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Abstract: Security risks and economic losses of civil aviation caused by Foreign Object Debris (FOD)
have increased rapidly. Synthetic Aperture Radars (SARs) with high resolutions potentially have the
capability to detect FODs on the runways, but the target echo is hard to be distinguished from strong
clutter. This paper proposes a clutter-analysis-based Space-time Adaptive Processing (STAP) method
in order to obtain effective clutter suppression and moving FOD indication, under inhomogeneous
clutter background. Specifically, we first divide the radar coverage into equal scattering cells in
the rectangular coordinates system rather than the polar ones. We then measure normalized RCSs
within the X-band and employ the acquired results to modify the parameters of traditional models.
Finally, we describe the clutter expressions as responses of the scattering cells in space and time
domain to obtain the theoretical clutter covariance. Experimental results at 10 GHz show that FODs
with a reflection higher than −30 dBsm can be effectively detected by a Linear Constraint Minimum
Variance (LCMV) filter in azimuth when the noise is −60 dBm. It is also validated to indicate a
−40 dBsm target in Doppler. Our approach can obtain effective clutter suppression 60dB deeper than
the training-sample-coupled STAP under the same conditions.

Keywords: FOD; inhomogeneous clutter; IID sample decoupling; scattering cell division; STAP

1. Introduction

The background of this research is the multi-death crash of Concorde Air France in 2000, which
was caused by a piece of debris on the taxiway and evinces the need to detect Foreign Object Debris
(FOD) on runways. FODs may lacerate aircraft tires or wear engines [1] during taking off and landing.
According to statistics from Insight SRIT, the authoritative analysis company in UK, over 66% of airport
emergencies are related to FOD [2]. It has become the second most common threat to aviation security
after bird hit.

The International Civil Aviation Organization stipulates explicitly that at least four-time
inspections per day must be ensured to the runway. While manual inspection can only guarantee
safety for 1% of the flights, the automated FOD detection systems could provide nearly 100% effective
inspections for all flights [3].

In existing systems [4–7], the radar and Electro-Optical (EO) hybrid devices are most commonly
utilized. But EO sensors will be greatly weakened in inclement weathers [8,9]. In comparison, radars
can provide all-time and all-weather inspection to runways [10]. Wide band millimeter-wave radars
have high enough resolutions to detect small pieces of metal, stones, concrete or even plastics on
runways. For instance, COBRBA-220 [11], the ultra-wide-band system, could reach a resolution of
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1.8 cm. The 77 GHz FOD detection radar [12] developed under the cooperation between Japan and
France showed signal attenuation less than 0.18 dB as well as high sensitivity to −20 dBsm objects.
In recent years, performances of some other radars working around 70 GHz [13], 76.5 GHz [14],
78 GHz [15,16], 96 GHz [17], even 110 GHz [18] have been successively validated by test data in
controlled conditions (e.g., wave form, polarization, and antenna gain).

Although stationary FOD detections have been well developed by Constant False Alarm Rate
(CFAR) algorithms [19–22], the radar-based FOD surveillance is still challenged by finding debris
in different motion states (e.g., rolling small screws, wind-driven plastic bags [23,24] and invading
wildlife [1] (p. 1), especially in clutter conditions [3].

Space-time Adaptive Processing (STAP) [25,26] has been maturely utilized in Synthetic Aperture
Radar (SAR) to suppress ground clutter and indicate motive targets [27]. The same technique can
potentially be utilized to design space-time filters to detect motive FOD in strong clutter, if exact clutter
covariance estimation is obtained. STAP requires that the number of training samples [28] must have
more than double Degrees of Freedom (DOFs) and be Independent Identically Distributed (IID) with
the detected samples. However, these requirements are rarely satisfied in practice, which makes the
STAP performance limited [29].

A series of methods have been proposed to release the IID constraint, and thus to accelerate
computation and convergence. The most representative and widely used are the reduced-dimension
and the reduced-rank STAPs [30–32], which operate on the basis of matrix transformations. The
Sparse-Recovery (SR) STAP technique [33,34] has attracted great attention because it can reduce
computation significantly in the case of insufficient training samples by making utilization of clutter
sparsity in the space-time plane. By employing environment knowledge, Knowledge Aided- (KA-)
STAPs are proposed with significant superiority, prominent value, and wide prospect to radar
intellectualization. By utilizing prior information in algorithms directly, Bayesian filtering [35,36]
and data pre-whitening STAPs [37,38] are investigated but the performance is influenced by the
mismatch between prior knowledge and time-varying environment. Some other ideas have concerned
environment sensing for intelligent sample selection [39,40] to analyze rather than estimate the clutter
covariance by samples. But these STAPs demand exact backscattering coefficients and high resolution
cells, with the support of real scene topography [41,42], digital elevation model data [43], hyper-spectral
remote sensing images [44] and so on.

