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Abstract: High-Level Structure (HLS) extraction in a set of images consists of recognizing 3D elements
with useful information to the user or application. There are several approaches to HLS extraction.
However, most of these approaches are based on processing two or more images captured from
different camera views or on processing 3D data in the form of point clouds extracted from the
camera images. In contrast and motivated by the extensive work developed for the problem of depth
estimation in a single image, where parallax constraints are not required, in this work, we propose a
novel methodology towards HLS extraction from a single image with promising results. For that,
our method has four steps. First, we use a CNN to predict the depth for a single image. Second, we
propose a region-wise analysis to refine depth estimates. Third, we introduce a graph analysis to
segment the depth in semantic orientations aiming at identifying potential HLS. Finally, the depth
sections are provided to a new CNN architecture that predicts HLS in the shape of cubes and
rectangular parallelepipeds.

Keywords: high level 3D structure extraction; depth data analysis; CNN; single image; 3D vision

1. Introduction

In computer vision, High-Level Structure (HLS) extraction consists of recognizing 3D elements
from a set of images. There are several HLS that can be extracted (lines, planes and polyhedrons), and
several approaches for HLS extraction have been proposed. In general, the use of HLS provides rich
scene information since in man-made scenes (urbanized environments), there exist abundant HLS.
In addition, HLS reduces computational processing by covering large areas with a few parameters.
Due to these characteristics (rich scene information and computational processing reduction), several
tasks use HLS in order to perform improvements, for example: robotics [1], augmented reality [2],
navigation [3], 3D reconstruction [4] and Simultaneous Localization and Mapping (SLAM) [5].

There exist several approaches for HLS extraction: the first analyses two or more images captured
from different camera views [6,7]. This approach has high performance under image sequences
(collections of images related by time, such as frames in a movie or magnetic resonance imaging).
Unfortunately, sufficient parallax is necessary, i.e., some difference between camera views to reach
accurate results. Other approach associates HLS with a 3D point cloud [8–10]. These methods rely on
fitting algorithms, typically RANSAC and some optimization techniques to fit 3D structures within 3D
point clouds. Nevertheless, several thresholds and a specific setup are required in order to guarantee
high performance for a specific scene. This is an important limitation because in several cases, it is
difficult to set appropriate thresholds for setting up values.

The use of depth sensors is another approach to HLS extraction [11–13]. This approach in
most case uses algorithms to build the 3D model on depth information, i.e., this uses algorithms
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that can complete the unobserved geometry using a prediction computed from the observed depth.
Unfortunately, RGBD sensors often deliver low stability under outdoor scenarios. In addition, they are
not present in personal devices (cell phones, personal assistants, personal computers, etc.). Finally,
the power computation, cost and size are higher than RGB sensors.

Another approach, and which we are interested in this research, is the extraction of HLS from a
single image [14]. Unlike the other trends (using two views or using 3D point clouds), this approach
extracts HLS without parallax constraint and without threshold values. This is useful because in
real-world applications, several data are limited to a single view from an unknown scene, for example
historical images, Internet images, personal pictures, holiday photos and so on. Therefore, in the
current work, HLS from a single image represents a promising solution with high performance.
However, there are several challenges because there is insufficient information recorded in an image.
In recent work [15,16], important progress in 3D structure interpretation has been made. This was
achieved via learning algorithms that learn the relationship between visual appearance and scene
structure. Motivated by the results of such techniques and the potential benefits that single-image
perception provide (HLS extraction without parallax constraints and without threshold values), this
work focuses on HLS extraction from a single image. We believe this is a very interesting task since,
despite the considerable challenges involved, some kinds of single-image structure interpretation do
indeed seem to be possible.

Following, in Section 2, we present the related works that determine the location of the research;
Section 3 contains our proposed method; Section 4 describes the experiments designed to evaluate the
feasibility of the proposed method and the results achieved; finally, the conclusions and future work
are indicated in the last section.

2. Related Work

In recent work, important progress on HLS extraction from a single image has been made.
One popular trend uses an approach without depth information with techniques such as geometric
recognition, vanishing points and learning algorithms, among others. Another approach is HLS
extraction with depth estimation from a single image. In most cases, this approach uses learning
algorithms that learn the relationship between visual appearance and depth information.

2.1. HLS Extraction without Depth Estimation

The HLS extraction without depth estimation from a single image provides a direct formulation.
The approach proposed by [14,17] interprets the geometric context from a single image using a learning
algorithm. This geometric context is assigned to one of three main classes, ground, sky and vertical,
of which the latter is further subdivided into left, right, forward, porous and solid. Although this
approach is not explicitly aimed at HLS detection, it has an understanding of the general structure of
scenes, as the image is partitioned into planar structures (ground, left, right, forward) and non-planar
structures (sky, solid, porous). The classification of this approach is achieved using a large variety
of features, including colour (summary statistics and histograms), filter bank responses to represent
texture, image location, line intersections, shape information and vanishing point. These cues are
used in the various steps of classification, using decision trees and logistic regression to select the
geometric context.

