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Abstract: In recent years, nitrite pollution has become a subject of great concern for human
lives, involving a number of fields, such as environment, food industry and biological process.
However, the effective detection of nitrite is an instant demand as well as an unprecedented challenge.
Here, a novel nitrite sensor was fabricated by electrochemical deposition of palladium and platinum
(Pd-Pt) nanocomposites on porous gallium nitride (PGaN). The obtained Pd-Pt/PGaN sensor
provides abundant electrocatalytic sites, endowing it with excellent performances for nitrite detection.
The sensor also shows a low detection limit of 0.95 µM, superior linear ampere response and
high sensitivity (150 µA/mM for 1 to 300 µM and 73 µA/mM for 300 to 3000 µM) for nitrite.
In addition, the Pd-Pt/PGaN sensor was applied and evaluated in the determination of nitrite
from the real environmental samples. The experimental results demonstrate that the sensor has
good reproducibility and long-term stability. It provides a practical way for rapidly and effectively
monitoring nitrite content in the practical application.
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1. Introduction

As a typical inorganic pollutant, nitrite is closely related to pluralistic fields, such as environmental
chemistry, food industry and biological process. The contamination nitrite in ground water
mainly comes from agricultural fertilizer and industrial effluent, which can infiltrate the soil [1–3].
Meanwhile, nitrite is relevant to the formation of carcinogenic nitrosamines by reacting with
secondary amines, and it can bind to hemoglobin to cause methaemoglobinaemia in infants [4,5].
Therefore, the accurate and on-site determination of nitrite is very important for both environmental
protection and live processes [6]. At present, various techniques are used to detect nitrite, such
as fluorescence spectrometry [7], chromatography [8], chemiluminescence [9] and electrochemical
methods [10]. Among them, electrochemical methods have overcome the shortcomings of other
techniques, such as expensive instruments, complex operations and complicated sample preparations,
which have attracted the wide attention of researchers due to their low cost, speed, good sensitivity
and selectivity [11,12].

The purpose of chemically modified electrodes is to carry out the sensing material design
on the electrode surface. Up to now, much research has been reported on electrode modified
materials, such as carbon material graphene [13], metal-organic frameworks (MOFs) [14] and
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enzyme [15]. Carbon materials have good conductivity and can be commonly used as a substrate
for supporting electro-active substances. Metal-organic frameworks (MOFs) possess high surface
area and porosity characteristics. Enzyme shows high specificity and the efficient catalysis.
However, some problems on the above modified electrodes are still not well solved in practice.
Firstly, most modified materials are mainly adsorbed to the surface of the electrode by
physical adsorption. In the long-term use, modified materials will peel off due to scratches and
mechanical actions, affecting the electrode catalytic activity and lifetime. Secondly, modified electrodes
are not suitable for harsh solution environments. For instance, graphene can easily be decomposed
in strong acidic solutions. The enzyme activity can be easily affected by the temperature and the
pH value of the solution; it is hard to guarantee the stabilization of the electrode.

The properties and structures of sensing electrodes are therefore particularly important.
However, gallium nitride (GaN), a representative wide bandgap semiconductor, could be a promising
electrode candidate owing to its large potential window, high electron mobility and strong
metal-semiconductor interaction for electrochemical sensors [16–18]. Compared with other electrode
materials, GaN can achieve a higher chemical and thermal stability. These unique properties make
it generate less noise, resulting in a low background signal. Moreover, porous GaN (PGaN) with
different pore sizes and shapes has been easily obtained by wet etching. Compared with planar GaN,
PGaN provides higher surface area and more defects. The correlation research indicated that it can be
applied in some fields as an excellent electrode [19–21].

Due to their excellent electrocatalytic activities, noble metal nanomaterials (NMs) have been
applied to composite electrochemical sensors [22–26]. In comparison with other nanomaterials,
NMs are considerably more stable under ambient conditions. Moreover, their unique catalytic
performances together with their decreased dimensions and high surface-to-volume ratio demonstrate
enormous potentials in environmental and biological applications. In this work, a facile two-step
electrodeposition process was developed to decorate the PGaN electrode with Pd and Pt (Pd-Pt)
nanocomposites in order to fabricate a novel nitrite sensor. In the first step, Pt was electrodeposited on
PGaN by cyclic voltammetry (CV). In the second step, Pd was electrodeposited on the as-prepared
Pt-modified PGaN (Pt/PGaN) by chronoamperometry (CA). The obtained Pd-Pt/PGaN sensor
provided a wide linear range, lower detection limit, high selectivity and excellent stability for nitrite.
Moreover, the sensor exhibited a good recovery for nitrite determination in practical sample analysis.