Based on the above analysis, we propose a clutter-analysis-based STAP for motive FOD detection
in a familiar environment, which decouple from IID training samples to estimate clutter covariance.
The prior knowledge could be easily obtained from the SAR observations, the high-resolution visible
spectrum images, or the airport construction drawings [45] (pp. 4–7).

The rest of this paper is organized as follows: in Section 2, the radar coverage is divided into
scattering cells based on the geometric model in xOy coordinates. In Section 3, the space-time clutter is
deduced and addressed according to the parameter-modified scattering model. Section 4 concerns the
filter design in the space-time domain. Experiments and discussions are overviewed in Section 5 that
support the conclusions drawn in Section 6.

2. Scattering Cells

A novel scattering cell division method is introduced in this section as the foundation of clutter
analysis. The geometric model of an airport is constructed at first to determine the radar covering area.
Note that the polar coordinates are not applicable in this case. Therefore, we divide the scene into
scattering cells in xOy coordinates for exact backscattering coefficients.

2.1. Geometric Model of Scene

Federal Aviation Administration has regulated FOD detection systems referring to installation,
operation, maintenance, and renewal. Most equipment should be operated at a distance of greater than
50 m away from the runway and taxiway [41] and with a height of less than the safety limit (usually
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two meters) [41,45]. Below is the model depicting the geometrical relationships between the SAR and
the scene.

As depicted in Figure 1a, the rectangular coordinates are better suited to the straight runway,
where the origin is at the location of the platform and x axis is parallel to the runway. The side looking
SAR, equipped with a Uniform Linear Array (ULA), is deployed on a platform L1 away from the
L2-width runway and travels at a velocity of νplat towards the positive direction of the x axis. Note
that the maximum radar range is much larger than the platform height h, which causes a very small
grazing angle ψ.Sensors 2019, 18, x FOR PEER REVIEW  3 of 17 
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Figure 1. (a) Geometrical model of foreign object debris (FOD) detection; (b) The vertical view of (a). 
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Figure 1. (a) Geometrical model of foreign object debris (FOD) detection; (b) The vertical view of (a).

To simplify the analysis, we suppose that the radiation energy is concentrated within the main
beam whose width is θB in azimuth and α in elevation. The orange area in Figure 1b highlights the
area covered by the SAR beam. It could be divided into two semi-ellipses sharing the same short axis
b, but they have different long axes denoted by a1 and a2. With the beam scanning, the coordinates
could be transformed from xOy to x’Oy’ by θ between the beam and x axis:{

x′ = x cos θ + y sin θ

y′ = y cos θ + x sin θ
(1)

The center (x0’, 0) is expressed as following:
(x′−x0

′)2

a1
2 + y′2

b2 = 1, x′ ≤ h
tan ψ

(x′−x0
′)2

a2
2 + y′2

b2 = 1, x′ > h
tan ψ

(2)

a1, a2, b and x0’ are given in Equation (3).
a1 = h

tan ψ −
h

tan (ψ+α/2) ≈
h
ψ −

h
ψ+α/2

a2 = h
tan (ψ−α/2) −

h
tan ψ ≈

h
ψ−α/2 −

h
ψ

b = h tan (θB/2)/ sin ψ

x0
′ = h/ tan ψ ≈ h/ψ

(3)
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where ψ is extremely narrow, which makes the approximate equality relations hold. Combining all of
the above, Equation (2) is rewritten as

(x cos θ+y sin θ−h/ψ)2

[h/ψ−h/(ψ+α/2)]2
+ (y cos θ−x sin θ)2

[h tan (θB/2)/ψ]2
= 1, x cos θ + y sin θ ≤ h/ψ

(x cos θ+y sin θ−h/ψ)2

[h/(ψ−α/2)−h/ψ]2
+ (y cos θ−x sin θ)2

[h tan (θB/2)/ψ]2
= 1, x cos θ + y sin θ > h/ψ

(4)

Equation (4) defines the area where clutter is generated, acting as the foundation of the following
analysis. Without loss of generality, we focus on θ = π/2 to analyze for more simple expressions.