The approach presented by [18–20] shows a methodology to extract dominant planar structures
by analysing the pattern of the lines and vanishing points of an image. The method is based on the
assumption that there are three orthogonal directions presented in the scene. In addition, to find
rectangular surfaces from them, two pairs of lines, corresponding to two different vanishing points,
are used to localize planar structures. This approach has shown promising results, in both indoor
and outdoor scenes, and the authors mentioned that it would be useful for robot navigation and
Augmented Reality (AR) applications. Unfortunately, it is limited to scenes with planar structures and
perpendicular orientation. Another approach, presented by [16,21] is the planar structures’ extraction
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and their orientation using a learning algorithm. For that, it selects a subset of salient points of the
image, the features of which will be extracted. In this approach, two features are obtained: The first
is a gradient orientation histograms, which consist of histograms of edge orientation. Second is the
colour using RGB histograms, created by histograms from the red, green and blue channels. To reduce
the dimensionality of the distribution of features in an image region, bag of words is used. Finally,
a learning algorithm is used to take into consideration the relations between planar surfaces and
their features (gradient orientation and colour). These approaches have shown promising results in
outdoor scenes; in most of the cases, they are limited to plane sections’ recognition without providing
polyhedral structures’ extraction.

The method presented by [22] proposed PoseCNN, a new convolutional neuronal network for
the estimation of objects postures. PoseCNN is trained to perform three tasks: semantic labelling,
3D translation and 3D object rotation. The network contains two stages. The first stage consists
of 13 convolutional layers and four max pooling layers, which extract feature maps with different
resolutions from the input image. The second stage consists of an embedding step that embeds the
high-dimensional feature maps generated by the first stage. Then, the network performs three different
tasks that lead to the pose estimation, i.e., semantic labelling, 3D translation estimation and 3D rotation.
The method presented by [23] addresses the problem of 3D structure reconstruction from a single image,
presenting 3D reconstruction in a point cloud. This approach uses deep neural networks. The 3D
reconstruction network consists of two steps. First, the input image is provided to the “encoder”; this
step accommodates the input information in Step 2. Step 2 provides 3D information in an N × 3M
matrix, where 3M are the coordinates (x, y, z) and N are the points that make up the 3D object. Step 2
is composed of two branches: one branch provides the 3D description of complex structures, and the
second provides the 3D description of smooth surfaces. However, the previously-presented methods
are limited to specific 3D shapes’ extraction, i.e., they only extract specific objects. Furthermore, these
methods do not present polyhedral structures’ extraction on buildings or outdoor scenes.

2.2. HLS Extraction with Depth Estimation

There are several methods for depth estimation for a single image [24–27]. In most cases, the depth
methods for a single image estimate depth using learning algorithms. One popular approach to HLS
extraction uses this depth estimation as the keystone to HLS extraction. The work in [28] introduced a
methodology for estimating the ground plane structure and the 3D location of the landmarks from
a robot using a single image. This work uses a supervised learning algorithm (MRF) to find the
relation between image characteristics (texture and gradient) and its depth information. This method
divides the original image into regions of similar textures using superpixels to feedback the depth
map and locate the ground plane. The method presented by [15] estimates depth maps for single
images of outdoor scenes for creating 3D models with plane sections. For that, this method segments
the image into superpixels and computes three features (texture variations, texture gradients and
colour). These features allow them to estimate both relative and absolute depth, as well as local
orientation. Furthermore, for each superpixel and respective features, it uses an MRF to infer a set
of “plane parameters” that capture both the 3D location and 3D orientation. However, it limits 3D
models with plane sections without providing information on polyhedral structures. The work in [29]
proposed a method to estimate a ground plane structure and its depth information from a single static
image. This methodology works in two steps. The first step estimates superpixel sections’ depth using
a gradient boosting regression to take into consideration visual features’ relation (texture and gradient)
with depth in the scene. In the second step, a RANSAC-based plane estimator uses the superpixels’
depth information to fit with the planes in the scene.

