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Abstract: With the development of low-cost RGB-D (Red Green Blue-Depth) sensors, RGB-D object
recognition has attracted more and more researchers’ attention in recent years. The deep learning
technique has become popular in the field of image analysis and has achieved competitive results.
To make full use of the effective identification information in the RGB and depth images, we propose
a multi-modal deep neural network and a DS (Dempster Shafer) evidence theory based RGB-D
object recognition method. First, the RGB and depth images are preprocessed and two convolutional
neural networks are trained, respectively. Next, we perform multi-modal feature learning using
the proposed quadruplet samples based objective function to fine-tune the network parameters.
Then, two probability classification results are obtained using two sigmoid SVMs (Support Vector
Machines) with the learned RGB and depth features. Finally, the DS evidence theory based decision
fusion method is used for integrating the two classification results. Compared with other RGB-D
object recognition methods, our proposed method adopts two fusion strategies: Multi-modal feature
learning and DS decision fusion. Both the discriminative information of each modality and the
correlation information between the two modalities are exploited. Extensive experimental results
have validated the effectiveness of the proposed method.

Keywords: RGB-D object recognition; deep neural network; multi-modal learning; DS evidence theory

1. Introduction

Object recognition is one of the fundamental problems in the fields of computer vision and
robotics. Until now, many methods have been proposed for object recognition, but most of them
are based on the RGB (Red Green Blue) image. However, the RGB image can only reflect the color,
illumination, and texture information of the scene, and the depth information of the scene is lost during
the optical projection process from the 3D (Three Dimensional) space to the 2D (Two Dimensional)
space. Therefore, RGB image based object recognition methods are susceptible to external factors, such
as illumination and a complex background, which significantly impede the usage of the RGB image
based object recognition methods in practical applications [1–5].

In recent years, with the development of low-cost RGB-D (Red Green Blue-Depth) sensors, such
as Microsoft Kinect and Intel RealSense, the RGB-D image has been widely used in scene analysis and
understanding, video surveillance, intelligence robot, and medical diagnosis [6,7]. The RGB-D sensor
can capture the color image and the depth image at the same time. The RGB image contains color and
appearance information, and the depth image contains the distance information between the RGB-D
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sensor and the object. Compared with RGB image, the RGB-D image can provide additional information
about the 3D geometry structure of the object, which has more effective information for object recognition.
Furthermore, the depth image is robust to variations in color and illumination. It has been proven that the
RGB-D image based object recognition method can achieve better performance than the RGB image based
object recognition method. So, the research of the RGB-D image based multi-modal object recognition
method has attracted more and more attention in the last few years [8–10].

According to the types of the features, existing RGB-D image based object recognition methods
can be divided into two categories: Hand-crafted feature based methods and learned feature based
methods. For the first category, the hand-crafted features, such as scale-invariant feature transform
(SIFT) [11], speeded up robust features (SURF) [12], and spin images [13,14], are extracted to describe
the RGB and depth images, respectively, and then they are fed into the classifiers, such as SVMs
(Support Vector Machines), for classification. The performance of this kind of method is influenced
by the selected hand-crafted features. The hand-crafted features often need to be manually tuned for
different conditions, and they cannot capture all the useful discriminative information of different
classes of objects. For the second category, the features are learned from the RGB and depth images,
and then the classifiers are used for classification. This kind of method performs better, but it still does
not make full use of the effective information contained in the RGB-D images. Most existing methods
usually learn separately from the RGB and depth images, and the two kinds of features are simply
combined for recognition [15,16]. So how to make full use of the relationship of the RGB features and
the depth features is still a key problem to be solved in the field of RGB-D object recognition.

The DS (Dempster Shafer) evidence theory is a useful uncertain reasoning method for multi-sensor
information fusion [17,18]. It can be regarded as a generalization of the Bayes theory of subjective
probability, which can grasp the uncertainty of the problem and performs better than the traditional
probability theory. The DS evidence theory has been successfully used in pattern recognition,
expert system, fault diagnosis, and information fusion [19,20]. In this paper, two SVM classifiers
are used for RGB modality and depth modality, and we use the DS evidence theory to fuse the
decisions of two classifiers. Compared with the weighted fusion method, the DS evidence theory
based decision fusion method considers the effects of different decisions for different classes by using
the mass function, which can give more reasonable recognition results.

In this paper, we focus on a multi-modal deep neural network and DS evidence theory based
RGB-D object recognition methods. First, the RGB and depth images are preprocessed and three
channel images of them are obtained as the inputs of each convolutional neural network (CNN).
Second, the RGB CNN and the depth CNN are trained using the stochastic gradient descent (SGD)
method with back-propagation. Then, the multi-modal feature learning network is trained to fine-tune
the network parameters, where the objective function includes both the discriminative terms and the
correlation term. Finally, we construct two support vector machine (SVM) classifiers for each modality,
and the DS evidence theory is used to fuse the two decision results. To summarize, the contributions
of this paper include:

• The CNN based multi-modal deep neural network is built for learning RGB features and depth
features. The training of the proposed multi-modal network has two stages. First, the RGB CNN
and the depth CNN are trained, respectively. Then, the multi-modal feature learning network is
trained to fine-tune the network parameters;

• we propose a quadruplet samples based objective function for each modality, which can learn the
discriminative feature more effectively. Furthermore, we propose a comprehensive multi-modal
objective function, which includes two discriminative terms and one correlation term; and

• for each modality, an effective weighted trust degree is designed according to the probability
outputs of the two SVMs and the learned features. Then, the total trust degree can be computed
using the Dempster rule of combination for object recognition.
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The rest of this paper is organized as follows. Section 2 provides a brief overview of the related
work. Section 3 introduces the proposed RGB-D based object recognition method in detail, including
RGB-D image preprocessing, the architecture, and the learning method of the proposed multi-modal
feature learning method and the DS evidence theory based RGB-D object recognition method. Section 4
reports the experimental results and the detailed comparable analysis. Finally, conclusions are provided
in Section 5.