2.2. Scattering Cell Dividing

Traditional STAPs perform well only in a homogeneous clutter background [44,46] and are usually
investigated in polar coordinates. However, various terrains sharing the same range may result in
different distributed clutter in airports. In this case, clutter covariance estimation by training samples
will be not reliable.

Ground clutter is reflected by the statistical echoes of resolution cells, thus the cell area and
backscattering coefficients are both required to calculate the RCS. The common range-azimuth dividing
is depicted in Figure 2. The resolutions represented by ∆R and ∆θ can be obtained according to the
parameters of the transmitting wave. But those cells at the border between different scattering surfaces,
such as runways and lawns, are hard to provide exact backscattering coefficients for clutter analysis.
Therefore, we consider discussing the xOy system by dividing the radar covering area into several
equal grids, which is expected to be more applicable to the straight runways.
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Figure 2. Dividing the scene into resolution cells in polar system.

As is shown in Figure 3, we assume the beam exists in the dashed square. We divide the radar
coverage into M equal stripes. The width of each stripe is ∆y = (Rmax − Rmin)/M. Each stripe
contains 2L grids sized ∆x× ∆y. Thus, every stripe is 2L∆x in length. We define the grid centers as
(xc(l), yc(m),), where l = −L, · · · , 0, · · · , L, m = 1, · · · , M. Notice that the cell area ∆S(l, m) = ∆x∆y
is independent of l and m. These grids are defined as the clutter scattering cells in this paper. We
consider that each cell is isotropic where the backscatter coefficient keeps constant.
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Figure 3. Dividing the radar coverage into several grids sized ∆x× ∆y.

3. Ground Clutter Deduction

According to the electromagnetic scattering theory, the ground clutter can be reasonably modeled
by considering all scattering cells even in inhomogeneous clutter environments. In this section, first
the classical Kulemin model is modified for low-grazing backscatter coefficients by the measured
normalized RCS data in X-band and then the space-time coupled clutter is further deduced and
investigated specifically for analysis and synthesis purposes.

3.1. Test-based Kulemin Model

At extremely narrow grazing angles (less than 5 degrees), the backscattering coefficient (RCS per
unit area) acquirement is a problem in practical cases since the ground-clutter echo is hardly collected
by the antennas. A series of empirical models covering almost 0–90 degrees are presented to depict the
clutter statistics characteristic. Among them, the Kulemin model shows applicability at 3–100 GHz and
low grazing angles less than 30 degrees, containing only three parameters determined by averaging
the experiment data under several surface conditions (including humidity, roughness and vegetation
types) [47] (pp. 17–20). Thus, it is usually preferred for simple expression and wide range applications
to achieve backscattering coefficients of the concrete runways and surrounding lawns as a preliminary
clutter estimation. The model is given in detail as [41]

ξ0(dB) = A1 + A2log(ψ/20) + A3log( fc/10) (5)

where the carrier frequency fc and the grazing angle ψ are evaluated in GHz and degree respectively.
However, the echo is too small to be statistically significant when ψ is very close to zero, which is
seldom taken into consideration. Obtained by generalization of different cases, A1 to A3 are chosen
according to Table 1:

Table 1. Parameter choices of Kulemin model [41,47].

Surface Type Concrete Runway Lawn (Height ≤ 0.5 m)

Parameter A1 A2 A3 A1 A2 A3
Value −49 32 20 −21 10 6

Based on the experimental evidence, this model could describe the statistical trend of ξ0 ideally
but hardly complete accurate clutter modeling in certain conditions.

Even with a lack of measuring data at small grazing, test results in higher elevation cases have
the potential to modify A1 to A3 by LS fitting (the derivation and calculation details are given in
Appendix A), so as to approach the low-grazing situations. More specifically, the low-grazing ξ0 could
be directly calculated when fc is put into the modified model.

The measuring data have been gathered in our labs. Figure 4a shows the experimental set-up.
The typical ground samples (see Figure 4b,c), located on a uniformly rotating holder, are produced into
round shapes to minimize the effect of sample configurations. The grazing angle is controlled by an
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antenna scanning along the arc rail and the azimuth is determined with the holder rotating. Measured
RCS data is collected in different azimuth under a certain grazing angle. In addition, sync pulses are
employed to synchronize continuous wave transmission and data acquisition.
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Figure 4. (a) The schematic diagram of measurement set-up; (b) the grass sample; (c) the
concrete sample.

