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Abstract: The solubilized form of aluminum, Al3+, is present under acid soil conditions and toxic
to both animals and plants. Detecting and quantifying Al3+ is vital for both chemistry and biology.
A new Schiff-based fluorescent turn-on sensor (probe L) for the selective detection of the Al3+

ion was synthesized by coupling 2-hydroxy-1-naphthaldehyde and 2-aminoisoindoline-1,3-dione,
and the structure was characterized by nuclear magnetic resonance spectra. The probe L exhibited an
excellent selective and sensitive response to the Al3+ ion over other metal ions in DMSO-H2O (1:9 v/v).
Fluorescence quantification revealed that probe L was promising for the detection and accumulation
of Al3+. Treating rice seedlings with Al3+ at 25–200 µM inhibited their growth. Al3+ treatment
produced reactive oxygen species in rice roots. Practical applications of the fluorescent probe for the
quantification of Al3+ in water samples and rice seedlings are demonstrated. Detecting the Al3+ ion
with the probe L is easy and a potential alternative to existing analytical methods. The method can be
used for detecting the Al3+ content of aqueous solution and plant systems. The novel fluorescent
probe L has good potential for monitoring Al3+ content in the environment and biological systems.
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1. Introduction

Aluminum (Al) is the third most abundant element in the earth’s crust. With acidic rain and
industrial pollution, a trivalent cation of Al3+ is solubilized and widely exists in the environment.
Approximately 40 to 50% of the world’s arable soils are acidic, and the toxicity of Al is considered
an important limiting factor of plant productivity on acidic soils [1–3]. Excessive Al content in
contaminated soil leads to a decrease in soil microbial content and hampers plant growth [4].
Additionally, Al is widespread in food additives, pharmaceuticals, and storage/cooking utensils.
Al3+ ions, the solubilized form of Al, enhance the peroxidation of phospholipids and proteins in cell
membranes. Al3+ ions can move in the human body via food and water sources. Heavy metal intake by
human populations through the food chain damages the nervous system and can induce Alzheimers
and Parkinsons disease and amyotrophic lateral sclerosis [5–8].

Al in its ionic form, Al3+, is found in most animal and plant tissues and in natural water. Detecting
and quantifying Al3+ is crucial for controlling its concentration in the biosphere and its direct impact
on human health. Various kinds of sensors have been reported for selective Al3+ detection [9–26].
However, these sensors are limited by their complicated synthesis, low water solubility, and lack
of sensitivity. For practical applications, a water-soluble sensor for detecting Al3+ is still in great
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demand. Recently, several fluorescent probes have been synthesized for sensing Al3+ in cells [27–30].
The use of fluorescent probes for biosensing and bioimaging the ion in animal cells has also been
reported. However, these fluorescent probes have not yet been examined for their application in plant
systems. The detection of metal ion by fluorescent probes in plant tissues has always been problematic
because of interference from the intrinsic fluorescence of the cell wall and secondary metabolites such
as tannins, alkaloids, and polyphenols [31,32].

In this study, we designed a fluorescent sensor, probe L (Scheme 1), that showed a selective
colorimetric change toward Al3+ among the other tested metal ions. To demonstrate the potential of
probe L for biological detection, we first analyzed the effect of Al3+ exposure on root elongation in rice
(Oryza sativa L. cv. TN67). The toxicity and accumulation of Al3+ were evaluated in rice seedlings and
we used probe L to quantify the Al3+ level in rice seedlings. The toxicity and accumulation of Al3+

inhibited cell elongation and cell division, which led to the stunted growth of roots. Al3+ treatment
may decrease the uptake of water and nutrients and negatively affect plant growth.
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2. Materials and Methods

