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Abstract: This paper proposes a low-complexity frequency-modulated continuous wave (FMCW)
surveillance radar algorithm using random dual chirps in order to overcome the blind-speed problem
and reduce the computational complexity. In surveillance radar algorithm, the most widely used
moving target indicator (MTI) algorithm is proposed to effectively remove clutter. However, the MTI
algorithm has a so-called ‘blind-speed problem’ that cannot detect a target of a specific velocity.
In this paper, we try to solve the blind-speed problem of MTI algorithm by randomly selecting
two beat signals selected for MTI for each frame. To further reduce the redundant complexity,
the proposed algorithm first performs one-dimensional fast Fourier transform (FFT) for range
detection and performs multidimensional FFT only when it is determined that a target exists at
each frame. The simulation results show that despite low complexity, the proposed algorithm detects
moving targets well by avoiding the problem of blind speed. Furthermore, the effectiveness of the
proposed algorithm was verified by performing an experiment using the FMCW radar system in
a real environment.
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1. Introduction

Recently, several studies on radar sensors have been reported [1–4]. Radar sensors allow safe
detection of targets because radar sensors are less sensitive to increment conditions such as heavy rain,
snow, and fog compared to other sensors such as camera and LiDAR [5]. Due to these advantages,
radar sensors have been employed for several applications. For example, radar sensors have been
used for automotive applications such as adaptive cruise control, avoidance of collision and parking
aid [6]. In addition, radar sensors are employed in not only military applications such as detection of
enemy tank and airborne but also surveillance applications [1–3].

As one of the most promising among the various radar techniques, frequency-modulated
continuous wave (FMCW) radar systems have been studied [6–9]. In FMCW radar systems,
by multiplying the received signal by the transmitted signal, linear combination of sinusoid signals
with low frequencies, so-called ‘beat signal’ can be directly obtained. Hence, FMCW radar systems can
reduce the cost of hardware and architecture because the obtained beat signal can be digitized directly
compared to pulsed radar.

In earlier studies [5,10,11], FMCW radar algorithms for surveillance applications were designed
and addressed. In one work [5,10], the authors investigated the implementation of a 24 GHz FMCW
radar for surveillance, and detected the range, velocity, and angle of targets. Meanwhile, in another
work [11], the authors presented a scalable architecture for acquisition and a field programmable
gate array (FPGA)-based processing platform of a radar sensor with a single transmitter and multiple
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receivers. However, these algorithms [5,10,11] perform full-dimensional fast Fourier transforms
(FFTs) when detecting to distinguish between stationary and moving targets, and thus require high
complexity. The most important issue for surveillance applications is rapid identification of the presence
of a moving target. Therefore, these algorithms are not suitable for low cost surveillance applications
due to their high complexity.

Meanwhile, in [12–14], FMCW radar algorithms with low complexity have been proposed by
reducing the number of FFTs compared to the conventional FMCW radar algorithms using full
dimension FFT. By performing FFTs on only regions of interest (ROIs) instead of full dimension
FFTs, these algorithms reduce the redundant complexity compared to the conventional FMCW radar
algorithms using full dimension FFT. However, to apply these algorithms to surveillance applications,
an additional algorithm is required to distinguish between stationary target and moving target.

To distinguish between stationary target and moving target, the moving target indicator (MTI)
algorithms have been employed and discussed [4] and their applications include the surveillance,
indoor tracking and vehicle radar systems [9]. More recently, in [8,9], MTI algorithms for FMCW radar
systems have been proposed. In [8], this algorithm effectively detects the moving targets by performing
FFT on only difference between two beat signals. In the case of a stationary target, the difference
of two beat signals becomes zero and, thus, the FFT result includes only additive white Gaussian
noise (AWGN). On the other hand, in the case of a moving target, the result of the difference between
two beat signals includes information of the ranges of targets. Hence, the range of moving target is
effectively detected. By employing only two beat signals, this algorithm has significantly reduced the
complexity of FMCW radar systems. However, there are still drawbacks that need to be improved.
First, this algorithm cannot overcome the blind-speed problem [3]; a target with a specific velocity
may not be detected because two beat signals are selected regardless of the target’s velocity. Moreover,
there is also redundant complexity in [8] that can be reduced because this algorithm performs a 2D
FFT to detect the range and angle of a target, regardless of whether it is present.