The diagram in Figure 5 explains the measured data processing procedures, mainly involving
background cancellation, transformation between near and far-field, as well as calibration. In detail,
a standard metal ball with known RCS value has been used as the calibration body in the external
calibration experiment at first. Considering the experiment space, the samples are measured at near
field. The dotted-line box indicates the echoes received by antenna. Through background cancellation,
the echo power is improved by a space filter, and converted to far-field with the support of antenna
pattern and position compensation data. The measured sample RCSs are gathered in different azimuth
angles and normalized by employing the calibration factor of the standard body. Hence normalized
RCSs are obtained by averaging these data in different measuring conditions, which is equal to the
backscatter coefficients in numeral.
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3.2. Space-time Coupled Clutter

With the SAR travelling at vplat speed, the Doppler ranges from − fd max to fd max with the relative
motions between scene and radar, where fd max = 2vplat/λ (λ represents the wave length). In another
word, the frequency band of ground clutter spreads to 2 fd max wide [46,48]. It is reflected by the ground
clutter distributing across the space-time domain, which is known as space-time coupling. Referring
to Section 2.1, we deduce the space frequency fsc and Doppler fdc of ground clutter in rectangular
coordinates as

fsc(l, m) = (d/λ)

[
xc(l)/

√
xc(l)

2 + yc(m)2 + h2
]

fdc(l, m) =
(

2vplatTr/λ
)[

xc(l)/
√

xc(l)
2 + yc(m)2 + h2

] (6)
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where Tr is the Pulse Repetition Interval (PRI) and d denotes the element spacing in ULA.
Drawing on the traditional STAPs, β = 2vplatTr/d is employed to describe the linearity between

fsc and fdc given as fdc(l, m) = β fsc(l, m) when θ = π/2 [49] (pp. 17–19). In case of N elements and K
pulses in a Coherent Process Interval (CPI), ground clutter in each cell is

cn,k(l, m) = ρck(l, m) exp {2π j[n fsc(l, m) + k fdc(l, m)]},
n = 1, · · · , N, k = 1, · · · , K

(7)

ρck(l, m) satisfies ξc(l, m) = E{|ρck(l, m)|2} where ξc(l, m) = ξ0(l, m)∆S(l, m) is introduced
to account the clutter intensity. Obviously, ξc(l, m) is almost decided by ξ0(l, m) in the cell at
(xc(l), yc(m)). Hence the steering vectors are expressed as

vsc = {exp [2π j fsc(l, m)], · · · , exp [2πNj fsc(l, m)]}T

vdc = {exp [2π j fdc (l, m)], · · · , exp [2πKj fdc(l, m)]}T (8)

Referring to Section 2.2, we define the clutter in each cell as c(l, m)NK×1

c(l, m) = [c1,1(l, m), · · · , c1,K(l, m), · · · , cn,K(l, m), · · · , cN,K(l, m)]T (9)

which could also be expressed in the form of a Kronecker product:

c(l, m) = ρck(l, m)[vsc(l, m)⊗ vdc(l, m)] (10)

In practical operation, the clutter covariance matrix could be estimated by

^
Rc =

1
LM

M

∑
m=1

L

∑
l=1

c(l, m)cH(l, m) (11)

to approach Rc = E
[
CCH] where

C =

 c(1, 1) · · · c(1, M)
...

. . .
...

c(L, 1) · · · c(L, M)

 (12)

We notice that the estimation decouples from the IID training samples. In other words, it focuses

on modelling the clutter with the aid of topography knowledge of runways to obtain reliable
^
Rc, which

offers an unprecedented idea as the preliminary of STAP.

4. Clutter-Analysis-Based STAP

Clutter is required to be suppressed in the space-time domain by effective filtering. Traditional
STAPs perform well under homogeneous clutter background by estimating clutter covariance from
real echo directly. Notice that clutter echo from some range gates, which contains only one isotropic
scattering surface (as Figure 2 depicts), is considered homogeneous, thus enough IID training samples
could be gathered. Scattering cell division is not required considering the increasing computation.
As for those range gates involving both lawn and concrete runways, we utilize the presented STAP

to achieve exact
^
Rc for effective filter weight solution, considering the limited performance of some

previous methods. Two approaches could be selected according to practical clutter cases, combining
the characteristics and advantages of them.