2.1. Synthesis of Probe L

The synthesis of probe L was based on the following method (Scheme 1). 2-hydroxy-1-
naphthaldehyde (0.278 g, 1.61 mmol) was added to a solution of 2-aminoisoindoline-1,3-dione (0.303 g,
1.87 mmol) in dry ethanol (15 mL) with two drops of acetic acid. The reaction mixture was refluxed
overnight and then the solvent was removed under reduced pressure. The resulting solid was washed
with cooled EtOH repeatedly to give probe L (0.469 g, 80%) as a yellow solid; melting point: 234.0 ◦C;
1H NMR (300 MHz, DMSO-d6) δ 11.95 (s, 1H), 10.07 (s, 1H), 8.62 (d, 1H, J = 4.4 Hz), 8.05 (d, 1H, J =
4.4 Hz), 7.99–7.90 (m, 5H), 7.66–7.61 (m, 1H), 7.47–7.42 (m, 1H), 7.28 (d, 1H, J = 4.5 Hz); 13C NMR
(75 MHz, DMSO-d6) δ 164.33, 159.50, 159.26, 134.99, 131.77, 130.16, 129.04, 128.44, 127.99,123.94, 123.54,
122.28, 118.67, 108.61; HRMS(EI): calculated for C19H12N2O3(M + H), m/z 316.0848; resulting m/z
316.0839. (Figures S1–S3).

2.2. Plant Materials and Growth Conditions

Rice plants (Oryza sativa L. cv. TN67) were grown as described in [33] with minor modification.
The seeds were incubated at 37 ◦C for 3 d in darkness. Ten germinated seeds with coleoptiles reaching
2 mm in length were transferred to a Petri dish (9 cm in diameter) with a filter paper. The rice seedlings
were incubated with deionized water supplemented with Al(ClO4)3 (Sigma-Aldrich, St. Louis, MO,
USA) from 25 to 200 µM, treated with Al3+ solution (10 mL in each Petri dish) for 10 d, then subcultured
with fresh solution for another 10 d. Control seedlings were incubated without Al3+. The rice seedlings
were analyzed for root elongation and reactive oxygen species (ROS) production. For measuring
dry weight and accumulation of Al3+, samples were dried by incubation at 37 ◦C for 7 d. Data were
obtained from at least three biological replicates.
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2.3. Use of Probe L to Determine Al Concentration in Rice

Roots of 20-day-old rice seedlings were rinsed thoroughly with deionized water and oven-dried
for 2 d at 37 ◦C. Ten rice seedlings were ground into fine powder and dissolved with 24× deionized
water. The extract was mixed with an equal volume of chloroform and then centrifuged at 2000 g
for 2 min. Al3+ content was determined in the supernatant (270 µL) by supplementation with the
fluorescence probe L (30 µL) dissolved in 10% DMSO. Samples of 400 µM probe L were incubated at
2 ◦C for 20 min. The Al3+-induced specific fluorescence was determined by fluorescence spectrometry
(FP-8300, JASCO, Germany) at 375 nm excitation. Data are mean values from three independent
biological replicates.

2.4. In Situ Detection of Reactive Oxygen Species (ROS)

Rice roots were treated with various concentrations of Al(ClO4)3 for 14 d. H2O2 levels were
detected by treating roots with 3,3’-diamninobenzidine (DAB). To detect H2O2, root samples were
placed in a solution [10 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer, pH 3.8] of 1 mg mL−1

DAB overnight in darkness. Root samples were rinsed briefly with deionized water. Staining was
observed by stereomicroscopy.

3. Results and Discussion

3.1. Absorption and Fluorescence Studies of Probe L Toward Various Metal Ions

We used by UV/vis and fluorescence measurements to investigate the chemosensor behavior of
probe L with the following 16 metal ions (as perchlorate salts): Li+, Na+, K+, Ca2+, Mg2+, Mn2+, Hg2+,
Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Pb2+, Cd2+, Zn2+, and Al3+ in DMSO-H2O (1:9 v/v). The solution of probe
L itself showed two absorption bands at 320 nm and 370 nm, respectively (Figure 1). The addition of
Fe3+ and Fe2+ to the solution enhanced the absorption band. In the presence of Cu2+, the absorption
spectrum of probe L was red-shifted, accompanied by a striking color change from dark green to black,
which could be seen under UV light (Figure 2). In the presence of Al3+, the intensity of the absorption
spectrum of probe L was decreased, accompanied by a striking color change from dark green to blue,
which could be detected under UV light (Figure 2). These changes in absorption bands indicated
a partial interaction between the ions and probe L. As compared with the weak emission band of
probe L alone, the addition of Al3+ generated an additional fluorescent-enhanced emission band at
472 nm (Figure 3). The enhanced efficiency at 472 nm was 11-fold greater than the control without Al3+