The deep neural network is another alternative to 3D structures’ extraction using depth estimation.
The work in [30] proposed 3D ShapeNets, a deep learning model to represent geometric 3D shapes.
This work, given a depth map, converts it into a volumetric representation. The volumetric
representation is processed by 3D ShapeNets to identify the observed shape, the free space and
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the occluded space. The method presented by [31] proposes a network for deep volumetric shape
learning. Given a collection of shapes of various objects and their different poses, the network learns
the distributions of shapes of various classes by predicting the missing sections. The network has two
stages: The first provides a condensed representation. In the second stage, the network reconstructs the
3D shape using deconvolutional layers. The wok in [32] developed a 3D descriptor method to identify
volumetric shapes. This work developed the design of adversarial networks that jointly train a set of a
Convolution Neural Network (CNN), a recurrent neural network and an adversarial discriminator.
The generator network produces 3D shape features that encourage the clustering of samples with
a correct label, whereas the discriminator network discourages the clustering by assigning them
misleading adversarial class labels.

Several works have demonstrated that depth estimation is highly useful for HLS extraction.
Although these methods have shown promising results on 3D shapes’ extraction, in most cases,
they are limited to specific objects. Furthermore, these methods do not present polyhedral structures’
extraction on buildings or outdoor scenes [31–33]. On the other hand, the approaches that have
promising results in outdoor scenes, in most cases, are those limited to plane sections’ extraction
without providing polyhedral structures’ extraction [15,29]. In this work, we propose a new HLS
extraction method that aims at polyhedral structures’ extraction on outdoor scenes from a single
image. For that, our method has three steps. First, we propose a depth analysis to remove uncertain
depth sections, and we segment depth sections with similar orientations. Second, we introduce a
graph analysis to locate depth surface sets using the depth sections with a similar orientation. Finally,
the depth surface sets are provided to a new CNN architecture, which predicts 3D polyhedral structures
(cubes and rectangular parallelepipeds).

3. The Proposed Method

Although learning algorithms can predict a depth map, this depth map presents several challenges
to HLS extraction such as low sharpness of depth information, erroneous depth in different image
sections, etc. For that, we propose a new method for HLS extraction from a single image. Our method
has four steps: the use of a CNN to predict the depth, a depth analysis to remove uncertain depth
sections, a graph analysis to segment the depth and a new CNN architecture that predicts HLS. Figure 1
shows the block diagram of our proposed method.

Figure 1. Block diagram of the proposed method. HLS, High-Level Structure.

3.1. Depth Analysis

In this subsection, we present the proposed depth analysis to remove uncertain depth. The depth
analysis elaborates, removes and replaces depth sections. Furthermore, the depth sections are labelled
with a semantic orientation. For that, the depth analysis uses a decision tree and a probability technique.
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3.1.1. Depth Sections

We analyse the depth in sections, i.e., we do not use the depth points as independent elements;
we analyse the behaviour of the depths using depth sets. For that, we use the depth images predicted
by CNN [26]. Element Dε denotes a depth image. We divide the image Dε into a grid ∆. For that, the
grid ∆ consists of sections ∆w. Section ∆w is a finite set of pixels ∆w = {x1, ..., xn}, ∆w ∈ ∆, where n is
the number of pixels in a section and ∆w ⇐⇒ n is an odd number. Each section ∆w has a patch Λα,β.
Patch Λα,β is a finite set of pixels Λα,β = {x1, ..., xu}, Λα,β ∈ ∆, where, u is the number of pixels in a
patch and Λα,β ⇐⇒ u is an odd number; where w denotes the wth section in grid ∆, α is the abscissa
from grid ∆ and β is the ordinate from grid ∆. Figure 2a shows a grid example ∆ of 3× 3.

3.1.2. Semantic Orientation

We consider different analysis in the depth section to obtain semantic orientation. Figure 2c
shows an image with the nine orientations. We use the ID3decision tree algorithm [34] to decide
which analysis to use. The analyses selected were the key points analysis χi

α,β and section analysis γi
α,β.

Key points analysis χi
α,β uses eight depth points. For that, the depth image Dε is divided into patches

Λα,β as in Figure 2a. In the patch Λα,β, we obtain the depth points τ1, τ2, τ3,.., τ8. Figure 2b shows the
depth points τ1, τ2, τ3,.., τ8 for a patch Λα,β of 17 × 17 pixels. To analyse the behaviour of the depth
points τi, we propose Equations (1) and (2).