2. Related Work

Remarkable efforts have been investigated to explore RGB-D image based object recognition
in recent years. Earlier works mainly focus on hand-crafted feature based methods. For example,
Lai et al. used spin images for depth images and SIFT descriptors for RGB images [21]. At first, the spin
images of the sampled 3D points were computed, and then the efficient match kernel (EMK) features
were obtained to describe the entire shape. Then, the SIFT descriptors were extracted and their
corresponding EMK features were computed. Additionally, the texton histograms were also extracted
to capture texture information. Finally, three state-of-the-art classifiers, including the linear support
vector machine (LinSVM), Gaussian kernel support vector machine (kSVM), and random forest
(RF), were used for recognition. Bo et al. proposed five depth kernel descriptors (gradient kernel,
spin kernel, size kernel, kernel principal component analysis (PCA), and local binary pattern kernel) to
capture different recognition cues, including size, shape, and edges, which can significantly improve
the performance of RGB-D object recognition [22]. Yu et al. proposed a kind of continuous local
descriptor called local flux feature (LFF), which can be used for both an RGB image and depth
image [23]. Then, the structure preserving projection (SPP) was used to fuse RGB information and
depth information, and a novel binary local representation was obtained for RGB-D data. Logoglu et al.
proposed two spatially enhanced local 3D descriptors: Histograms of spatial concentric surflet-pairs
(SPAIR) and colored SPAIR (CoSPAIR) [24]. The CoSPAIR descriptor contains both shape information
and color information, and it performs well in RGB-D object recognition. In summary, the hand-crafted
features were designed according to part characteristics of the objects, and they cannot satisfy the
needs of the RGB-D object recognition of a large-scale dataset.

Compared with the hand-crafted feature based methods, the learned feature based methods have
achieved better performance and have attracted more and more researchers’ attentions. For example,
Bo et al. proposed a feature learning method for RGB-D based object recognition by making hierarchical
matching pursuit (HMP) for color and depth images [25]. HMP uses sparse coding to learn hierarchical
feature representations from raw RGB-D data in an unsupervised way. Blum et al. proposed a new
learned local feature descriptor for RGB-D images, called the convolutional k-means descriptor [26].
It automatically learns feature responses in the neighborhood of detected interest points and is able
to combine color information and depth information into one concise representation. Asif et al.
proposed a bag-of-words (BOW) based feature learning method for RGB-D object recognition [27].
The randomized clustering trees were used to learn visual vocabularies, and the standard spatial
pooling strategies were used for feature representation. Huang et al. proposed a discriminative
cross-domain dictionary learning based RGB-D object recognition framework, which learns a domain
adaptive dictionary pair and classifier parameters in the data representation level and classification
level, respectively [28]. Li et al. proposed an effective multi-modal local receptive field extreme
learning machine (MM-ELM-LRF) structure for RGB-D object recognition [29]. The extreme learning
machine (ELM) was used as a supervised feature classifier for the final decision, and the proposed
MM-ELM-LRF method maintains ELM’s advantages of training efficiency. In general, most of the
above learned feature based methods learn features from the color images and the depth images
separately. Thus, the correlation information between the two modalities has not been fully exploited.

Recently, deep learning has become extremely popular and has been successfully applied in
RGB-D object recognition. Socher et al. proposed a model based on a combination of convolutional and
recursive neural networks (CNN and RNN) for learning features and classifying RGB-D images [30].
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The CNN layer learns low level features, and the RNN layer composes higher order features. Wang et al.
proposed a general CNN based multi-modal learning method for RGB-D object recognition, which can
simultaneously learn transformation matrices for two modalities with a large margin criterion and a
maximal cross-modality correlation criterion [31]. Rahman et al. proposed a three-stream multi-modal
CNNs based deep network architecture for RGB-D object recognition [32]. The three streams include
surface normal, color jet, and RGB channel. Tang et al. proposed a canonical correlation analysis (CCA)
based multi-view convolutional neural networks for RGB-D object recognition, which can effectively
identify the associations between different perspectives of the same shaped model [33]. Zia et al.
proposed a hybrid 2D/3D convolutional neural network for RGB-D object recognition, which can be
initialized with pretrained 2D CNN and can be trained over a relatively small RGB-D dataset [34].
Bai et al. proposed a subset based deep learning method for RGB-D object recognition [9]. At first,
the raw dataset was divided into some subsets according to their shapes and colors. Then, two sparse
auto-encoders were trained for each subset, and the recursive neural network was used to learn robust
hierarchical feature representations. Finally, the learned features were sent to a softmax classifier for
object recognition. Although the above methods have achieved good performance, learning effective
discriminative information from the RGB-D images is also a problem worthy of further research.