According to all discussion above, the flow chart shows the processing steps involving the
proposed STAP as well as traditional method for FOD detection:
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See Figure 6, the clutter properties (homogeneous or not) could be known according to the
corresponding range gates. To the homogeneous clutter echo, generated by lawn surface only,
we employ traditional STAPs to estimate clutter covariance matrix from real IID samples directly
(indicated by the green blocks in the flow diagram). Aided by the scene knowledge and a
parameter-modified scattering model, we utilize the clutter-estimation-based STAP for effective
suppression to the non-homogeneous clutter at those range gates involving runways and lawns,
through scene-knowledge-aided division of scattering cells in xOy coordinates, transformation to
polar coordinates (illustrated by pink), back-scattering coefficient acquirement based on the known

grazing angles, and clutter echo deduction with the antenna pattern G, and
^
Rc estimation, as

depicted by the blue blocks. Note that the dotted arrow in the figure implies the proposed STAP
is real-clutter-decoupling.
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Figure 6. The flow diagram of traditional and proposed Space-time Adaptive Processing
(STAPs) application.

Before solving the filter weight, the space-time coupled echoes of FOD items are first deduced.
For general analysis, we consider all possible targets as one or more scattering points. Taking a point
target moving at vFOD in radial direction in the cell at (xt, yt) as the example, the space frequency and
Doppler are written as

fst = (d/λ)
(

xt/
√

xt2 + yt2 + h2
)

fdt =
(

2vplatTr/λ
)(

xt/
√

xt2 + yt2 + h2
)
+ 2vFODTr/λ

(13)

vst and vdt in space and time domains are expressed as [49]

vst = [exp(2π j fst), · · · , exp(2πNj fst)]
T

vdt = [exp(2π j fdt), · · · , exp(2πKj fdt)]
T (14)

Thus, the target echo is as the following equation shows [49]

st =
√

ξt(vst ⊗ vdt) = ρt(vst ⊗ vdt) (15)

in the condition that the scattering intensity ξt and the amplitude ρt satisfies ρt =
√

ξt. The optimal
weight vector obeying Linearly Constrained Minimum Variance (LCMV) is:

wopt = µ{E[(st + c + n)(st + c + n)H]}−1
(vst ⊗ vdt) = µ(Rs + Rc + Rn)

−1(vst⊗vdt) = µRx
−1(vst ⊗ vdt)= µRx

−1vt (16)

which is known as the Wiener solution where µ = (vt
HRx

−1vt)
−1 [50]. Rx

′ = Rx − Rs is preferable
than Rx in practice to avoid signal cancellation [49] (pp. 22,23). Thus, the target Doppler and azimuth

are both acquired according to ˆwopt =µ(Rs +
^
Rc + Rn)

−1

(vst ⊗ vdt).
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5. Experiments and Discussion

To evaluate the models, deductions, and conclusions above, experiments are presented according
to the data setting in Section 5.1. The simulation results of the scattering cell division, the fitting results
of Kulemin model, the MV spectrum of clutter, as well as the LCMV space-time filter are discussed in
Section 5.2.

5.1. Dataset

As is presented in Figure 4, the grass and concrete samples are produced and measured on a
rotating holder under the conditions illustrated in Table 2. Dataset 1 is the result of the grass sample
and Dataset 2 is that of the concrete sample when the polarization is VV. The test data are displayed
in Figure 7, when the grazing angle are controlled as 5, 10, and 15 degrees. Note that Figure 7a only
shows a part of the data under −30 to 30 degrees.

Table 2. The condition setting of backscatter coefficient measurement.

Data
Number Date Rf

Frequency
Frequency

Step Azimuth Azimuth
Step

Grazing
Angle

Dataset 1 16 September 2014 10 GHz \ −180–180 deg 0.1 deg 5/10/15 deg
Dataset 2 16 December 2014 8–12 GHz 10 MHz
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Figure 7. Measured data and the statistical average values about the backscattering coefficients
from Science and Technology on Electromagnetic Scattering Laboratory (a) Dataset 1 (b) Dataset 2
( fc = 10 GHz).

The blue lines represent the data amplitude while the red dotted lines denote the average values of
different azimuth cases at certain frequencies. Hence the data would be employed to modify Kulemin
models by LS fitting. Referring to Section 3.1, the modified models at 10 GHz are firstly calculated and
expressed as the implements to analyze scattering properties in low grazing angles.