χ1
α,β =


1 if τ1 > τ7, τ2 > τ6, τ3 > τ5,
2 if τ1 < τ7, τ2 < τ6, τ3 < τ5,
3 if τ1 = τ7, τ2 = τ6, τ3 = τ5,
0 otherwise,

(1)

χ2
α,β =


1 if τ5 > τ7, τ4 > τ8, τ3 > τ1,
2 if τ5 < τ7, τ4 < τ8, τ3 < τ1,
3 if τ5 = τ7, τ4 = τ8, τ3 = τ1,
0 otherwise,

(2)

The section analysis γi
α,β divides the depth section into two sessions. For that, the depth image

Dε is divided into patches Λα,β, as in Figure 2a. Equations (3) and (4) are used to compute the
section analysis γi

α,β. Equation (3) divides the depth section into two horizontal sections, and they are
subtracted. Equation (4) divides the depth section into two vertical sections, and they are subtracted;
where the pixel of a depth image Dε is denoted by ki,j and u is the pixel number (row\column) for the
patch Λα,β.

γ1
α,β =

∑u
i=0 ∑u/2

j=0(ki,j − ki,j+ u
2
)

u2/2
(3)

γ2
α,β =

∑u
j=0 ∑u/2

i=0(ki,j − ki+ u
2 ,j)

u2/2
(4)
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(a) Grid of 3× 3 (b) Depth points τ1, τ2, τ3,.., τ8 (c) Orientations

Figure 2. Depth analysis. Each image shows a step of the depth analysis.

To analyse the behaviour of the depth sections, we obtain their semantic orientation ϑk
α,β. For that,

we obtain the semantic orientation using a decision tree with the ID3 algorithm. Figure 3 shows our
decision tree. Furthermore, Figure 2c shows an image with the nine orientations; where the patch Λα,β
is painted in orange colour if it has an orientation with a right and down view ϑ1

α,β. The patch Λα,β is

painted in yellow colour if it has an orientation with a down view ϑ2
α,β. The patch Λα,β is painted in

dark green colour if it has an orientation with a left and down view ϑ3
α,β. The patch Λα,β is painted

in red colour if it has an orientation with a right view ϑ4
α,β. The patch Λα,β is painted in blue colour

if it has an orientation with a front view ϑ5
α,β. The patch Λα,β is painted in green colour if it has an

orientation with a left view ϑ6
α,β. The patch Λα,β is painted in purple colour if it has an orientation with

a right and upward view ϑ7
α,β. The patch Λα,β is painted in brown colour if it has an orientation with

an upward view ϑ8
α,β. The patch Λα,β is painted in sky blue colour if it has an orientation with a left

and upward view ϑ9
α,β. Finally, if the patch Λα,β does not have an orientation ϑk

α,β, the patch Λα,β has
an uncertain orientation or null orientation �. The patch Λα,β is painted in black colour if it has a null
orientation �.

Figure 3. The obtained decision tree using the ID3algorithm.
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We use the Markov chain [35] to label the patch Λα,β with null orientation �. The Markov chain
analysis substitutes the patches Λα,β with a null orientation considering the orientation neighbour.
For that, we use a central patch Λα,β to analyse its connection with the orientation neighbour. Figure 4
shows a central patch Λ3,3 with a grid ∆ of 5× 5.

A stochastic matrix P describes a Markov chain Xt over a finite state space with cardinality S.
We use a right stochastic matrix that is a real square matrix, with each row summing to 1. We use Pi to
name a row of the stochastic matrix. Each of its entries pi,j is a nonnegative real number representing a
probability. In our stochastic matrix P, we consider in each row the probability that the patches with
null orientation have an orientation of a neighbour patch.

Figure 4. Example of patch Λ3,3 with a grid ∆ of 5× 5.

Considering Figure 4, our stochastic matrix P is a 3× 3 matrix. For that, in P1, we consider that
the patches with null orientation have an orientation with a left view ϑ6

α,β, P1 = {19/25, 5/25, 1/25}.
In P2, we consider that the patches with null orientation have an orientation with a front view
ϑ5

α,β, P2 = {17/25, 7/25, 1/25}. In P3, we consider that the patches with a null orientation have an

orientation with a right view ϑ4
α,β, P3 = {17/25, 5/25, 3/25}. In addition, we have three probability

vectors, one for each orientation contemplated V1 = {1, 0, 0}, V2 = {0, 1, 0} and V3 = {0, 0, 1}. Finally,
every probability vector multiplies by the stochastic matrix P. If some element of the multiplication is
greater than a threshold, the orientation of the element greater than the threshold enters central patch
Λα,β. Otherwise, the resulting vector is multiplied by the stochastic matrix P. If the image has the same
number of patches Λα,β with null orientation, the threshold is reduced. The iteration ends when the
image does not have null orientation. We use a threshold = 1 as the initial value.

3.2. Orientation Segmentation

The orientation segmentation segments the image Dε into sections with similar orientation patches.
The orientations ϑk

α,β of patches Λα,β are connected to each other; where an orientation session ωm is

a set of patches Λα,β with similar orientation ϑk
α,β and connected to each other ωm = {ϑk

a,u, ..., ϑk
e,o},

ωm ∈ ∆, m denotes the mth orientation session ωm, (a, e) are abscissas of the grid ∆ and (u, o) are
ordinates of the grid ∆.