Furthermore, there are many good performing methods in the RGB-D tracking literature,
which are introduced to fuse color and depth channels. Song et al. proposed an RGB-D histogram of
oriented gradients (HOG) feature based method for RGB-D tracking [35]. The RGB-D HOG features
can describe local textures as well as 3D shapes. Furthermore, they also proposed the second tracking
method [35], which is based on the 3D point cloud. They designed the point cloud feature to capture
the color and shape of cells of 3D points. Both methods used sliding window detection with linear
SVM, and the 2D optical flow method and 3D iterative closest point (ICP) method were adopted for
point tracking. Meshgi et al. proposed an occlusion aware particle filter tracker based on RGB-D
images [36], which employs a probabilistic model with a latent variable representing an occlusion
flag. The probabilistic framework accommodates the adaptive fusion of the features extracted from
RGB and depth images. Camplani et al. proposed a real-time RGB-D tracking with depth scaling
kernelised correlation filters and occlusion handling [37]. They fused color and depth cues as the
tracker’s features by evaluating a variety of feature combination strategies.

3. Proposed Method

As shown in Figure 1, our proposed RGB-D object recognition method has three pipelines.
The red pipeline and the green pipeline are used for training the CNNs, and the green pipeline is
used for testing. In the training stage, the RGB image and the depth image are first preprocessed to
reduce noises, and they are rescaled to the normalized size. Next, we compute three channels of the
depth image using the HHA encoding method [38–42], where the HHA code refers to the horizontal
disparity, height above ground, and angle with gravity. The red pipeline is used to train each CNN,
respectively, and the trained network parameters of the two CNNs are used as the initial parameters of
the following multi-modal feature learning. Then, we use the green pipeline to perform multi-modal
feature learning using the two CNNs. Through multi-modal learning, the parameters of the two CNNs
can be optimized according to both the correlation information between the two modalities and the
discriminative information in each modality. In the testing stage, we use the blue pipeline for RGB-D
object recognition. The optimized parameters of the two CNNs are used for computing the RGB
features and the depth features. After the learned RGB and depth features of the testing sample have
been computed, two SVM classifiers are used for each modality. Finally, the DS evidence theory is
used to fuse the two recognition results. Figure 2 gives the architectures of the two CNNs (RGB CNN
and depth CNN), which are the same as the AlexNet [43]. Our experimental results have shown that
both the proposed multi-modal feature learning strategy and the DS fusion strategy can improve the
recognition efficiency.
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3.1. RGB-D Image Preprocessing

To meet the requirements of the two CNNs, which use the basic architecture of AlexNet, the
input RGB and depth images are first scaled to 227 × 227. The simplest way is to resize the images to
the required image size directly. However, as shown in Figure 3b–f, the direct method may deform
the object’s original ratio and geometric structure, which will influence the recognition performance.
So, we used the scaling processing method proposed in [33]. At first, we resized the origin image so
that the length of its long side becomes 227 pixels. Then, we expanded the resized image along the
short side to obtain a square image. The two sides of image expansion should be equal and the resized
image should be located in the middle of the expansion scaled image. The expansion of the images
is done by adding black pixels. Figure 3g–i shows the scaled images. Form Figure 3, we can see that
compared with the resized images, the scaled images can effectively preserve the shape information of
the objects.Sensors 2019, 19, 529 7 of 19 
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Figure 3. The results of image scaling. (a) The RGB and depth images from the “ceteal_box” class;
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class; (d) the resized images of (a); (e) the resized images of (b); (f) the resized images of (c); (g) the
scaled images of (a); (h) the scaled images of (b); (i) the scaled images of (c).

For the scaled RGB image, we can obtain its R channel image, G channel image, and B channel
image as three input images of the RGB CNN. For the scaled depth image, we first fill out its holes and
reduce noise using the median filters. Then, the HHA encoding method is used to obtain three input
images of the depth CNN. The HHA representation can encode the properties of the geocentric pose
that emphasize complementary discontinued in the image, and has been successfully used in several
RGB-D image based works [38–42].

3.2. Feature Learning Method of the Proposed Multi-Modal Network

3.2.1. The Architecture of the Proposed Multi-Modal Network

The proposed multi-modal network is designed to extract the features of the RGB and depth
images. Figure 2 illustrates the architecture of the proposed multi-modal network, which consists of
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two branches. Each branch is a CNN with the same architecture as the AlexNet [43]. The inputs of
the first branch are the three channels of the RGB images, and the inputs of the second branch are the
HHA encoding results of the depth images. The AlexNet consists of five convolutional layers and
three fully-connected layers with a final 1000-way softmax. It has about 60 million parameters and
650,000 neurons. In this paper, we only used five convolutional layers and the first two fully-connected
layers. The first convolutional layer, the second convolutional layer, and the fifth convolutional
layer are followed by max-pooling layers. The activation function of all convolutional layers and
fully-connected layers is the rectified linear unit (ReLU). The last fully-connected layer is deleted and
the second fully-connected layer is used for feature extraction. The training of the proposed network
has two stages. In the first stage, the RGB feature and the depth feature are learned separately using
their corresponding CNNs. In the second stage, the multi-modal network is fine-tuned using the
RGB and depth images. Both the discriminative information of each modality and the correlation
information between two modalities are considered in the optimization process.