In this paper, the proposed algorithm tries to overcome the problem of blind speed,
i.e., the drawbacks of [8] while further reducing complexity. To this end, first, to solve the blind-speed
problem, two beat signals are randomly chosen unlike [8]. By randomly selecting two beat signals
at each frame, even if detection fails in a frame, the proposed algorithm detects the moving target
in another frame. Secondly, the proposed algorithm further reduces the complexity compared to [8].
Instead of performing the 2D FFT to detect the range and angle at every frame as in [8], the proposed
algorithm performs the 2D FFT only when it is determined that the target is present. Moreover,
to verify the effectiveness of the proposed algorithm, we perform simulations and an experiment
in a real environment. The results of simulation and experiment show that the proposed algorithm
achieves better performance compared to the [8] despite further low complexity. These results imply
that the proposed algorithm is one of solutions to the blind speed problem that misses a target
a specific velocity.

The structure of the paper is as follows. In Section 2.2, we introduce and define the system model
and the main notations used. Furthermore, we establish the FMCW and detection algorithms using
a 3D FFT for the FMCW radar systems. Section 3 considers the low-complexity surveillance FMCW
radar algorithm using two beat signals as proposed in Reference [8] and describes its shortcomings.
In Section 4, we introduce the structure of the proposed algorithm and describe how it overcomes
the problems in [8]. In Section 5, simulations are performed to evaluate performance and show
the improvements of the proposed algorithm compared to Reference [8]. Section 6 provides the
experimental results for various cases to verify the effectiveness of the proposed algorithm by
implementation of a 24 GHz FMCW radar system. Finally, Section 7 concludes this paper.
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2. System Model and Conventional 3D-FFT-Based Detection Algorithm in FMCW Radar Systems

2.1. System Model

This section describes the system model in FMCW radar systems. As shown in Figure 1, the total
transmitted (TX) FMCW signal is denoted by x(t) and expressed as:

x(t) =
NF−1

∑
i=0

x(i)(t− iTF), (1)

where TF is the duration of a frame as shown in Figure 1 and NF is the number of frames. The TX
FMCW signal which is composed of L chirps at the ith frame, x(i)(t) is expressed as:

x(i)(t) =
L−1

∑
l=0

x0(t− lT), (2)

where T is the duration of an FMCW chirp signal x0(t). An FMCW chirp signal x0(t) is expressed
as follows [15]:

x0(t) = exp
(

j2π
(

f0t +
µ

2
t2
))

for 0 ≤ t ≤ T, (3)

where f0 is the carrier frequency and µ is the rate of change of the instantaneous frequency of a chirp
signal, i.e., µ = B/T, where B is the bandwidth of the FMCW chirp signal.
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Figure 1. Structure of transmitted (TX) and received (RX) signals in frequency-modulated continuous
wave (FMCW) radar; f0 is carrier frequency, B is bandwidth, x(i)(t) is FMCW chirp signal at the ith
frame, T is duration of one FMCW chirp signal, TF is duration of one frame, NF is the number of total
frames and τm is the time delay of the mth target and fb,m is the beat frequency of the mth target.

We consider M far-field, non-coherent, narrow-band targets impinging on a uniform linear array
(ULA) with K elements. The received (RX) signal of the kth array for the lth chirp at the ith frame is
denoted by r(i)l,k (t) and is expressed as [15]:

r(i)l,k (t) =
M

∑
m=1

ã(i)m x0

(
t− τ

(i)
m

)
exp

(
j2π f (i)D,m(Tl + (i− 1)TF)

)
exp

(
j
2π

λ
dsk sin θ

(i)
m

)
+ w̃(i)

l,k (t), (4)

where ã(i)m is the complex amplitude of the reflected signal of the mth target in the ith frame, ds is
the spacing between the adjacent arrays, λ is the wavelength of the carrier frequency, and τ

