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S1. Means and Variances       

Six basic equations for variance estimation are used throughout our analysis: 

To find the variance of the ratio of two random variables, Var(X/Y), a Taylor expansion can be 

used: 
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Here, X=Pout(a1) and Y=Pout(a0), and since they are independent variables, Cov(X,Y)=0, so the 

final expression for Var(X/Y) is: 
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The addition of a constant to a random variable does not change the variance: 

   Var X c Var X  .   (2S) 

The addition of a constant to the mean (μ) changes the mean by the same value: 

   X c X c    .               (3S) 

If the variable is scaled by a constant, the variance is scaled by the square of that constant: 

   2Var aX a Var X .             (4S) 

The variance of the summation of two random variables is given by: 

       2 2 2 ,Var aX bY a Var X b Var Y abCov X Y    .
 

Output powers are independent variables, so again Cov(X,Y)=0 and the above simplifies to: 

     2 2Var aX bY a Var X b Var Y   .  (5S) 

Means (μ) of the responses were calculated by determining the time-average of a baseline 

response (prior to analyte injection) over 5 min, taking into account 600 data points. Variances (Var) 

of the corresponding responses were calculated by determining the variance of the response over 

the same timeframe as for the mean. Since the same number of datapoints (600) was used to 

calculate all the means at the baseline, the mean of the ratio is equal to the ratio of individual means: 
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S2. Variance of normalized direct assay responses 

The normalized response for cTnI/AT1 (g/g ×100) is expressed as: 
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with the available data being:     

Means Variances 

μcTnI(1); μcTnI(0);
 

VcTnI(1); VcTnI(0);
 

μAT1(1); μAT1(0);
 

VAT1(1); VAT1(0);
 

 The variance of the numerator (cTnI), using Eqs.(1S) and (2S) is expressed as:  
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The variance of the denominator (AT1), using Eqs. (1S) and (2S): 
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The variance of the ratio (cTnI/AT1), using (1S) and (6S) is given by: 
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Using Eq. (4S), the total variance is expressed as: 
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The standard deviation, which is taken as the noise of the cTnI/AT1 normalized responses is: 
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S3. Variance of normalized sandwich assay responses 

The normalized response for [(cTnI+AT2)/AT1] (g/g×100) is expressed as: 
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The available data in this case are: 

Means: Variances: 

μcTnI(1); μcTnI(0);
 

VcTnI(1); VcTnI(0);
 

μAT2(1); μAT2(0);
 

VAT2(1); VAT2(0);
 

μAT1(1); μAT1(0);
 

VAT1(1); VAT1(0);
 



The variance for the AT2 response is (Eqs. (1S) and (2S)): 
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Considering equations (3S) and (5S), the variance and the mean of the numerator (cTnI+AT2) is 

given by: 
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and 
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Thus, the total variance for the Sandwich Assay is expressed as (Eqs. (1S) and (2S)): 
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where  Var cTnI ,  ?Var AT , and  2Var AT  are calculated using Eqs. (8S), (9S) and (14S) respectively. 

Incorporating a factor of 100, the total variance and standard deviation for the sandwich assay are 

given by: 
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and 
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