3.2.2. RGB Feature Learning and Depth Feature Learning

In this paper, we first learn the RGB features and the depth features, respectively.
Here, we elaborate on the objective function for learning the RGB features, and likewise for learning
the depth features. Inspired by the deep quadruplet network proposed for learning a local feature
descriptor, we designed a novel quadruplet samples based objective function. Compared with the
triplet objective function, the quadruplet objective function is less prone to over-fitting and has a better
training efficiency [44,45]. The difference between the existing deep quadruplet network and our work
is that the deep quadruplet network has four branches. We have not adopted the four-branch network
structure and only used the concept of quadruplet in the objective function. The aim of our proposed
quadruplet objective function is to minimize intra-class distances and maximize inter-class distances.

Assume
(

xi, xj, xk, xl
)

is a sample quadruplet, which is obtained using the sampling method
proposed in Ref. [39]. Among them, the sample, xi and xj, are from the same class, and they are called
a positive sample pair. The sample, xk and xl , are from different classes, and they are called a negative
sample pair. The positive set, P, contains a number of positive sample pairs, and the negative set, N,
contains a number of negative sample pairs. For the input sample, x, let f1(x) be its output of the
second fully-connected layer of the RGB CNN, which is the learned RGB feature. Then, the quadruplet
objective function can be defined as:

min
ρ1

F1 = ∑
(i,j)∈P

h
(∥∥ f1(xi)− f1(xj)

∥∥2
2 − T1

)
+ ρ1 ∑

(k,l)∈N
h
(

T1 + τ1 − ‖ f1(xk)− f1(xl)‖2
2

)
(1)

where h is a hinge loss function, h(x) = max(0, x), and ρ1 is the weight. From Equation (1), we can
conclude that the proposed quadruplet objective function can make the distance between the positive
sample pair, (xi, xj), smaller than a given threshold, T1, and it also can make the distance between
the negative sample pair, (xk, xl), larger than a given threshold, T1 + τ1. In summary, our proposed
objective function encourages that the distances between the same-class samples to be smaller by at
least the margin, τ1, than the distances between different-class samples.

In this paper, the RGB CNN is initialized using transfer learning. The initial parameters are
obtained from pretrained AlexNet on the ImageNet large scale dataset. Then, we fine-tuned the RGB
CNN, which is trained by the SGD method with back-propagation, and the derivatives of the loss
function, F1, with respect to ρ1 f1(xi), f1(xj), f1(xk), and f1(xl) can be derived as:

∂F1

∂ρ1
= ∑

(k,l)∈N
h
(

T1 + τ1 − ‖ f1(xk)− f1(xl)‖2
2

)
(2)

∂F1

∂ f1(xi)
= 2∑

j

[
f1(xi)− f1(xj)

]
· h′
(∥∥ f1(xi)− f1(xj)

∥∥2
2 − T1

)
(3)
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∂F1

∂ f1(xj)
= −2∑

i

[
f1(xi)− f1(xj)

]
· h′
(∥∥ f1(xi)− f1(xj)

∥∥2
2 − T1

)
(4)

∂F1

∂ f1(xk)
= −2ρ1∑

l
[ f1(xk)− f1(xl)] · h′

(
T1 + τ1 − ‖ f1(xk)− f1(xl)‖2

2

)
(5)

∂F1

∂ f1(xl)
= 2ρ1∑

k
[ f1(xk)− f1(xl)] · h′

(
T1 + τ1 − ‖ f1(xk)− f1(xl)‖2

2

)
(6)

In the optimization process, the weight, ρ1, can be updated using Equation (2) and the
back-propagation is conducted using Equations (3)–(6).

For the depth CNN, it is initialized using the same initialization method as the RGB CNN.
Let f2(x) be the output of the second fully-connected layer of the sample, x, which is the learned depth
feature. Similar to the definition of the objective function of the RGB CNN, the objective function of
the depth CNN can be defined as:

min
ρ2

F2 = ∑
(i,j)∈P

h
(∥∥ f2(xi)− f2(xj)

∥∥2
2 − T2

)
+ ρ2 ∑

(k,l)∈N
h
(

T2 + τ2 − ‖ f2(xk)− f2(xl)‖2
2

)
(7)

where ρ2 is the weight, T2 and τ2 are the given threshold. Then, the derivatives of the objective function,
F2, can be derived, and the expressions of ∂F2

∂ρ2
, ∂F2

∂ f2(xi)
, ∂F2

∂ f2(xj)
, ∂F2

∂ f2(xk)
, ∂F2

∂ f2(xl)
are similar to Equations (2)–(6).

Finally, the depth CNN can be optimized using the SGD method with back propagation.