(Figure S4). The fluorescent enhancement may be attributed to the formation of a rigid system after
binding with Al3+.
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Figure 1. UV/vis spectra for probe L (40 μM) in DMSO-H2O (1:9 v/v) with the addition of 5 equiv. of 
various metal ions. 

 

Figure 2. Color changes by UV light for probe L (40 μM) with the addition of 5 equiv. of various 
metal ions. 

Figure 1. UV/vis spectra for probe L (40 µM) in DMSO-H2O (1:9 v/v) with the addition of 5 equiv. of
various metal ions.



Sensors 2019, 19, 623 4 of 10

Sensors 2019, 19, 623 3 of 9 

 

spectrometry (FP-8300, JASCO, Germany) at 375 nm excitation. Data are mean values from three 
independent biological replicates.  

2.4. In Situ Detection of Reactive Oxygen Species (ROS) 

Rice roots were treated with various concentrations of Al(ClO4)3 for 14 d. H2O2 levels were 
detected by treating roots with 3,3’-diamninobenzidine (DAB). To detect H2O2, root samples were 
placed in a solution [10 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer, pH 3.8] of 1 mg 
mL-1 DAB overnight in darkness. Root samples were rinsed briefly with deionized water. Staining 
was observed by stereomicroscopy. 

3. Results and Discussion 

3.1. Absorption and Fluorescence Studies of Probe L Toward Various Metal Ions  

We used by UV/vis and fluorescence measurements to investigate the chemosensor behavior of 
probe L with the following 16 metal ions (as perchlorate salts): Li+, Na+, K+, Ca2+, Mg2+, Mn2+, Hg2+, 
Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Pb2+, Cd2+, Zn2+, and Al3+ in DMSO-H2O (1:9 v/v). The solution of probe L 
itself showed two absorption bands at 320 nm and 370 nm, respectively (Figure 1). The addition of 
Fe3+ and Fe2+ to the solution enhanced the absorption band. In the presence of Cu2+, the absorption 
spectrum of probe L was red-shifted, accompanied by a striking color change from dark green to 
black, which could be seen under UV light (Figure 2). In the presence of Al3+, the intensity of the 
absorption spectrum of probe L was decreased, accompanied by a striking color change from dark 
green to blue, which could be detected under UV light (Figure 2). These changes in absorption bands 
indicated a partial interaction between the ions and probe L. As compared with the weak emission 
band of probe L alone, the addition of Al3+ generated an additional fluorescent-enhanced emission 
band at 472 nm (Figure 3). The enhanced efficiency at 472 nm was 11-fold greater than the control 
without Al3+ (Figure S4). The fluorescent enhancement may be attributed to the formation of a rigid 
system after binding with Al3+.  

300 400 500 600 700

0.0

0.2

0.4

0.6

0.8

1.0

A
bs

or
ba

nc
e 

(A
U

)

wavelength (nm)

Fe3+

Fe2+

Al3+ Cu2+

Host and other ions

 

Figure 1. UV/vis spectra for probe L (40 μM) in DMSO-H2O (1:9 v/v) with the addition of 5 equiv. of 
various metal ions. 

 

Figure 2. Color changes by UV light for probe L (40 μM) with the addition of 5 equiv. of various 
metal ions. 

Figure 2. Color changes by UV light for probe L (40 µM) with the addition of 5 equiv. of various
metal ions.