5.2. Simulations and Discussion

Table 3 provides the simulation setting:
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Table 3. Parameter setting of simulations.

Parameter Symbol Value Parameter Symbol Value

SAR

number of pulses in a
CPI K 3

number of
antenna
elements

N 4

PRI Tr 0.1 ms ULA spacing d 0.5 λ

beam width in
azimuth θB 20◦ beam width in

downwards α 2.4◦

transmit power Pt 100 mW antenna gain G 48 dBi

scale β 1 \ \ \

Scene knowledge distance R1 50 m platform height h 2 m

runway width R2 50 m \ \ \

LS fitting results based on Dataset 1 and 2 are given in Figure 8a compared with the Kulemin
models. They are considered reliable for the similar trends with the classical models. The coefficients
of concrete are at least 36 dB less than those of the grass surface when the grazing angle is very small
(≤10 degrees). Note that cos θ cos ψ also plays as the foundation of vst, vdt, vsc, and vdc, therefore we

calculate cos θ cos ψ(l, m) = xc(l)/
√

xc(l)
2 + yc(m)2 + h2 of every cell covered by the SAR in Figure 8b

to acquire the corresponding ξ0 when ∆x = ∆y = 0.5m. In this case, the grazing angles of cells increase
from −0.2006 to 0.2006 and the scattering properties are displayed in Figure 9.
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Figure 9. Scattering properties within the radar coverage, on basis of the parameter-modified models
in Figure 8a when the cell size is 0.5 m × 0.5 m.

With the side-looking SAR travelling, clutter Doppler is greatly expanded. FOD detection will
be challenged because the target is severely fuzzed in the Doppler domain. As the basis of clutter
suppression, the MV spectrum is ideal in evaluating the clutter visually and qualitatively. According
to Section 3.2, we investigate the MV spectrum of clutter and noise on the space-time plane in
Figure 10a–c when the noise power is −60 dBm, −80 dBm and −90 dBm. The ridge-shaped field
reflects fdc(l, m) = β fsc(l, m) only when θ = π/2, known as the main clutter field, indicates where the
clutter power mainly focuses. Red lines in Figure 10d–f provide the corresponding clutter suppression
when utilizing a LCMV space-time filter.
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Figure 11. Six object detections by LCMV filtering in (a) azimuth; (b) doppler under −60dBm noise environment. 
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Figure 10. The minimum variance (MV) power spectrum of clutter and noise shows space-time
coupling indicated briefly by the ridge-shaped field when the noise power is (a)−60 dBm; (b)−80 dBm;
(c) −90 dBm; the optimal response obeying linearly constrained minimum variance (LCMV) when the
noise power is (d) −60 dBm; (e) −80 dBm; and (f) −90 dBm.

Obviously, the space-time coupled clutter is significantly suppressed to nearly −70 dB, −110 dB,
and −120 dB, which is ideal referring to the corresponding red lines, which illustrate the power at
clutter ridges achieving about 40 dB, 60 dB, and 70 dB higher than that on the other field of space-time
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plane. Taking a LCMV filter as the example, it works well for the following reasons: the power of the
desired signal can be kept and the variance of the filter output is minimized as well. In fact, some
filters obeying the other criteria (e.g., MSNR, MMSE) could also reach similar performances.

Aiming at qualitative analysis, we consider the six objects at 25th 0.5 × 0.5 m cell in 97th stripe
(cos θ cos ψ = 0.164). Furthermore, we define the normalized Doppler as fdt/ fr = 0.04. Simulation
results in azimuth and Doppler are respectively given in Figure 11.
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Figure 11. Six object detections by LCMV filtering in (a) azimuth; (b) doppler under −60dBm
noise environment.

Disturbed by −60 dBm noise, the simulations in Figure 11a demonstrate that false alarms are
produced and the interference effective azimuth indication occurs when a target RCS is smaller than
−30 dBsm. Meanwhile, we have also noticed that false alarms, generated by non-homogeneous
scattering within radar coverage, exist all over the space-time plane especially in the azimuth domain.
But the space-time filtering works well to all six targets in Doppler very clearly. Theoretically, motive
objects are distinguished from the scattering cells in Doppler, which benefit the SAR system. In practical
operation, a lower false alarm rate could be obtained by setting a threshold decision coefficient
according to the characteristics and the distribution of clutter, which will be validated in future work.