3.2.3. Multi-Modal Feature Learning

As the RGB image and depth image of the same object have some implicit relations, we exploited
the correlation information of the two modalities to extract more effective features. Inspired by the
processing method proposed in Ref. [31], we used the distances between different modalities to
construct the correlation term of the objective function. The aim of our proposed correlation term is
to maximize the inter-modality relationship of intra-class samples and minimize the inter-modality
relationship of inter-class samples. That is to say, we should minimize the distances between the RGB
feature and the depth feature of the same class and maximize the distances between the RGB feature
and the depth feature of different classes. So, the correlation term can be defined as:

Fc = ∑
(i,j)∈P

[∥∥∥ f1(xi)− f2(xj)
∥∥∥2

2
+
∥∥∥ f2(xi)− f1(xj)

∥∥∥2

2

]
−µ ∑

(k,l)∈N

[
‖ f1(xk)− f2(xl)‖2

2 + ‖ f2(xk)− f1(xl)‖2
2

]
(8)

where µ is the weight to adjust the influences of the inter-class samples and the intra-class samples.
The derivatives of the correlation term can be derived as follows:

∂Fc

∂µ
= − ∑

(k,l)∈N

[
‖ f1(xk)− f2(xl)‖2

2 + ‖ f2(xk)− f1(xl)‖2
2

]
(9)

∂Fc

∂ f1(xi)
= 2∑

j

[
f1(xi)− f2(xj)

]
(10)

∂Fc

∂ f2(xi)
= 2∑

j

[
f2(xi)− f1(xj)

]
(11)

Similar to Equations (10) and (11), the expressions of ∂Fc
∂ f1(xj)

, ∂Fc
∂ f2(xj)

, ∂Fc
∂ f1(xk)

, ∂Fc
∂ f2(xk)

, ∂Fc
∂ f1(xl)

, and
∂Fc

∂ f2(xl)
also can be derived.

Finally, we used the discriminative terms of each modality and the correlation term between the
two modalities to construct the multi-modal objective function. The objective function, F1, can be used
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as the discriminative term of the RGB modality, and the objective function, F2, can be used as the
discriminative term of the depth modality. The multi-modal objective function can be expressed as:

min
{ρ1,ρ2,µ,λ1,λ2}

F = λ
p
1 F1 + λ

p
2 F2 + βFc(µ)

subject to λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0, β > 0, p > 1
(12)

where λ1 and λ2 are the weights between the RGB modality and the depth modality, and β is the
weight between the discriminative terms and the correlation term. The parameter, p, is the relaxation
factor, which can make the discriminative term of both modalities effective [31]. Assume F1 and F2

are kept constant, if F1 is more than F2, then the solutions of λ1 and λ2 are: λ1 = 0 and λ2 = 1, which
means that only the depth modality is effective; if F1 is less than F2, then the solutions of λ1 and λ2

are: λ1 = 1 and λ2 = 0, which means that only the RGB modality is effective. For the above two
conditions, only one modality is effective and the correlation information of the two modalities cannot
be exploited, so it may fall into the local optimum. By using the relaxation factor, p, the objective
function becomes nonlinear with respect to λ1 and λ2, and each modality will give a contribution in
the optimization process. The Lagrange function can be constructed as follows:

L(λ, η) = λ
p
1 F1 + λ

p
2 F2 + βFc − η(λ1 + λ2 − 1) (13)

By setting ∂L(λ,η)
∂λ and ∂L(λ,η)

∂η to 0, λk can be updated as:

λk =
(1/Fk)

1/(p−1)

(1/F1)
1/(p−1) + (1/F2)

1/(p−1)
, k = 1, 2 (14)

In our fusion network, the discriminative terms and the correlation term of the two modalities are
back-propagated to the two CNNs. Given the optimized λk, the back-propagation can be conducted
using the following derivatives of F with respect to f1(xi) and f2(xi):

∂F
∂β

= Fc (15)

∂F
∂µ

=
∂Fc

∂µ
(16)

∂F
∂ f1(xi)

= λ
p
1

∂F1

∂ f1(xi)
+ β

∂Fc

∂ f1(xi)
(17)

∂F
∂ f2(xi)

= λ
p
2

∂F2

∂ f2(xi)
+ β

∂Fc

∂ f2(xi)
(18)

The learning steps of the proposed multi-modal neural network can be listed as follows:

1. Initialize the RGB CNN and the depth CNN with parameters from the AlexNet, which has been
pre-trained on the ImageNet large scale dataset.

2. Train the RGB CNN and the depth CNN, respectively, using the SGD method
with back-propagation. For the RGB CNN,

(1) Update ρ1 according to Equation (2).
(2) Update the parameters in the RGB CNN according to Equations (3)–(6).
(3) Repeat (1)–(2) until convergence or the maximum number of iterations is reached.

Likewise, for the depth CNN. The parameter, ρ2, and the parameters in the RGB CNN are updated
in turn.

3. Train the fusion network using the SGD method with back propagation.
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(1) Update λk according to Equation (14).
(2) Update β according to Equations (8) and (15).
(3) Update µ according to Equations (9) and (16).
(4) Update the parameters in the two CNNs according to Equations (17) and (18). Repeat

(1)–(2) until convergence or the maximum number of iterations is reached.