The orientation session ωm has the following properties:
(1) Patches’ connection: ϑk

a,u and ϑk
e,o are connected if there is a patch sequence with

similar orientation.
(2) Disjoint region: ωi and ω j are disjoint regions if ωi ∩ω j = � for all i = {1, ..., w}; where i 6= j,

w is the number of regions in image Dε , � is the null set and {ωi, ω j} ∈ Dε.
(3) Segmented region: P(ωm) = TRUE if all pixels in ωm are of a similar orientation detected by

our decision tree Figure 3, where P(ωm) is a logical predicate defined over the points in set ωm and �.
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3.3. Graph Analysis

The proposed model uses an undirected network G = (N, A), consisting of a finite set of nodes
N = { 1, 2, 3, . . . , n } and a set of undirected edges A = {(i, j) : i, j ∈ N, i 6= j} joining pairs of nodes
in N. For all edges (i, j) ∈ A, let there be one nonnegative weight denoted by ci,j [36]. We consider
the orientation session ωm on depth image Dε the nodes of our graph analysis. Furthermore, the
connection between two sessions ωm is represented with an edge. We refer to ci,j as the number of
connected pixels between two sessions ωm. Considering the edges (the different connections between
two sessions ωm), the graph analysis locates sections with possible polyhedrons (cube, half cube and
rectangular parallelepipeds) (see Figure 7).

Furthermore, each section with a polyhedron is saved in an image, removing the sky and floor.
The graph analysis analyses the area of the polyhedron section and classifies the polyhedron on a cube,
a half cube, a horizontal rectangular parallelepiped or a vertical rectangular parallelepiped. Finally,
the depth of the polyhedron section is provided to one of the four CNN, where every CNN provides
the coordinate (x,y,z) vertices of one HLS.

3.4. CNN for HLS Extraction

Our network aims to provide the coordinate (x,y,z) vertices of HLS from a given depth map.
The depth map is obtained from the mentioned graph analysis. The proposed network accepts as
input a depth map with a size of 240 × 320 pixels. In addition, our network contains two stages.
The first stage consists of 7 convolutional, 7 batch normalization and 4 max pooling layers, which
extract feature maps with different resolutions from the input image. This stage is the backbone of
the network since the extracted features are shared in the second stage. The second stage consists
of combining all the found local features of the previous convolutional layers. For that, we use a
flatten layer and batch normalization. Finally, we use dense layers to obtain the coordinate (x,y,z)
vertices of HLS. Figure 5 shows the architecture of our CNN for HLS extraction. In addition, we have
four architectures of our CNN, and every CNN extracts one structure (cube, half cube, horizontal
rectangular parallelepiped or vertical rectangular parallelepiped). To know what CNN has to be
used, we use graph analysis (see Section 3.3). The 3D models of the HLS extraction (see Figure 9e) are
obtained plotting the coordinates (x,y,z) in Matlab.

Figure 5. The architecture of our CNN for HLS extraction.

4. Discussion and Results

In this section, we present the discussion and results of the proposed HLS extraction.
These discussion and results are the integration of the proposed depth analysis to remove uncertain
depth sections, a new graph analysis to locate possible 3D shapes and a new CNN architecture that
predicts HLS. We evaluated our approach on our simulated dataset and two datasets that provide
different urbanized scenes: Make3D [15,37] and KITTI [38]. Quantitative evaluation was performed



Sensors 2019, 19, 563 9 of 18

using comparisons of our depth and ground-truth depth. Furthermore, we evaluated our segmentation
orientation using pixel comparisons with the ground-truth. Finally, we used the simulated dataset to
evaluate our HLS extraction.

4.1. Depth Evaluation

We compared our depth post-processing analysis with baseline methods. We evaluated it on
two popular datasets, which are available online: Make3D dataset [15,37] and the KITTI dataset [38].
To provide quantitative results, we used two measures: the root mean squared error (rms), Equation (5),
and average log10 error (log10), Equation (6); where dgt

p and dp are the ground-truth and predicted
depths respectively at the pixel indexed by p and T is the total number of pixels in all of the
evaluated images.

rms =

√
1
T ∑

p
(dgt

p − dp)2 (5)

log10 =
1
T ∑

p

∣∣∣log10 dgt
p − log10 dp

∣∣∣ (6)

Our post-processing analysis used a predicted depth. We used the depth images predicted by
DCNF-FCSP [26]. Using these depth images, we used a post-processing analysis to obtain our refined
depth. Figure 6 shows the input images, ground-truth, images predicted by DCNF-FCSP [26] and our
refined depth. We can see the qualitative results of the depth post-processing analysis (see Figure 6d).
As can be seen, our refined depth provided an HLS depth with higher sharpness, i.e., our refined
depth easily located the HLS (cubes and rectangular parallelepipeds) of the buildings. Furthermore,
in Table 1, we show quantitative comparisons concerning the state-of-the-art for the Make3D [15,37]
and KITTI datasets [38]. We can see that our depth post-processing analysis improved the results
predicted by DCNF-FCSP [26].