2. Experimental Section

Chemicals: Chloroplatinic acid (H2PtCl6), palladium chloride (PdCl2), sodium nitrite (NaNO2),
disodium hydrogen phosphate (Na2HPO4), potassium dihydrogen phosphate (KH2PO4) and some
other chemicals were analytical reagents, purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][OTF]) was
provided by Shanghai Cheng Jie Chemical Co., Ltd. (Shanghai, China). Phosphate buffered saline
(PBS) (0.1 M pH 7.0) was prepared by KH2PO4 and Na2HPO4 according to a certain volume ratio.
A fresh solution of NaNO2 was prepared daily.

Characterization: All the electrochemical experiments were accomplished by Autolab workstation
(Metrohm PGSTAT302N, Metrohm AG, Herisau, Switzerland). The surface morphology of all samples
was examined by Hitachi-S4800 scanning electron microscope (SEM, Hitachi (Hong Kong) Ltd.
Hong Kong, China). The X-ray diffraction (XRD) pattern was recorded by Bruker D8 Advance
power X-ray diffractometer (Bruker, Billerica, MA, USA). The elemental analysis was obtained by
energy dispersive spectroscopy (EDS, Quanta FEG 250, Thermo Fisher Scientific, Waltham, MA, USA).

Fabrication of PGaN: A 5 µm thick single-crystalline GaN layer with the Si-doped was grown
on (0001) c-plane sapphire substrates by hydride vapor phase epitaxy (HVPE). The size of GaN
chips was 0.3 cm × 1.5 cm. Photoassisted electrochemical etching (PECE) was completed in a
two-electrode system. The etchant was 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate.
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In the typical etching process, the front-side vertical illumination source was supplied by a 300 W
Xenon lamp. This work has been reported about in relation to our group [27]. The etching voltage
applied to the electrode system was 7 V for 15 min. The as-obtained PGaN electrode was ultrasonically
cleaned in acetone, ethanol and deionized (DI) water for 20 min to remove any surface substance.
Then, the PGaN electrode was dried with an N2 stream.

Synthesis of Pd-Pt/PGaN: The synthesis of electrodes was divided into two steps. Firstly, Pt was
prepared by CV in a classical three-electrode system using PGaN as a working electrode, a Pt
plate as a counter electrode, and Ag/AgCl as a reference electrode. The electrolyte solution
comprised 4 mM H2PtCl6 and 0.5 M NaCl. The Pt/PGaN electrode was synthesized by optimizing
the deposition conditions. The range of voltage was from −1.5 V to 0.5 V, the scan rate was
50 mV/s and the number of cycles was four. The as-obtained Pt/PGaN electrode was thoroughly
rinsed by DI water and used for the next experiment. Secondly, Pd was deposited by CA using
Pt/PGaN as the working electrode. The electrolyte was replaced with 5 mM PdCl2 and 0.5 M NaCl.
Thirdly, the prepared Pd-Pt/PGaN electrode was thoroughly washed with DI water and dried with an
N2 stream.

Electrochemical nitrite detection: Nitrite detection was studied in a conventional three-electrode
system using a Pd-Pt/PGaN sensor. CV curves were used to record the anodic peak current response
to 1 mM nitrite in 0.1 M PBS. The CA measurement was successfully achieved by adding different
concentrations of nitrite into the PBS solution with a constant stirring rate of 350 rpm. All the
electrochemical experiments were performed at room temperature.

3. Results and Discussion

Figure 1a shows the SEM image of a PGaN electrode fabricated by PECE. One can see that
the pore shape is nearly hexagonal, which is in accordance with the hexagonal system structure of
GaN [28]. The PGaN electrode has a high density pore structure and homogeneous pore distribution.
Figure 1b shows that the pore diameter of PGaN is approximately 40-130 nm and that the average
pore size is 90 nm. The whole etching process was accomplished under the UV-light Xenon lamp
vertical irradiation, and the etchant was a nonaqueous ionic liquid. As described in our previous work,
the formation and dissolution of Ga(CF3SO3)3 during the interface between GaN and the ionic liquid
contributes to the formation of porous structures [20]. The PGaN with a high-porosity structure has
the higher specific surface area than planar GaN, and it can effectively increase the loading amount of
the catalyst.
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Figure 1. (a) SEM image and (b) aperture distribution histogram of PGaN electrode.