(i)
m , f (i)D,m,

and θ
(i)
m are the round-trip time delay, Doppler frequency due to the velocity of the moving target,

and the direction-of-arrival (DOA) for the mth target in the ith frame, respectively. Additionally, w̃(i)
l,k (t)

is the AWGN signal for the kth array, the lth chirp, and the ith frame. By multiplying the conjugated
FMCW TX signal x∗0(t) by r(i)l,k (t) and assuming ds = λ/2, the beat signal for the lth chirp, the kth array,

and the ith frame, y(i)l,k (t) is obtained and expressed as the product of the range, Doppler, and DOA
terms as follows:
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y(i)l,k (t) = r(i)l,k (t)× x∗0(t)

=
M
∑

m=1
a(i)m exp

(
−j2π f (i)b,mt

)
︸ ︷︷ ︸

range term,,η
(i)
m (t)

exp
(

j2π f (i)D,m(Tl + TF(i− 1))
)

︸ ︷︷ ︸
Doppler term, ,v(i)lm

exp
(

jπk sin θ
(i)
m

)
︸ ︷︷ ︸

DOA term, ,z(i)km

+ w̃(i)
l,k (t)x∗0(t)︸ ︷︷ ︸

noise term, ,w(i)
l,k

=
M
∑

m=1
a(i)m η

(i)
m (t)v(i)lm z(i)km + w(i)

l,k (t),

(5)

where a(i)m is defined as a(i)m = ã(i)m exp
(
−j
(

2π f0τ
(i)
m − µτ

(i)2
m /2

))
as in [15] and f (i)b,m is the beat

frequency due to delay, i.e., f (i)b,m = µτ
(i)
m in η

(i)
m (t) in Figure 1.

After analog to digital conversion (ADC) of y(i)l,k (t), the discrete time model of Equation (5)

with sampling frequency fs is denoted by y(i)l,k [n], i.e., y(i)l,k [n] = y(i)l,k (nTs) for n = 0, 1, ..., Ns − 1,
where Ts = 1/ fs is the sampling interval, and Ns = dT/Tse is the number of samples where d·e is ceil
operator. Thus, Equation (5) is rewritten as:

y(i)l,k [n] =
M

∑
m=1

a(i)m η
(i)
m [n]v(i)lm z(i)km + w(i)

l,k [n]. (6)

2.2. Conventional 3D-FFT-Based Detection Algorithm in FMCW Radar Systems

This section illustrates the conventional 3D-FFT-based detection algorithm in FMCW radar
systems. From Equation (6), the ADC beat signal can be expressed as a sinusoidal signal in
three-dimensions (3D), i.e., range in the sample domain n, velocity in the chirp domain l, and angle in
the array domain k, as shown in Figure 2. Therefore, by estimating the frequencies of the 3D sinusoidal
signals using a 3D FFT, the desired parameters can be detected. Figure 2 illustrates the structure of
parameter estimation using 3D FFT in the ith frame. In Figure 2, NR, NC, and NA are the number of
FFT points on the range, chirp, and array domains, respectively.

First, the NR-point FFTs for range estimation on y(i)l,k [n] are performed for 1 ≤ l ≤ L and 1 ≤ k ≤ K.

The qth FFT output of y(i)l,k [n] is denoted by Y(i)
l,k [q] and is obtained as follows [16]:

Y(i)
l,k [q] =

Ns

∑
n=1

y(i)l,k [n]W
(n−1)(q−1)
NR

for 1 ≤ q ≤ NR, (7)

where WN is the N point discrete Fourier transform (DFT) operator, i.e., WN = exp(−j2π/N).
FFT output Y(i)

l,k [q] is called ‘range bin’ because it includes the range information of the targets as
shown in Figure 2.