(a) (b) (c) (d)

Figure 6. Examples of qualitative comparisons on the Make3D dataset. Colour indicates depths (red is
far; blue is close). (a) Input image; (b) Ground-truth; (c) DCNF-FCSP [26]; (d) Our refined depth.
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Table 1. Depth estimation using the state-of-the-art and our refined depth. We compare on the Make3D
and KITTI datasets.

Make3D KITTI

Method log10 rms log10 rms

Saxena et al. [15] 0.187 - - 8.734
DCCRF [24] 0.134 12.60 - -

DCNF-FCSP [26] 0.122 14.09 0.092 7.046
ours 0.119 13.20 0.086 6.805

4.2. Segmented Orientations Evaluation

In this subsection, we use the Make3D dataset [15,37] and the KITTI dataset [38] to evaluate
our segmented orientations. However, to analyse our segmented orientations, we performed ground
truth labelling. This ground truth consists of orientation labelling. The quantitative evaluation was
performed using pixel comparisons of the obtained segmented orientations with the ground-truth.
To provide quantitative results, we used three measures (recall, precision and F-score) based on the
numbers of true positives, true negatives, false positives and false negatives. The true positives Tp
count the number of pixels whose orientation label was predicted correctly w.r.t. to the ground truth.
To count the number of true negatives Tn, we proceed as follows: suppose that we are interested in the
orientation label Down view, then all those pixels corresponding to other orientations rather than down
view, according to the ground truth, should have received any other predicted label except Down view;
if that is the case, each of these pixels are counted as true negatives. The false positives Fp correspond
to all those pixels whose orientation label is incorrect. Finally, false negatives Fn correspond to those
pixels that should have received a specific label, but the prediction did not assign it correspondingly,
for instance those portions of the image corresponding to the floor, should have received an Upward
view label for each pixel; however, if any floor pixels did not receive such a label, then those are counted
as false negatives. In terms of the measures, we carried out an analysis by each orientation label. In this
sense, we used the recall to measure the proportion of pixels whose respective orientation label was
predicted correctly regarding the total amount of pixels in the ground truth labelled with such an
orientation label, that is in simple terms, the amount of ground truth that was predicted correctly. The
precision measures the proportion of orientation labels that were predicted correctly. Finally, the F-score
helps to summarise the performance of the predictions returned by the system. In sum, we could say
that for a system with good performance, both the recall and precision should tend to one, meaning
that most of the system’s predictions tend to be correct and that such predictions tend to cover most of
the ground truth. If this is the case, then the F-score should tend to one.

recall =
Tp

Tp + Fn
(7)

precision =
Tp

Tp + Fp
(8)

F− score =
2

1
recall +

1
precision

= 2
recall ∗ precision
recall + precision

(9)

Table 2 shows the results of our different segmented orientations on the Make3D [15,37] and KITTI
datasets [38]. To provide quantitative results, we use three measures (recall, precision and F-score)
on the five principal orientations (down view, right view, front view, left view and upward view),
because the KITTI dataset notably only contains these orientations. Our segmented orientations have
on average: a recall of 0.879758, a precision of 0.908150 and an F-score of 0.892359.

We deem that our results are adequate since using our orientation segmentation, we had a recall
average of 0.879758, i.e., considering the ground-truth, we segmented 87.9% on average correctly.
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Furthermore, the results improved considering the precision, and we had a precision average of
0.908150, i.e., considering our segmented orientation, we segmented 90.8% on average correctly.
In addition, the results of all our different segmented orientations had an F-score greater than 0.85.
These results are important since the semantic orientation is an essential pre-processing step in our
HLS method.

Table 2. Semantic orientation estimation using the Make3D and KITTI datasets. To provide quantitative
results, we use three measures (Recall, Precision and F-score).

Orientation Recall Precision F-Score

Down view 0.865789 0.850642 0.858148
Right view 0.831157 0.929074 0.877392
Front view 0.933024 0.878332 0.904852
Left view 0.837613 0.962360 0.895663

Upward view 0.931210 0.920342 0.925744
Average 0.879758 0.908150 0.892359

Finally, in our method, the orientation with a front view usually invades the orientations with a
left and right view. This decreases the segmentation of the orientations with the left and right view
(decreasing its recall). On the other hand, by invading sections that do not belong to the front view,
the orientation with a front view decreases in its precision.

