures 6 and 7 show the complexity of [28] and the proposed
scheme. As expected, both of the approaches require the smaller number of iterations when the higher
µ is set. However, as µ is decreased, the proposed algorithm requires more iterations than [28]. It can be
explained by the fact that the core of our algorithm (i.e., SA) would spend many iterations to approach
µ as much as possible.
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5. Conclusions

In this paper, we investigated the combination of the randomly scattered and headed local beams
for overcoming the restrictions such as the severe path loss of the mmWave channel and low power
storages due to the limited system size of remotely installed sensor nodes and newly designed the
optimization algorithm to effectively decrease the average INR over the undesired APs, resulting in the
reduction of the sidelobes of the synthesized beam. The simulation results showed that the proposed
algorithm can be considered as an effective way to establish the long-distance transmission with the
low interference.
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