Secondly, in the same manner, NC-point FFTs for Doppler estimation on the NR × L FFT outputs
are performed as the box indicated by the dashed lines in Figure 2. The pth FFT output of Y(i)

l,k [q] is

denoted by Ỹ(i)
p,k[q] and obtained for 1 ≤ q ≤ NR and 1 ≤ k ≤ K as follows:

Ỹ(i)
p,k[q] =

L

∑
l=1

Y(i)
l,k [q]W

(l−1)(p−1)
NC

for 1 ≤ p ≤ NC. (8)

From (7) and (8), K times 2D FFT outputs with NR × NC which reflect range and Doppler
information are obtained. Then, these 2D FFT outputs are used as input to NA point FFTs for angle
estimation to perform 3D FFT. Finally, by performing the peak detection and constant false-alarm rate
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(CFAR) algorithms, the range, velocity, and angle parameters are estimated. Meanwhile, in surveillance
radar systems, it is important to detect the existence of targets as fast as possible. However,
the computational complexity of 3D FFT is quite high and thus 3D FFT-based detection algorithms
might not be suitable for surveillance applications.
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Figure 2. Structure of a three-dimensional (3D) fast Fourier transform (FFT) in FMCW radar.

3. MTI-based Low-Complexity Surveillance FMCW Radar Algorithm

3.1. Structure of MTI-based Low-Complexity Surveillance FMCW Radar Algorithm

This section introduces the structure of MTI-based low-complexity surveillance FMCW radar
algorithm [8]. This algorithm proposes a method to efficiently detect moving targets by applying
MTI algorithm to FMCW radar. In addition, the computational complexity is significantly reduced
by performing an FFT on the difference between the two beat signals instead of using 3D-FFT,
making it suitable for low-complexity surveillance applications. Figure 3 illustrates the structure
of the low-complexity surveillance FMCW radar algorithm using two beat signals [8]. First, the l1th
and the l2th chirp signals of the kth array, i.e., y(i)l1,k[n] and y(i)l2,k[n], are selected where lu is the index
of the selected uth beat (chirp) signal for u = 1, 2 and lu ∈ [1, L]. Then, a subtraction between these
two beat signals, denoted by d(i)k [n], is expressed as:

d(i)k [n] = y(i)l1,k[n]− y(i)l2,k[n]

=
M

∑
m=1

a(i)m η
(i)
m [n]z(i)km (v(i)l1m − v(i)l2m ) + w(i)

l1,k[n]− w(i)
l2,k[n]. (9)

From Equation (9), while there is a change in the amplitude, it can be seen that d(i)k [n] not only

contains the range term η
(i)
m [n] but also the angle term z(i)km of the target. In the case of a stationary

target or clutter, the Doppler effect does not occur, i.e., f (i)D,m = 0 in Equation (5) and thus, both of v(i)l1m

and v(i)l2m become zero. Hence, ignoring the noise term, y(i)l1,k[n] and y(i)l2,k[n] are the same regardless of

the other parameters such as a(i)m , η
(i)
m [n], and z(i)km and thus, the difference of two beat signals d(i)k [n]

becomes also zero. Based on this property, as shown in Figure 3, the algorithm can effectively estimate
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the range and angle of the moving target by performing a 2D FFT on d(i)k [n], although the algorithm

uses only two beat signals where D(i)
k [q] is the qth FFT output of the kth array at the ith frame.
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Figure 3. Structure of a low-complexity surveillance FMCW radar algorithm using dual chirps.

Figure 4 shows the detection results of the algorithm with a signal-to-noise ratio (SNR) = 20 dB,
NR = 256, and NA = 64. The number of targets is set to 2. Their ranges are 35 and 70 m and their
velocities are 5 m/s and 10 m/s, respectively. Their angles are set to −17◦ and 15◦, respectively.
Figure 4a shows the snapshot of the results of detection by 2D FFT. For easy understanding, Figure 4b,c
shows the snapshot of the range and angle detection results by 1D FFT. From Figure 4, it is shown that
this algorithm nearly accurately estimates the ranges and angles of the two targets. The results on the
average effectiveness of this algorithm and the proposed algorithm under random condition will be
shown in Section 5.
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Figure 4. Snapshot of detection results with a SNR of 20 dB, NR = 512, and NA = 64. (a) Detection result
using a 2D FFT, (b) result of range detection by a FFT, and (c) result of angle detection by a FFT.
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3.2. Drawbacks of MTI-Based Low-Complexity Surveillance FMCW Radar Algorithm

This section addresses the drawbacks of MTI-based low-complexity surveillance FMCW radar
algorithm. First, this algorithm does not properly work under conditions where d(i)k [n] becomes close to

zero even if f (i)D,m 6= 0, that is, the so-called ‘blind-speed problem’ [3]. Secondly, there is also redundant
computational complexity that can be reduced in this algorithm. This algorithm performs a 2D FFT to
detect the range and angle of a target, regardless of whether it is present.