3.3. RGB-D Object Recognition Based on DS Evidence Theory

In this paper, we designed two SVM classifiers for the RGB modality and the depth modality, and
used the DS evidence theory to fuse the two decision results. As shown in Figure 4, for different classes,
the effective information of each modality has different proportions. Figure 4a–c are three samples
from the class “orange”, and Figure 4d–f are three samples from the class “tomato”. We can see that
the two classes of samples have different color information, but they have similar shapes. So their
RGB images are discriminative and their depth images are similar. For the recognition task of the
two classes, the RGB information is more important than the depth information. Figure 4g–i are three
samples from the class “cereal_box”, and Figure 4j–l are three samples from the class “toothpaste”.
We can see that for the same class, they have different color information and similar depth information.
So, for the above two classes, the depth images have more effective discriminative information than the
RGB images. Under this condition, the depth information is more important than the RGB information.
From the above analysis, we can conclude that for different classes, the RGB modality and the depth
modality have different contributions for recognition. It is not reasonable to weight the two SVM
outputs directly. So, we used the DS evidence theory to fuse the decisions of the SVMs.
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As the standard SVM algorithms cannot provide the posterior probability for post-processing,
we adopted the sigmoid SVM to extract probabilities from SVM outputs [46]. The method can map
the SVM outputs into probabilities by an additional sigmoid function. The class-conditional densities
between the margins can be expressed using a parametric form of a sigmoid function:

P(y = 1| f ) = 1
1 + exp(A f + B)

(19)

where as long as A < 0, the monotonicity of Equation (19) is assured. The parameters, A and B, can be
found by minimizing the negative log likelihood of the training data, which is defined as:

min−∑
i

ti log(pi) + (1− ti) log(1− pi) (20)

where pi =
1

1+exp(A fi+B) , ti =
yi+1

2 . So, for each testing sample, we can obtain c probability outputs
using the sigmoid SVM method, where c is the number of the classes.

For the RGB modality, we can obtain the probability outputs, {p(1)1 , p(2)1 , · · · , p(c)1 }, of the testing
sample, x, from the first classifier (SVM1). Then, the trust degree of the sample, x, can be defined as:

m1(x ∈ ωi) = α1 p(i)1 + α2
1

c− 1

1−
F1 − FM(i)

1
c
∑

j=1
(F1 − FM(j)

1 )

, i = 1, 2, · · · , c (21)

where α1 and α2 are weights, which satisfy α1 + α2 = 1. p(i)1 is the ith probability outputs of the
SVM1, which means the probability of x ∈ ωi. To enhance the robustness and the effectiveness of
the algorithm, we added the second item based on the RGB features. In Equation (21), F1 is the RGB
feature of the sample, x, and FMi

1 is the mean value of the RGB features of the samples from class ωi.

From Equation (21), we can conclude that the greater the value of p(i)1 is, the higher the trust degree
becomes. Similarly, the second item is also proportional to the trust degree. So, for the testing sample,
x, we can obtain c trust degrees of the RGB modality.

For the depth modality, the trust degree of the sample, x, can be defined using a similar method.
It can be expressed as:

m2(x ∈ ωi) = α1 p(i)2 + α2
1

c− 1

1−
F2 − FM(i)

2
c
∑

j=1
(F2 − FM(j)

2 )

, i = 1, 2, · · · , c (22)

where p(i)2 is the ith probability outputs of the SVM2, F2 is the depth feature of the sample, x, and FMi
2

is the mean value of the depth features of the samples from class ωi.
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Then, the total trust degree of the sample, x, can be obtained based on the Dempster rule of
combination. That is:

m(x ∈ ωk) = (m1 ⊕m2)(x ∈ ωk) =

∑
A∩B=(x∈ωk)

m1(A)m1(B)

∑
A∩B 6=Φ

m1(A)m1(B)
, i = 1, 2, · · · , c (23)

Finally, for the testing sample, x, we compared its c total trust degrees and assign it to the class
with the greatest total trust degree.

4. Experimental Results

4.1. Dataset and Implementation Details

In this paper, we used the Washington RGB-D object dataset to evaluate the proposed RGB-D
object recognition method [21]. The dataset contains 300 household objects organized into 51 categories,
which is collected using a sensing apparatus consisting of a prototype RGB-D camera manufactured
by Prime-Sense and a firewire camera from Point Grey Research. Figure 5 shows some objects of
different categories from the Washington RGB-D object dataset. Each object was captured with the
cameras mounted at three different heights from three different directions. There are in total 207,920
RGB-D images, with about 600 images per object. The object recognition experiments in this paper
are focused on category recognition. Following the experimental setting in Ref. [21], we subsampled
the images at every 5th frame and used the same 10 cross-validation splits to evaluate the proposed
method. Each split consists of roughly 35,000 training images and 7000 testing images. We averaged
10 recognition accuracies as the final results.
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In the implementation, we first trained the proposed multi-modal network. The training stage had
the following three steps: (1) Rescale the RGB images and the depth images to 227 × 227, and encode
the depth images using the HHA encoding method; (2) train the RGB CNN and the depth CNN,
respectively; (3) train the multi-modal network. Then, we validated the proposed recognition method
using the testing samples. To obtain the recognition result of each testing sample, there were three
steps: (1) Compute the RGB feature and the depth feature using the trained CNNs; (2) compute the
trust degrees of the classification result of the two SVMs according to Equation (19) and Equation
(20); (3) compute the total trust degree using Equation (21), and then we obtained the final recognition
results. The RGB CNN and the depth CNN were initialized using the trained AlexNet on the ImageNet
dataset. The weights of the CNNs were initialized using the pretrained network. The learning rate
was first set to 0.01 and updated to 0.001 with the performance growth. The batch size, N, was set to
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128. Table 1 gives 10 recognition accuracies of our proposed method using 10 cross-validation splits.
From Table 1, we can see that the 10 recognition accuracies are similar to the mean value of them,
and the variance of them is relatively small. So our proposed method is robust for different splits.
In the following experimental results of this paper, we directly give the mean and standard deviation
values of 10 recognition results.