Sensors 2019, 19, 623 4 of 9 

 

400 450 500 550 600 650

0

100

200

300

400

500

600

700

800

In
te

ns
ity

 (a
.u

.)

wavelength (nm)

Al3+

Host and other ions

 

Figure 3. Fluorescence emission spectra for probe L (40 μΜ) in the presence of 5 equiv. of various 
metal ions in DMSO-H2O (1:9 v/v). 

3.2. Fluorescence Titration and Binding Studies 

To further investigate the chemosensing properties of probe L, probe L was 
fluorescence-titrated with Al3+. The changes in fluorescence spectra for probe L as a function of Al3+ 
content are shown in Figure 4. With increasing amounts of Al3+ added to a solution of probe L in 
DMSO-H2O (1:9 v/v), the emission band at 530 nm gradually increased, and concomitantly a new 
emission band appeared that peaked at 472 nm. A Job plot indicated a 1:1 stoichiometric 
complexation of probe L with Al3+ (Figure S5). Additionally, the formation of a 1:1 complex between 
probe L and Al3+ was confirmed by the appearance of a peak at m/z 393, assignable to [probe L + Al3+ 
+ 3H2O – 4H+] in the ESI/MS (Figure S6). From the fluorescent titration profiles, the association 
constant for probe L-Al3+ in DMSO-H2O (1:9 v/v) was determined as 3 × 107 M-1 by a Hill plot (Figure 
S7). By using the abovementioned fluorescence titration results, the detection limit for Al3+ was 
estimated as 1 ppb. 

400 450 500 550 600 650

0

100

200

300

400

500

600

700

 

0 2 4 6 8 10

0

100

200

300

400

500

600

 472 nm

I-I
0

[Al3+]/[Host]

In
te

ns
ity

 (a
.u

.)

wavelength (nm)

9 eq

0 eq

 
Figure 4. Fluorescence emission spectra for probe L (40 μM) in DMSO-H2O (1:9 v/v) with increasing 
concentrations of Al3+. Inset: intensity (at 540 nm) for probe L as a function of Al3+ equiv. 

3.3. Application in Water  

In order to determine the optimal pH condition of the probe L in the water, we examined the 
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3.2. Fluorescence Titration and Binding Studies

To further investigate the chemosensing properties of probe L, probe L was fluorescence-titrated
with Al3+. The changes in fluorescence spectra for probe L as a function of Al3+ content are shown
in Figure 4. With increasing amounts of Al3+ added to a solution of probe L in DMSO-H2O (1:9
v/v), the emission band at 530 nm gradually increased, and concomitantly a new emission band
appeared that peaked at 472 nm. A Job plot indicated a 1:1 stoichiometric complexation of probe L
with Al3+ (Figure S5). Additionally, the formation of a 1:1 complex between probe L and Al3+ was
confirmed by the appearance of a peak at m/z 393, assignable to [probe L + Al3+ + 3H2O − 4H+] in
the ESI/MS (Figure S6). From the fluorescent titration profiles, the association constant for probe
L-Al3+ in DMSO-H2O (1:9 v/v) was determined as 3 × 107 M−1 by a Hill plot (Figure S7). By using the
abovementioned fluorescence titration results, the detection limit for Al3+ was estimated as 1 ppb.
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3.3. Application in Water

In order to determine the optimal pH condition of the probe L in the water, we examined the
effect of pH on the emission bands of the probe L–Al3+ complex in DMSO-H2O (1:9 v/v) solution.
The fluorescence intensity showed a significant emission band (Figure S8) accompanied by a marked
color change from dark green to light blue (Figure S9), which could be detected under UV light in the
pH range 5–10. Thus, probe L could be applied for the analysis of environmental aqueous samples
with a relatively wide pH range.