To effectively illustrate blind-speed problem, Figure 5 shows an example of the real part of d(i)k [n]
for a slow-moving target. For simplicity, the noise component is not included. The center frequency f0

was set to 24 GHz, the duration T was set to 78 µs, and the target’s velocity v(i)r,m was set to 5 km/h

where v(i)r,m = f (i)D,mλ/2. Figure 5a shows the real part of the Doppler term v(i)lm . Since v(i)lm is periodic
signal, its amplitude is repeated with a period of about 55. If the two indices are chosen near an integer
multiple of 55, the difference between the two beat signals d(i)k [n] might be close to zero. Figure 5b

shows the max value of the real part of d(i)k [n] according to the difference between two indices l(i)4 ,

i.e., l(i)4 = |l1 − l2|. As expected before, in the case of l(i)4 = 55, d(i)k [n] becomes almost zero. Figure 5c

shows the real part of d(i)k [n] according to sample index n with several cases of l(i)4 . From Figure 5c,

it can be seen that the difference of amplitude of d(i)k [n] according to l(i)4 is significant. If l(i)4 is set to 55,

the amplitude of d(i)k [n] significantly decreases.
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Figure 5. Real part of v(i)lm without noise for a target with vr,m =5 km/h: (a) amplitude with respect

to the index l, (b) max value of d(i)k [n] with respect to |l1 − l2|, and (c) d(i)k [n] for fixed |l1 − l2| with
respect to n.

To observe the case of a fast-moving target, Figure 6 shows an example of the real part of d(i)k [n]

with v(i)r,m = 60 km/h. The tendency of Figure 6 is generally similar to the result of Figure 5. However,

the period of d(i)k [n] in Figure 6 decreases due to the high velocity of the target compared to the case

of a slow-moving target. As shown in Figure 6c, the amplitude of d(i)k [n] according to l(i)4 is severely

changed. Figures 5 and 6 imply that the velocity of the target must be reflected in setting l(i)4 . In general,
however, not only the velocity of the target is unknown but the velocity of each target is independent.
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Therefore, there is a risk of missing targets with a certain velocity in this algorithm because this
algorithm selects two beat signals without considering the velocity of the target.
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Figure 6. Real part of v(i)lm without noise for a target with vr,m = 60 km/h: (a) amplitude with respect

to l, (b) max value of d(i)k [n] with respect to |l1 − l2|, and (c) d(i)k [n] for fixed |l1 − l2| with respect to n.

4. Proposed Low-Complexity FMCW Radar Algorithm for Surveillance Applications

This section addresses the proposed low-complexity FMCW radar algorithm for surveillance
applications to overcome the drawbacks of [8]. For convenience, Reference [8] is called ‘the previous
algorithm’ in this paper. Figure 7 shows the structure of the proposed algorithm. The proposed
algorithm’s main contributions compared to the previous algorithm are as follows. First, the proposed
algorithm solves the problem that the previous algorithm does not detect targets at a specific velocity.
The proposed algorithm tries to decrease the probability of missing a target at a slow or fast velocity
by randomly selecting the index every frame. Secondly, instead of performing a 2D FFT to detect
the range and angle in every frame as in [8], the presence or absence of the target is first determined
through range detection using 1D FFT; when it is determined that the target exists, then the 2D FFT is
performed to detect both the range and angle of the target.