Figure 2a shows the SEM image of a Pt/PGaN electrode. The Pt nanoparticles were uniformly
distributed throughout the pore structure of PGaN. Figure 2b shows the morphological features of Pd
nanoparticles fabricated by CA method on a PGaN electrode. All of their forms were inhomogenous
in density and size, with diameters from 10 nm to 80 nm. The Pd/PGaN electrode was only used
for comparative studying. Figure 2c shows the SEM image of a Pd-Pt/GaN electrode. As can
be seen, the Pd-Pt nanocomposites were well-distributed on the whole PGaN electrode surface.
By selecting and optimizing the experimental conditions, nanocomposites can be prepared by a simple
two-step electrodeposition process. In the first step, the preparation of the Pt catalyst supported
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on a PGaN electrode by CV was conducted in a chloroplatinic acid electrolyte. In the case of high
deposition overpotential, the deposition process of metal particles follows the instantaneous nucleation
mechanism [19]. The negative potential of CV was therefore set to −1.5 V, which was beneficial to the
growth of small-sized Pt particles. In the second step, Pd nanoparticles were not only deposited on the
pore walls of the PGaN, but also in combination with metal Pt to form the nanocomposites. A constant
potential electrodeposition was carried out at −1.5 V, and a uniform, compacted and good adhesive
active layer was obtained. During the whole process, the pore structure of PGaN can effectively
restrain the agglomeration of nanoparticles.
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Figure 2. SEM images of (a) Pt/PGaN, (b) Pd/PGaN and (c) Pd-Pt/PGaN electrodes.

Figure 3a shows the EDS analysis of a Pd-Pt/PGaN electrode. The peaks of Pd and Pt were
clearly observed in the spectrum. Apart from the Ga and N, the peaks of no other elements
were present. The crystal planes of Pd-Pt nanocomposites were measured by XRD, as shown in
Figure 3b. The diffraction peaks positioned at 39.91◦, 46.39◦ and 67.96◦ correspond to the (111), (200)
and (220) planes respectively. Compared with the diffraction peak of the Pt (111) crystal face at 39.7◦,
the Pd-Pt nanocomposite peaks are shifted to a higher angle due to the combination of Pd to Pt.
The results of the experiment correspond to literature reports [29,30]. No characteristic peaks of Pd
or Pt oxides were detected. Therefore, the nanocomposites composed of Pt and Pd were successfully
deposited on the PGaN via the electrochemical method.
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Pd-Pt/PGaN electrodes.

Figure 4a shows the electrocatalytic responses of the Pd-Pt/PGaN and PGaN electrodes to
1 mM NaNO2 at the potential range from 0.2 to 1.2 V. Compared with the CV curve a2, a conspicuous
oxidation peak of the Pd-Pt/PGaN electrode was observed at about 100 µA at 0.65 V in curve a1.
The result demonstrates that Pd-Pt nanocomposites play an important role in the electrochemical
detection of nitrite. The significant change of the Pd-Pt/PGaN electrode may be due to the
nanocomposites, based on the strong electronic and synergistic effect [31,32]. Meanwhile, no distinct
current response was observed for the PGaN (curve b1 and b2). That is to say that the bare PGaN
electrode provides a low background signal, which is beneficial for sensors to generate less noise



Sensors 2019, 19, 606 5 of 10

and recognize weak signals. To further illustrate the excellent catalytic performance of Pd-Pt/PGaN,
the effects of Pt/PGaN and Pd/PGaN on direct oxidation of nitrite ion were studied by CV. As shown
in Figure 4b, the Pt/PGaN electrode demonstrated a small current response to 1 mM of nitrite, while no
significant current change was observed on the Pd/PGaN electrode. The results show that Pd-Pt
bimetallic complex has a higher catalytic activity than Pt single metal in the detection of nitrite.