The practical application of probe L (40 µM) for selective sensing of Al3+ (5 equiv.) in different
sources of water (DMSO: H2O = 1 : 9 v/v) was demonstrated (Figure 5). Al(ClO4)3 was first dissolved
in water of the above source, followed by the addition of probe L to each water sample. All water
samples containing Al3+ showed a clear color change from dark green to light blue. The result indicated
that probe L can detect Al3+ in different water sources.
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Figure 5. Color changes by UV light for probe L (40 µM) in different sources of water (DMSO : H2O =
1 : 9 v/v) containing 5 equiv. of Al3+.

Testing paper detection is an inexpensive approach to detect the presence of an analyte. Toward
this goal, we first coated filter paper with probe L by soaking in a DMSO-H2O (1:9 v/v) solution
followed by air drying. Al3+ at different concentrations was added to this probe L-coated test paper:
the color of the paper changed from dark green to light blue instantly (Figure 6), caused by the
interaction of probe L and Al3+, therefore implying that the test paper specifically recognized Al3+.
The detection limit of Al3+ with this probe L-coated test paper was 1.0 × 10−5 M.
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3.4. Effect of Al3+ Stress on Root Elongation and Oxidative Burst in Rice

The inhibition of root growth is the primary response of the plant exposed to heavy metals.
We analyzed the effect of Al3+ exposure on root elongation to evaluate Al3+ toxicity in rice seedlings.
After exposing rice seedlings to Al3+ for 14 d, root elongation was measured. At 25 and 50 µM,
Al3+ significantly reduced root elongation as compared with control conditions (Figure 7A). The root
elongation decreased with increasing Al3+ concentration. At 100 µM Al3+, root elongation was reduced
to about 50% of the control conditions. At 200 µM Al3+, root growth was completely inhibited. Al3+ at
200 µM inhibited root elongation by approximately 80%. We determined production of ROS such as
H2O2 by treating roots with DAB. Treatment with 25 and 50 µM Al3+ induced more ROS production
compared with control plants (Figure 7B). The ROS level was greater with 100 and 200 µM Al3+ than
in controls (Figure 7B). Accordingly, the dry weight of roots was significantly decreased with 100 and
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200 µM Al3+ (Figure 7C). It was reported that treatment of 200 µM perchlorate had subtle effects on
root length and root weight of rice plants [34]. With treatment of 400 µM perchlorate, most of the rice
varieties exhibited noticeable toxicity symptoms such as wilting, abscission, and even necrosis [34].
In our study, root weight was markedly inhibited by treatment with 25 µM Al(ClO4)3 (Figure 7C).
It is suggested that Al3+ resulted in the heavy metal stress in the rice plants. Thus, Al3+-induced ROS
production may inhibit growth in rice seedlings (Figure 8B,C). Thereafter, we treated rice seedlings
with 25–200 µM Al3+ for the quantification of Al3+ by the colorimetric fluorescent probe.
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treatment. (A) Rice seedlings were treated with different concentrations of Al(ClO4)3 (0, 25, 50, 100,
and 200 µM) for 20 d, and the morphology of rice seedlings was photographed. (B) Al-induced ROS
accumulation in rice roots. Root samples treated with Al3+ were stained with 3, 3’-diamninobenzidine
(DAB) for determining H2O2. (C) Dry weight of rice seedlings with treatment of Al. Data represent
the mean ± SD of three independent experiments. Results are the mean ± SE (n = 10). * Significantly
different from the control at P < 0.05 by paired t test.
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An Al3+ standard curve was constructed by linear regression with the Al3+ calibration standards 
in control seedling extracts (Figure 8E). The standard curve showed an acceptable regression line 
with concentration range 0 to 300 μM (Figure 8F). We then determined Al3+ content in 25, 50, 100, 
and 200 μM-treated samples. The level of heavy metals detected in rice seedlings was 98, 200, 353, 
and 446 μM, respectively. The differences in Al3+ toxicity (Figure 7) may be related to the 