The proposed algorithm works in two modes: a case where the target is single and its velocity is
roughly known, and a case where target is not single or the target’s velocity is unknown. Assuming
that we know the approximate velocity of target, the period Tchirp in the chirp domain is calculated as:

T(i)
chirp =

1

f (i)D,m

=
λ

2v(i)r,m

, (10)

where f (i)D,m is Doppler frequency due to the velocity of the mth target v(i)r,m. In Equation (2), T is the
duration of FMCW chirp signal and, thus, T becomes a sample interval in the chirp domain. Hence,
the number of indices N(i)

period, corresponding to one period in the chirp domain is calculated as:

N(i)
period =


T(i)

chirp

T

 , (11)
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where d·e is the ceil operator. In the first mode, therefore, l(i)4 in the proposed algorithm is randomly

selected with uniform distribution from within the following region
[
1, N(i)

period

]
: Meanwhile, in the

case of a multiple-target condition or an unknown velocity of the target, N(i)
period cannot be determined.

In this case, therefore, the proposed algorithm randomly selects the difference of two indices l(i)4 with

uniform distribution within the entire region, i.e., l(i)4 ∈ [1, L]. Consequently, the region of l(i)4 of the
proposed algorithm is as:

l(i)4 ∈
{ [

1, N(i)
period

]
, if single target and known velocity

[1, L] , elsewhere
. (12)

By randomly assigning two beat signals in the total L chirps, the proposed algorithm tries to
avoid the blind-speed problem. Even if d[i]k [n] unfortunately becomes zero because of chosen l(i)4 , in the

next frame, l(i)4 will be newly changed, i.e., l(i+1)
4 6= l(i)4 . Therefore, the proposed algorithm can avoid

the problem of continuously missing a target of a specific velocity.
Moreover, as shown in Figure 7, the proposed algorithm further reduces the computational

complexity compared to [8] by performing angle detection only when it is estimated that a target exists,
rather than detecting the angle in each frame. Since the target is not always present, the proposed
algorithm reduces unnecessary processing while the target is not present.
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Figure 7. Structure of the proposed algorithm.

Figure 8 shows a snapshot of the range detection results of the previous and proposed algorithms
for a target with velocity v(i)r,m = 60 km/h with SNR = 5 dB and NR = 256. In the previous algorithm,
the two indices were set to l1 = 1 and l2 = 25. In Figure 8a, the detection result of the previous
algorithm seems to be a noisy signal due to the blind-speed problem. On the other hand, the proposed
algorithm clearly detects the target located at 40 m compared to the result of the previous algorithm.
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Figure 8. Snapshot of range detection results with SNR = 5 dB, NR = 256, and v(i)r,m = 60 km/h: (a) the
previous algorithm [8] (l1 = 1, and l2 = 25), and (b) the proposed algorithm.

Figure 9 shows a snapshot of range detection results of the previous and proposed algorithms with
two targets. These calculations are performed with target velocities v(i)r,1 = 3 km/h and v(i)r,2 = 10 km/h,
SNR = 5 dB, and NR = 256. The two indices in the previous algorithm were set to l1 = 1 and l2 = 54.
In Figure 9a, the previous algorithm detects only the target located at 70 m, but misses the target
located at 35 m. On the other hand, in Figure 9b, the proposed algorithm clearly detects both targets,
located at 35 m and 70 m.
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Figure 9. Snapshot of range detection results for two targets with v(i)r,1 = 3 km/h, v(i)r,2 = 10 km/h,
SNR = 5 dB, and NR = 256: (a) previous algorithm [8] (l1 = 1, and l2 = 54), (b) proposed algorithm.

5. Performance Evaluation

5.1. Simulation Results

This section discusses the simulation results to confirm the performance improvement of the
proposed algorithm. For all simulations, the center frequency f0 is set to 24 GHz and the complex
amplitude am in Equation (5) was randomly and independently generated from a uniform distribution.
In other words, the magnitude and angle of am are in the ranges 0 ≤ |am| ≤ 1 and 0 ≤ ]am ≤ 2π,
respectively. The size of the FFT for range estimation NR was set to 256. As measure for performance
evaluation, the root mean square error (RMSE) and missing rate of range detection are employed [15].
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Total of 105 simulations were performed to obtain the results of RMSE and missing rate. The RMSE