4.3. HLS Extraction Evaluation

We elaborated a new dataset using the Gazebo [39] simulator to evaluate the HLS extraction.
The dataset consists of 152,000 images (480 × 640 pixels) with four 3D shapes (cube, half cube,
horizontal rectangular parallelepiped and vertical rectangular parallelepiped) collected from a
simulated environment. Figure 7 shows the four 3D shapes (cube, half cube, horizontal rectangle and
vertical rectangle). We divided the dataset into two sets: the training set and the test set. The training
set had 132,000 images, i.e., 33,000 images for every 3D shape. The test set had 20,000 images, i.e.,
5000 images for every 3D shape. Therefore, there were four test sets with 5000 images and four training
sets with 33,000 images. Every set (test sets or training sets) only had one 3D shape (cube, half cube,
horizontal rectangular parallelepiped or vertical rectangular parallelepiped). For that, we created the
3D shape in the Gazebo simulator, and using Python, we rotated and moved the 3D shapes randomly.
Finally, for every rotation and random move, we saved an RGB image, a txt with the ground-truth of
depth and a txt with the ground-truth of the coordinates (x,y,z) of all vertices.

(a) (b) (c) (d)

Figure 7. 3D shapes: we used four 3D shapes (cube, half cube and rectangular parallelepipeds) to
represent the HLS extraction. (a) Cube; (b) Half cube; (c) Horizontal rectangular parallelepiped;
(d) Vertical rectangular parallelepiped.

Furthermore, we used the training set to train the CNN and a test set to evaluate the CNN.
Using depth information, the CNN provided the coordinate (x,y,z) vertices of a 3D shape. Finally,
we extracted the HLS with the coordinates of the vertices. To evaluate the HLS extraction, we compared
the coordinates of vertices predicted of the CNN with the ground-truth of the coordinates of vertices.
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For that, we used the root mean squared error (rms), Equation (5); where dp and dgt
p are the coordinates

predicted by our CNN and its ground-truth respectively at coordinates indexed by p and T is the total
number of coordinates in all the test set.

We use the architecture of our network to learn the coordinates of one HLS specifically, i.e.,
we have four CNN, and every CNN extracts one structure (cube, half cube, horizontal rectangular
parallelepiped or vertical rectangular parallelepiped). To know what CNN to use, we use graph
analysis (see Section 3.3). In Table 3, we show the HLS extraction evaluation with different training
(the images number used to train our CNN) for every structure (cube, half cube, horizontal rectangular
parallelepiped or vertical rectangular parallelepiped). As can be seen, the network gets better
generalization abilities with the increase of the images number, i.e., the CNN gets better coordinate
prediction if we increase the image number used to train. Furthermore, the coordinate prediction by
our four CNN architectures (trained with 33,000 images) had an rsm average between 0.35 and 0.36.
This shows the stability in the prediction of HLS coordinates.

In addition, to analyse the robustness of our HLS extraction method with our four CNN trained
with 33,000 images, we tested our HLS extraction method on three datasets that provided different
outdoor scenes (Make3D [15,37], KITTI [38] and our simulated images). Figures 8–10 show some
qualitative results of our HLS extraction method on the three datasets. We can see that our HLS
extraction presents a reliable 3D representation of the observed structure.

Table 3. We measured the coordinate (x,y,z) vertices of our HLS extraction with the ground-truth.
Our CNN training used different simulated element numbers in the comparison. We measured the
HLS extraction effectiveness with the root mean squared error (rms).

3D Shape Training rms (x) rms (y) rms (z) Average rms

500 0.307791 0.974300 2.344010 1.208700
5000 0.168358 0.858216 1.155927 0.727500

Cube 10,000 0.170676 0.492700 0.848051 0.503809
17,500 0.176459 0.329077 0.667617 0.391051
25,000 0.139411 0.332585 0.655419 0.375805
33,000 0.135793 0.333141 0.589185 0.352706

500 0.293828 0.987950 2.265533 1.182437
5000 0.172247 0.799870 1.161913 0.711343

Half 10,000 0.171351 0.510368 0.835438 0.505719
cube 17,500 0.166451 0.315625 0.656397 0.379491

25,000 0.145339 0.316189 0.663797 0.375108
33,000 0.136711 0.305686 0.619623 0.354006