Figure 8. Quantitative determination of Al concentrations in rice seedlings. (A) Fluorescence probe
L with the addition of various concentrations of Al(ClO4)3 solution (0, 25, 50, 100, and 200 µM)
was excited by a handheld UV lamp with 345 nm excitation. The blue emission was photographed
immediately in the dark. (B) Fluorescence probe L with the addition of rice extracts on treatment
with various concentrations of Al3+. The samples were excited by UV, and blue emission was
photographed. (C) Measurement of fluorescence intensity of probe L at 495 nm with the addition of
rice extracts on treatment with various concentrations of Al3+. All data were measured after 20 min
nm. (D) Fluorescence values corresponding to each treatment in (C) were plotted. (E) Measurement of
fluorescence intensity of probe L with increasing concentrations of Al3+ standards (0, 50, 100, 150, 200,
and 300 µM) dissolved in control seedling extracts. (F) A linear calibration curve was constructed on
the basis of fluorescence intensity and Al3+ standards. Three replicates were performed with nearly
identical results.

3.5. Practical Applications of Probe L for Quantifying Al Content in Rice Seedlings

With the excellent response of probe L to Al3+ in aqueous solution, we investigated its ability
to detect Al3+ content in rice seedlings. The intensity of blue fluorescence was increased with
increasing Al3+ solution standard from 25 to 200 µM (Figure 8A). Extracts of Al3+-treated rice seedlings
were incubated with the fluorescent probe. Extracts with 50 µM Al3+ showed mild fluorescence.
The maximal fluorescence intensity was observed with 200 µM Al3+ (Figure 8B). The intensity of
fluorescence was further quantified by fluorescence spectroscopy. Fluorescence emission spectra
were measured at 495 nm (Figure 8C). Fluorescence intensity was increased with increasing Al3+

concentration from 25 to 100 µM (Figure 8D). The highest levels of Al3+ occurred with 200 µM Al3+.
The stationary phase of Al3+ accumulation in rice seedlings may be due to reaching its saturation level
(Figure 8D). Therefore, Al3+ accumulation in rice was associated with Al3+ concentration, with greater
accumulation at 200 µM Al3+.
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An Al3+ standard curve was constructed by linear regression with the Al3+ calibration standards
in control seedling extracts (Figure 8E). The standard curve showed an acceptable regression line
with concentration range 0 to 300 µM (Figure 8F). We then determined Al3+ content in 25, 50, 100,
and 200 µM-treated samples. The level of heavy metals detected in rice seedlings was 98, 200, 353,
and 446 µM, respectively. The differences in Al3+ toxicity (Figure 7) may be related to the accumulation
in rice (Figure 8). This result agrees with the ratiometric fluorescence changes observed in aqueous
solutions. Therefore, the fluorescence probe can be used for the quantification of Al3+ content in plants.

4. Conclusions

We developed a new fluorescent probe, probe L, for detecting Al3+ content. The probe exhibited
rapid, highly selective and sensitive detection of Al3+ content, with distinct changes in fluorescent
emission. Fluorescent quantification demonstrated that probe L could be used to detect plant samples
with heavy metal Al3+ pollution. This study provides a promising fluorescent probe for the detection
and accumulation of Al3+ that could be an easy potential alternative to existing analytical methods for
investigating Al3+ content in plants.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/3/623/s1,
Figure S1: 1H NMR (DMSO-d6) spectra for probe L, Figure S2: 13C NMR (DMSO-d6) spectra for probe L, Figure S3:
High-resolution mass spectrometry data for probe L, Figure S4: Fluorescence intensity at 536 nm (λex. = 320 nm)
for probe L (40 µM) in the presence of 5 equiv. of various cations in DMSO-H2O (1:9 v/v), Figure S5: Job plot of
probe L and Al3+, Figure S6: ESI mass spectra [(probe L + Al3+ + DMSO + ClO4−) + 2Na+], Figure S7: Hill plot,
Figure S8: Fluorescence emission intensity for probe L (40 λM) in the presence and absence of Al3+ (5 equiv) at
different pH, Figure S9: Color changes by UV light for probe L with the addition of 5 equiv. of Al3+ at different
pH value.
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