In order to illustrate that the proposed method performs better than state-of-the-arts, samples
from different range gates are utilized for filtering in the space-time domain. The number of range
gates are expressed as d(Rmax − Rmin)/∆Re = 2Bd(Rmax − Rmin)/ce where d·e denotes rounding-up.
Thus, there are 439 range gates covered by the SAR according to the parameter setting in Table 3.
Figure 12 illustrated the MV spectrum brought by the error of clutter covariance matrix estimation,
employing insufficient IID echo from some range gates. As a result, traditional estimation in Figure 13
cannot provide satisfactory clutter suppression when compared with the presented STAP. Obviously,
estimation errors directly lead to unnecessary suppression on the space-time plane rather than the
main clutter field, which always manifests as decreased SCNR of the filter output.
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6. Conclusions

STAP methods for moving FOD detection deserves more attention for many compelling
advantages such as lower cost, more flexibility and higher resolution. However, the performance
of the conventional statistical STAP meets great degradation under nonhomogeneous samples
or environment. This paper proposed a clutter-analysis-based Space-time Adaptive Processing
(STAP) method in order to obtain effective clutter suppression and moving FOD indication, under
inhomogeneous clutter background. We first divided the radar coverage into equal scattering cells in
the rectangular coordinates system rather than the polar ones. We then measured normalized RCSs
within the X-band and employed the acquired results to modify the parameters of traditional models.
Finally, we described the clutter expressions as responses of the scattering cells in the space and time
domain to obtain the theoretical clutter covariance. Experimental results at 10 GHz indicated that
FODs with a reflection higher than−30 dBsm could be effectively detected by a LCMV filter in azimuth
when the noise was −60 dBm. It was also validated to indicate a −40 dBsm target in Doppler. The
approach could obtain effective clutter suppression 60 dB deeper than the training-sample-coupled
STAP under the same conditions.

Nevertheless, key problems confronted in real-world applications are presented for this STAP
technique, which include false alarm effect, influence of spatial errors, and huge computational
cost with exact cell division. Moreover, we also plan to investigate its performance under non-ideal
conditions such as the presence of SAR yaw, steering vector mismatch, and complex terrains. Therefore,
it is of great value to develop robust algorithms. We also realize that thinner item detection disturbed
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by strong interferences is the most difficult task in meeting practical demands. Future work will
include testing on an airport runway to measure practicability and accuracy.
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Appendix A

In detail, we rewrite Equation (5) at first:

ξ0(dB) = A1 + A2logψ− A2log20 + A3log fc − A3log10
= A2logψ + (A1 − A2log20 + A3log fc − A3log10) = A2x + b

(A1)

If Num measurements are taken, Equation (A1) can be expressed in the vector form as

Y = A2X + b (A2)

where Y = [ξ0
1, ξ0

2, · · · , ξ0
Num]

T is collected in case of X = [log ψ1, log ψ2, , · · · , log ψNum]
T. Notice

that b = A1 − A2log20 + A3log fc − A3log10 is constant thus b = [b, b, · · · , b]︸ ︷︷ ︸
Num

T. Two functions are

introduced as following:

Φ1(X) = [φ1(x1), φ1(x2), · · · , φ1(xNum)]
T = [1, 1, · · · , 1]︸ ︷︷ ︸

Num

T

Φ2(X) = [φ2(x1), φ2(x2), · · · , φ2(xNum)]
T = [x1, x2, · · · , xNum]

T= [log ψ1, log ψ2, , · · · , log ψNum]
T

(A3)

then calculate the inner products among these two items and Y and put them into Equation (8):{
(Φ1, Y) = (Φ1, Φ2)A2 + (Φ1, Φ1)b
(Φ2, Y) = (Φ2, Φ2)A2 + (Φ1, Φ2)b

(A4)

We express Equation (A4) in form of matrix as(
〈Φ1, Φ2〉 〈Φ1, Φ2〉
〈Φ2, Φ2〉 〈Φ1, Φ2〉

)(
A2

b

)
=

(
〈Φ1, Y〉
〈Φ2, Y〉

)
(A5)

Hence both A2 and b can be solved based on Equation (A5)(
A2

b

)
=

(
〈Φ1, Φ2〉 〈Φ1, Φ2〉
〈Φ2, Φ2〉 〈Φ1, Φ2〉

)−1(
〈Φ1, Y〉
〈Φ2, Y〉

)
(A6)

then we could acquire backscattering coefficients in low grazing angles according to the modified
model ξ0(dB) = A2logψ + b.
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