Table 1. 10 recognition accuracies of our proposed method.

1 2 3 4 5 6 7 8 9 10 Mean Var

92.9 92.7 90.1 91.9 92.2 90.4 93.1 90.2 91.7 92.8 91.8 1.4

4.2. Comparasion with Different Baselines

To validate the effectiveness of the multi-modal feature learning strategy and the DS evidence
theory based decision fusion strategy proposed in this paper, we conducted experiments on the RGB
images and the depth images with the following five different baselines:

1. RGB CNN: Used the CNN for learning RGB features and added a softmax layer to the end of the
network for classification.

2. Depth CNN: Used the CNN for learning depth features and added a softmax layer to the end of
the network for classification.

3. RGB CNN+SVM: Only trained the RGB CNN using the RGB images, and used the SVM as
the classifier.

4. Depth CNN+SVM: Only trained the depth CNN using the depth images, and used the SVM as
the classifier.

5. RGB-D CNNs+Multi-modal learning: The RGB CNN and the depth CNN are first trained using
the RGB images and the depth CNN, respectively. Then, we performed multi-modal learning
using Equation (12). Finally, the RGB feature and the depth feature are connected directly, and
we sent the connected feature to the SVM classifier for object recognition.

6. RGB-D CNNs+DS fusion: The RGB CNN and the depth CNN were first trained, respectively.
Then, the RGB feature and the depth feature were sent to the SVMs, respectively. Finally, our DS
fusion strategy was used to fuse the two recognition results.

7. RGB-D CNNs+Multi-modal learning+DS fusion: Our proposed method.

Table 2 shows the recognition accuracy of the five baselines on the Washington RGB-D object
dataset, and we have made the score of the best method bold. From Table 2, we can see that compared
with the “RGB CNN” method and the “Depth CNN” method, the “RGB+SVM” method and the
“Depth+SVM” method performs better. So, we can conclude that the SVM classifier is better than the
CNN based classifier. These results are similar to the RCNN based object detection method proposed
in Ref. [47]. So, we adopted the SVM as the classifier in our proposed method. Compared with single
modality based methods, the latter three RGB-D image based methods perform significantly better.
This is because the identification information contained in the RGB image and the depth image has
certain complementarity. Both the multi-modal learning strategy and the DS evidence theory based
decision fusion strategy can improve the recognition performance. The recognition accuracy of the
“RGB-D CNNs+DS fusion” method is lower than the “RGB-D CNNs+Multi-modal learning” method.
So, we can conclude that our multi-modal learning strategy is more effective than our proposed
DS evidence theory based decision fusion strategy. We can extract more effective discriminative
features from the RGB-D images using our proposed multi-modal learning method. The “RGB-D
CNNs+Multi-modal learning+DS fusion” method has the best performance. However, there are
some classes, which are often misclassified. Figure 6 shows some misclassified samples of our
proposed method. From Figure 6, we can see that the misclassifications are mainly due to a similar
color and shape among samples from different classes. So, using the multi-modal learning strategy
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and the DS evidence theory based decision fusion strategy simultaneously can greatly improve the
recognition accuracy.

Table 2. Comparison of different baselines on the Washington RGB-D object dataset.

Method Accuracy (%)

RGB CNN 85.7 ± 2.3
Depth CNN 81.3 ± 2.2

RGB CNN+SVM 87.5 ± 2.1
Depth CNN+SVM 84.8 ± 2.0

RGB-D CNNs+Multi-modal learning 90.2 ± 1.8
RGB-D CNNs+ DS fusion 88.9 ± 1.9

RGB-D CNNs+Multi-modal learning+DS fusion 91.8 ± 1.4
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4.3. Comparasion with State-of-the-Art Methods

We compared the recognition accuracy of our proposed method with the following 11
state-of-the-art methods: (1) Linear SVM [21]: Spin images and SIFT descriptors are used for depth
feature extraction, and texton histograms and color histograms are used for RGB feature extraction.
The linear support vector machine is used for classification. (2) Nonlinear SVM [21]: The adopted
features are the same as those used in the “Linear SVM” method, and the Gaussian kernel SVM is
used for classification. (3) HKDES [48]: The combination of hierarchical kernel descriptors are used
for extracting the RGB and depth features, and the linear SVM is used for classification. (4) Kernel
Descriptor [22]: A set of kernel descriptors are used for feature extraction, and linear SVM is used
for classification. (5) CNN-RNN [30]: A model based on a combination of CNN and RNN is used for
learning features and classifying RGB-D images. (6) RGB-D HMP [25]: The HMP method is used to
learn hierarchical feature representations from raw RGB-D data in an unsupervised way. (7) MMSS [49]:
A CNN based multi-modal sharable and specific feature learning framework is used for RGB-D object
recognition. (8) Fus-CNN (HHA) [50]: A two-stream convolutional neural network is used for RGB-D
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feature extraction, and the HHA encoding method is used for depth images. (9) Fus-CNN (jet) [50]: A
network the same as the “Fus-CNN (HHA)” method is used for feature extraction, but the jet encoding
method is used for depth images. (10) CFK [51]: A convolutional Fisher Kernels (CFK) method is
used for recognition, which integrates the advantages of CNN and Fisher Kernel encoding (FK). (11)
MDCNN [32]: A three-stream multi-modal CNNs based deep network is used for RGB-D object
recognition, and both the surface normal and jet color are used to encode the depth images. (12)
VGGNet+3D CNN+ VGG3D [34]: The outputs for the pretrained VGGNet, the 3D CNN, and VGG3D
architectures are fused, and the concatenated feature are sent to the linear SVM for final RGB-D
object recognition.