Figure 4c shows the Nyquist plot of three electrodes for electrochemical impedance spectroscopy
(EIS) measurements in 0.1 M KCl containing 5 mM of redox couple [Fe(CN)6

3−/4−] at 220 mV. The inset
is the Randles equivalent circuit for fitting the experimental data. Rs represents the ohmic resistance of
the electrolyte, Rct and Zw are the charge transfer resistance and Warburg impedance, respectively.
CEP is the double layer capacitance, and the frequency is from 10−1 to 105 Hz. The semicircle
segment observed at higher frequencies conforms to the Rct, and a linear region that appeared at
lower frequencies is attributable to the diffusion process of the redox couple. All the electrodes
show different diameters of semicircles, exhibiting different Rcts. The Rct values of the Pt/PGaN
and Pd/PGaN were approximately 1200 and 1700 Ω, respectively. After the addition of Pd, a low
electron-transfer resistance to 120 Ω was obtained on the Pd-Pt/PGaN electrode. This change reveals
that the nanocomposites, formed by the in-situ growth of Pd on Pt, accelerate the redox reaction.
Additionally, the increase of the surface active region also leads to the decrease of Rct. In addition,
the effects of the Pd-Pt/PGaN electrode with different pH conditions on the detection of nitrite were
studied in Figure 4d. The results show that the peak current values of the electrode increase as the pH
of the solution increases in the range of 2.0 to 7.0, and then begin to fall rapidly. Thus, 7.0 was selected
as the optimum pH condition.
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Figure 4. (a) CVs of Pd-Pt/PGaN electrode (a1 and a2) and PGaN electrode (b1 and b2) in 0.1 M PBS
(pH 7) solution in the presence (a1 and b1) and absence (a2 and b2) containing 1 mM NaNO2. (b) CVs
of the Pt/PGaN, Pd/PGaN and Pd-Pt/PGaN electrodes in 0.1 M PBS buffer containing 1 mM NaNO2.
(c) Electrochemical impedance spectroscopy (EIS) spectra of three electrodes in 0.1 M KCl containing
5 mM K3[Fe(CN)6]/K4[Fe(CN)6]. The inset is the Randles equivalence circuit model. (d) CV peak
current values of the Pd-Pt/PGaN electrode in 0.1 M PBS buffer containing 1 mM NaNO2 under
different pH conditions (2.0, 3.0, 5.0, 7.0, 9.0, 11.0 and 12.0).

Figure 5a shows the peak current responses of a Pd-Pt/PGaN electrode to NaNO2 in a 0.1 M PBS
buffer at an applied potential of 0.65 V under stirring. The Pd-Pt/PGaN electrode exhibited a timely
increase response towards every addition of NaNO2, and the amperometric response attained a steady
state in less than 3 s. Furthermore, the corresponding calibration plots of the response to the nitrite
concentration are shown in Figure 5b,c. The current increases linearly with the concentration of NaNO2

in two ranges. One is from 1 to 300 µM with a linear regression equation of I (µA) = 0.903 + 0.150c
(µM) and the correlation coefficient of 0.997. The sensitivity of the electrode is as high as 150 µA/mM.
The other linear regression equation is the concentration range of I (µA) = 28.436 + 0.073c (µM) from
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300 to 3000 µM. The sensitivity and correlation coefficients are 73 µA/mM and 0.996, respectively.
The limit of detection (LOD) of this sensor is 0.95 µM with a signal-to-noise ratio of 3. The obtained
results show that the Pd-Pt/PGaN electrode possesses excellent electrocatalytic activity towards the
oxidation of nitrite.
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Figure 5. (a) Amperometric response curves for the addition of different concentrations of NaNO2 for
the Pd-Pt/PGaN electrode in a 0.1 M PBS solution. The inset is the amplification of the current response.
(b) and (c) are the corresponding calibration plots in two concentration ranges of amperometric
responses vs. nitrite concentration. (d) Amperometric responses of Pd-Pt/PGaN sensors for the
addition of 0.1 mM (a) NaNO2 and 5 mM common interfering substance (b-i) uric acid (UA), ascorbic
acid (AA), dopamine (DA), glucose (GLU), Na2CO3, KNO3, GaCl2 and MgSO4.

The interference of a common substance in nitrite detection for the modified electrode was
also examined and the result displayed in Figure 5d. When 5 mM UA, AA, DA, GLU, Na2CO3,
KNO3, GaCl2 and MgSO4 were added into PBS solution respectively, no amperometric responses
were detected. Nevertheless, a significant current response to 0.1 mM NaNO2 was timely, even in the
presence of a large amount of interfering substance. That shows that the obtained Pd-Pt/PGaN sensor
has a good selectivity for nitrite.