500 0.331915 1.012385 2.452832 1.265710
5000 0.186942 0.766469 1.115302 0.689571

Horizontal 10,000 0.199112 0.663864 0.765380 0.542785
rectangle 17,500 0.165131 0.677991 0.704600 0.515907

25,000 0.164179 0.337327 0.645978 0.382494
33,000 0.154344 0.299278 0.631273 0.361631

500 0.261852 0.963921 2.263405 1.163059
5000 0.176730 0.813496 1.190372 0.726866

Vertical 10,000 0.180218 0.743857 0.637044 0.520373
rectangle 17,500 0.156088 0.701990 0.693192 0.517090

25,000 0.158378 0.321481 0.721955 0.400604
33,000 0.168115 0.303499 0.613946 0.361853
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(a) (b) (c) (d)

Figure 8. Our HLS extraction method on our simulated images. (a) Input image; (b) Orientation
segmentation; (c) Graph analysis; (d) HLS extraction.
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(a) (b) (c) (d) (e)

Figure 9. Our HLS extraction method on the Make3D dataset. (a) Input image; (b) Orientation
segmentation; (c) Graph analysis; (d) Our depth; (e) HLS extraction.
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(a) (b) (c) (d)

Figure 10. Our HLS extraction method on the KITTI dataset. (a) Input image; (b) Orientation
segmentation; (c) Graph analysis; (d) HLS extraction.

5. Conclusions

In this work, we have presented a novel method for HLS extraction from a single image.
The images processed by our method correspond to outdoors urban scenes. Our method combines
four elements: (i) we use a CNN to predict the depth for a single image; (ii) we proposed a depth
analysis to removes uncertain depth sections; (iii) we proposed a new graph analysis to segment the
depth in semantic orientations (namely: left, right, front, up, down), which enables the grouping
of sections whose connectivity could be used to infer HLS; and (iv) the connected sections are used
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as input in a new CNN architecture, proposed by us, to predict HLS in the shape of cubes and
rectangular parallelepipeds.

Regarding the experimental results, we carried out a set of evaluations to assess the classification
of the semantic orientations in the single image. These evaluations returned a recall average of 0.879758,
i.e., considering the ground-truth, we segmented the 87.9% on average correctly. Furthermore, we have
an average precision of 0.908150, i.e., considering our segmented orientation, we segmented 90.8% on
average correctly. In addition, the results of all our different segmented orientations have an F-score
greater than 0.85. We deem these results adequate since the semantic orientations are an essential
pre-processing step in our method.

We continued our evaluations to assess the performance of the CNN used to recover the 3D HLS
from joint segments detected in the single image. For this, we used a virtual environment based on
the simulator Gazebo in order to generate the ground truth for the 3D shapes observed in the single
test images. Thus, our four CNN architectures (trained with 33,000 images) obtained an rsm average
between 0.35 and 0.36. This shows the stability in the prediction of HLS coordinates. Last, but not
least, we carried out a qualitative evaluation of the whole method using three datasets with different
outdoor scenes.

The results reported in this work indicate that our methodology is feasible and promising.
We envisage that our proposed methodology can be extended to more complex polyhedral structures.
In this sense, we should highlight that our goal is not that of fine/dense 3D reconstruction, but to
generate a useful abstract representation that can be exploited in different applications ranging from
robotics to computer vision. Some concrete application examples we can think of are: occlusion
representation during navigation; semantic annotation (buildings, roads); city modelling (using HLS);
and augmented and mixed reality applications.

We differentiate our approach from other CNN-based approaches for 3D object pose estimation
in the sense that we focus on urban environments, where we aim at interpreting the scene in order to
generate abstract representations of buildings. These representations involve the use of HLS in the
shape of 3D volumetric primitives such as cubes and rectangular parallelepipeds, whose 3D position
and orientation are also estimated w.r.t. to the optical centre of the camera view corresponding to
the single image. As shown in some qualitative examples, our method enables the extraction of
such parallelepipeds, which can be placed in the same reference coordinate system, thus enabling a
high-level 3D representation of what is being observed in a single image.

Finally, we should note that our approach involves a combination of techniques based on CNN
architectures with conventional methods for classification (from the machine learning point of view)
and rule-based segmentation and data grouping, which in our opinion brings the best of the two
worlds to address the difficult problem of a single-image interpretation, which in our case was focused
on the task of extracting HLS.

Future work involves further investigation of the improvement of the CNN architectures used in
this work. There is also an open question about what steps in our method can be replaced by CNN
modules if all the modules or even if the whole problem can be solved using a single CNN architecture.
In the mean time, we consider this work and its obtained results to be the first baseline to be overcome.
We will also explore the use of more complex parallelepipeds to those used in this work, seeking to
find the trade-off between representation and usefulness for the user and/or application.
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