The comparison results are illustrated in Table 3, and we have made the score of the best
method bold. It can be seen that compared with the state-of-the-art RGB-D object recognition
methods, our proposed method achieved competitive results. For RGB image based object recognition,
the “VGGNet+3D CNN+ VGG3D” method achieved the best recognition accuracy, which uses the
16-layer VGGNet to learn features from RGB images. The scale of the deep network is larger than
that of the CNN used in our proposed method, and its recognition result is slightly better than our
proposed method. For the depth image based object recognition, the “CFK” method performed best.
It first uses a CNN to learn translation ally invariant depth features, and then 3D spatial pyramids are
applied to further improve the Fisher vector representation of depth modality. Compared with our
proposed method, it can use effective spatial information for recognition. For RGB-D object recognition,
our proposed method was generally better than most of the state-of-the-art methods. The performance
of our proposed method is almost the same as that of the “VGGNet+3D CNN+ VGG3D” method, and
it is slightly surpassed by the “MDCNN” method. The “MDCNN” method use a three-stream network,
where RGB images are fed into one stream and depth images are fed into the other two streams. It uses
a joint depth encoding technique, and the depth images are encoded into two categories: Jet color and
3D surface normal. Compared with the “MDCNN” method, our proposed method only uses one kind
of depth encoding method. Furthermore, our proposed multi-modal network only has two streams,
whose size is smaller than that of the “MDCNN” method. So, our proposed network is more efficient
and more easily converges. Compared with the state-of-the-art methods, our proposed method has two
information fusion steps. First, we performed multi-modal learning to learn both the discriminative
features and the correlation features of the RGB and depth modalities. Second, we designed the DS
evidence theory based decision fusion scheme to effectively integrate the classification results of the
two SVMs. So, our proposed method can extract the effective information form the RGB-D images by
multi-modal feature learning, and it achieved a better recognition performance without increasing the
network size.

Table 3. Comparison with state-of-the-art methods on the Washington RGB-D object dataset.

Method
Accuracy (%)

RGB Depth RGB-D

Linear SVM [21] 74.3 ± 3.3 53.1 ± 1.7 81.9 ± 2.8
kSVM [21] 74.5 ± 3.1 64.7 ± 2.2 83.8 ± 3.5

HKDES [48] 76.1 ± 2.2 75.7 ± 2.6 84.1 ± 2.2
Kernel Descriptor [22] 77.7 ± 1.9 78.8 ± 2.7 86.2 ± 2.1

CNN-RNN [30] 80.8 ± 4.2 78.9 ± 3.8 86.8 ± 3.3
RGB-D HMP [25] 82.4 ± 3.1 81.2 ± 2.3 87.5 ± 2.9

MMSS [49] 74.6 ± 2.9 75.6 ± 2.7 88.5 ± 2.2
Fus-CNN (HHA) [50] 84.1 ± 2.7 83.0 ± 2.7 91.0 ± 1.9

Fus-CNN (Jet) [50] 84.1 ± 2.7 83.8 ± 2.7 91.3 ± 1.4
CFK [51] 86.8 ± 2.2 85.8 ± 2.3 91.2 ± 1.5

MDCNN [32] 87.9 ± 2.0 85.2 ± 2.1 92.2 ± 1.3
VGGnet + 3D CNN + VGG3D [34] 88.9 ± 2.1 78.4 ± 2.4 91.8 ± 0.9

Our proposed method 87.5 ± 2.1 84.8 ± 2.0 91.8 ± 1.4
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5. Conclusions

In this paper, we presented a novel RGB-D object recognition method based on multi-modal
feature learning and the DS evidence theory. First, the RGB images and the depth images were
preprocessed, and the HHA encoding method was used for obtaining three inputs for the following
CNN. Next, two CNNs were, respectively, trained for initialization. Then, the multi-modal feature
leaning was performed using our proposed objective function. Our proposed objective function uses
the quadruplet samples to minimize intro-class distances and maximize inter-class distances, which has
better performance and robustness. Furthermore, both the discriminative information of each modality
and the correlation information between the two modalities were considered in our proposed objective
function. Finally, two sigmoid SVMs were used to obtain probabilities, and the DS evidence theory was
used for fuse the two classification results. Compared with other RGB-D object recognition method,
our proposed method uses two fusion strategies to make full use of the effective information of the
two modalities. Our extensive experimental results have shown that both the multi-modal feature
learning and the DS evidence theory based decision fusion can effectively improve the performance of
RGB-D object recognition. Compared with state-of-the-art methods, our proposed method achieved
competitive results.
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