is calculated with RMSE =
√

1
M×105 ∑105

i=1 ∑M
m=1(θm − θ̂m)2. Missing rate is the probability that the

number of obtained peaks by peak detection is lower than the number of targets.
In Figure 10a,b, a slow-moving target (vr,m = 5 km/h) and a fast-moving target (vr,m = 60 km/h)

are considered, respectively. For the slow-moving target, the RMSE of the proposed algorithm is lower
than the RMSE of the previous algorithm for SNR≤ 8 dB. In the region with SNR≥ 10 dB, the RMSEs of
the two algorithms are similar. Meanwhile, for the fast-moving target, shown in Figure 10b, the RMSE
of the proposed algorithm is significantly lower than the RMSE of the previous algorithm over the
entire SNR range.
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Figure 10. Root mean square error (RMSE) with respect to SNR for NR = 256: (a) vr,m = 5 km/h,
and (b) vr,m = 60 km/h.

To evaluate the improvement of the proposed algorithm compared to the previous algorithm,
the missing rate is shown in Figure 11. In Figure 11a,b, a slow-moving target (vr,m = 5 km/h) and
a fast-moving target (vr,m = 60 km/h) are considered, respectively. In both of the conditions, the slow-
and fast-moving targets, the missing rate of the proposed algorithm was lower than the missing rate of
the previous algorithm over the entire SNR region.
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Figure 11. Missing rate as a function of SNR with NR = 256: (a) vr,m = 5 km/h, and (b) vr,m = 60 Km/h.
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5.2. Complexity Comparison

This section evaluates the computational complexity of the previous algorithm and the proposed
algorithm. In the case of the previous algorithm, the range and angle detections are performed
regardless of the existence of a target. Hence, the required number of multiplications of the previous
algorithm Cprevious is as follows:

Cprevious =
NR

2
log2 NR × K + NR ×

NA

2
log2 NA. (13)

On the other hand, the proposed algorithm performs angle detection only when it is determined
that a target exists. Hence, the required number of multiplications of the proposed algorithm Cproposed
is as follows:

Cproposed =
NR

2
log2 NR + pT

(
(K− 1)

NR

2
log2 NR + NR ×

NA

2
log2 NA

)
, (14)

where pT is the probability that a target exists. Figure 12 shows the required number of multiplications
according to the probability that the target exists. The target is not always present and, thus, the power
efficiency of the proposed algorithm is always improved compared to the previous algorithm.
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Figure 12. Required number of multiplications according to the probability that the target exists.

6. Experiments

To verify the effectiveness of the proposed algorithm in a practical environment, we performed
experiments inside an anechoic chamber, located at DGIST in Korea. This section consists of
two subsections. First, the experimental equipment is introduced, and then the experimental results
are addressed.

6.1. Experimental Setup

We used an FMCW radar system at 24 GHz, which has two TX antennas and eight RX antennas, as
shown in References [11,15]. Figure 13 shows a block diagram of the front-end module (FEM). The radio
frequency (RF) module is composed of TX and RX sides, as shown in Figure 13. A microcontroller
unit (MCU), frequency synthesizer with a phase-locked loop (PLL), and voltage-controlled oscillator
(VCO) were included on the TX side, with a maximum bandwidth of 2 GHz. The MCU chip controls
the frequency synthesizer with the PLL. Finally, the output of the VCO is connected to the two TX
antennas through a power amplifier (PA).

The RX side includes the eight RX antennas, low-noise amplifiers (LNAs), high-pass filters (HPFs),
a variable-gain amplifier (VGA), and low-pass filters (LPFs). The outputs of the LNAs are multiplied
by the TX signals, and the outputs then pass through the HPFs with 150 kHz of bandpass frequency.
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The outputs of the HPFs are amplified by the amplifiers, and then the eight beat signals from different
channels were obtained and the amplified signals were passed through the LPFs with 1.7 MHz of
bandpass frequency. The noise of the RX was 8.01 dB and the RX antenna gain was 10 dB. The RX
antenna azimuth beamwidth was 99.6◦ and elevation beamwidth was 9.9◦ [11,15]. A more detailed
specification of the TX and RX sides is described in References [11,15].
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Figure 13. Block diagram of the 24 GHz radar RF module.