The reproducibility and stability of a Pd-Pt/PGaN electrode were tested in 0.1 M PBS containing 1 mM
NaNO2, as shown in Figure 6a,b. The reproducibility was investigated by comparing the amperometric
responses produced by different electrodes under the same condition of preparation. The peak current
values of eight Pd-Pt/PGaN electrodes were 100.8, 103.4, 103.7, 101.6, 102.3, 100.9, 103.5 and 101.5 µA,
with an RSD of 2.37%, as shown in Figure 6a. Moreover, the Pd-Pt/PGaN sensor was stored under
atmosphere condition for 15 days to evaluate its stability, as shown in Figure 6b. The electrode retained 93%
of the initial current response after 15 days. The above sensing performances confirm that the Pd-Pt/PGaN
sensor exhibits both high reproducibility and stability in the nitrite detection process.
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To estimate the sensing properties of Pd-Pt/PGaN sensors, the electrochemical analysis
parameters of different electrode substrates were compared, as listed in Table 1. Although the detection
limit of Pd-Pt/PGaN sensors is lower than some sensors, the linear range and sensitivity are wider and
higher than most other Pt or Pd based sensors. The previously reported sensors were fabricated by
employing complex procedures. On the contrary, the Pd-Pt/PGaN sensor was modified by a simple
electrodeposition method. The good sensitive performance of the sensor is mainly attributed to the
effective combination of PGaN and Pd-Pt nanoparticles. On the basis of its high electron mobility and
special surface structure, GaN accelerates the electron transfer rate between the nitrite and electrode,
which is beneficial to the proceeding of reaction. Therefore, the above results indicate that GaN is
expected to become an excellent electrode for sensors.

Table 1. Sensing performance compared to other electrode substrates for nitrite determination.

Electrode Sensitivity
(µA/mM)

Linear Range
(µM)

Detection Limit
(µM) Reference

Pt nanoparticles/GCE 88.5 1.2–900 0.4 [33]
Urchin-like Pd/SWCNT 38 2–238 0.25 [34]

Pd/graphite 6.5 0.3–50.7 0.071 [23]
Pt/Au - 10–1000 5.0 [35]

PdFe alloy/GCE - 500–25500 0.8 [36]
Hb/Au/GCE - 4–350 1.2 [37]

Pd-Pt/PGaN 150
73

1–300
300–3000 0.95 This work

The practical application of a Pd-Pt/PGaN electrode was examined by adding the known
concentration of nitrite in tap and lake water samples, and the results were shown in Table 2.
These experiments were carried out five times under the same conditions. Good recoveries
ranging from 96 % to 106 % demonstrate that the sensor has high chances of being effective in a
real environment.

Table 2. Determination of nitrite at various concentrations in tap and lake water.

Sample Theoretical (µM) Found (µM) Recovery (%) R.S.D (%)

20.0 21.2 106.0 2.8
Tap water 40.0 38.92 97.3 3.1

60.0 61.43 102.4 2.9

20.0 19.52 97.6 2.6
Lake water 40.0 38.46 96.2 3.2

60.0 62.63 104.4 3.5

4. Conclusion

We exhibited a novel Pd-Pt nanocomposites-modified PGaN electrode through a simple two-step
electrochemical deposition route for nitrite sensing. For the high-porosity structure that uses PGaN
as a supporting electrode and for the effective electronic transmission of Pd-Pt nanocomposites,
the Pd-Pt/PGaN nitrite sensor presented many features, such as a wide linear range, high sensitivity,
good selectivity and stability. Furthermore, it can detect the nitrite in tap and lake water, respectively.
The simply assembled Pd-Pt/PGaN sensor provides a fast and effective method for monitoring nitrite
in a realistic environment.
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Abbreviations

SEM Scanning electron microscope
XRD X-ray diffraction
EDS Energy dispersive spectroscopy
CV Cyclic voltammetry
CA Chronoamperometry
EIS Electrochemical impedance spectroscopy
PGaN Porous gallium nitride
Pt/PGaN Platinum-modified porous gallium nitride
Pd/PGaN Palladium-modified porous gallium nitride
Pd-Pt/PGaN Palladium and Platinum nanocomposites on porous gallium nitride
PECE Photoassisted electrochemical etching
LOD Limit of detection
UA Uric acid
AA Ascorbic acid
DA Dopamine
GLU Glucose
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