Figure 14 shows the FEM and back-end module (BEM) systems for the experiment. In Figure 14a,
the digital signal processing (DSP) and a field programmable gate array (FPGA) operating at up to
1 GHz are included in the data-logging board. First, the analog signal is converted to digital data in
up to eight channels, with a 20 MHz sampling rate through the ADC. Two external memories of the
DSP, the 2 GB DDR2 SDRAMs, provide a total of 512 Mbytes of data storage space. When the external
memory is filled, the data is transferred to the computer through the Ethernet.

TX#1 

antenna

TX#2

antenna

RX#1, ....,RX#8 antennas

...

. RX side

(a) Front end module (FEM) (b) Back end module (BEM)

TX side

Figure 14. Front-end module and back-end module for the experiment.
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Figure 15 shows a photograph of an experiment in the chamber. As can be seen in Figure 15,
the experiment was performed inside an anechoic chamber to avoid the undesired echo effect.
This chamber was designed for 8 to 110 GHz, and its size was 5 (W) × 10 (L) × 4 m (H). The targets
move back and forth depending on the speed set by the user. The duration of the chirp (ramp) T was set
to 400 µs, the bandwidth was set to 1 GHz, and the sampling frequency was set to 5 MHz. The number
of chirps per one frame was set to 256 and the number of frames was set to 64. A 2048-point FFT was
performed for range estimation, and a 256-point FFT was performed in the DOA estimation step.

FEM

BEM

Power supply

Laptop PC and software

Target #2
Target #1

Data communication 

between PC and BEM 

by Ethernet

Figure 15. A photographs of the experiment setup in anechoic chamber.

6.2. Experiment Results

This section addresses the experimental results to confirm the improvement induced by the
proposed algorithm. Figure 16 shows the subtraction between two beat signals, d(i)k [n], and the range
detection result by the FFT of the previous algorithm with l1 = 6 and l2 = 29, for a single-target
condition. The velocity of the target was set to 5 km/h. As shown in Figure 16a, we do not observe
a sinusoidal signal form, although d(i)k [n] should be a sinusoidal form for a single target. In Figure 16b,
we observe that the previous algorithm does not detect the target at the actual range. On the other
hand, Figure 17 shows the results of the same experiment using the proposed algorithm. In Figure 17a,
it can be seen that d(i)k [n] by the proposed algorithm is approximately a sinusoidal form. Figure 17b
also shows the proposed algorithm accurately detects the range of target.
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Figure 16. Experimental results of the previous algorithm (l1 = 6 and l2 = 29) for a single target.
(a) Beat signal and (b) detection results using FFT.
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Figure 17. Experimental results of the proposed algorithm for a single target. (a) Beat signal, and (b)
detection results using FFT.

Figure 18 shows the experimental results for the condition of multiple targets with different
velocities. The velocities of the fast- and slow-moving targets were set to 14.4 and 5 km/h, respectively.
In the case of the previous algorithm, the indices of two beat signals were set to l1 = 6 and l2 = 33.
From Figure 18a, it can be seen that the previous algorithm detects only one target despite the presence
of two targets. On the other hand, both of the targets were accurately detected in the proposed
algorithm as shown in Figure 18b.
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Figure 18. Experimental results for multiple targets. (a) Previous algorithm (l1 = 6 and l2 = 33),
and (b) proposed algorithm.

7. Conclusions

We proposed an FMCW surveillance radar algorithm that not only solves the blind-speed problem
but also reduces complexity. We showed that the previous algorithm misses a moving target because the
previous algorithm did not consider the velocity of the target. Through simulation results, we showed
that the proposed algorithm not only distinguishes between stationary and moving targets, but it also
solves the problem of missing a target at a certain velocity despite low complexity. Furthermore,
we set up an experiment environment using the FMCW radar system to verify the effectiveness of the
proposed algorithm in a real environment. The experiment results showed that the proposed algorithm
achieves better performance compared to the previous algorithm in a real environment. This algorithm
has the disadvantage that it cannot measure the velocity of the target. Currently, we are proceeding
with further study on algorithms that detect the speed of the target without increasing the complexity.
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