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Abstract: A flexible electrode system entirely constituted by single-walled carbon nanotubes
(SWCNTs) has been proposed as the sensor platform for β-nicotinamide adenine dinucleotide
(NADH) detection. The performance of the device, in terms of potential at which the electrochemical
process takes place, significantly improves by electrochemical functionalization of the carbon-based
material with a molecule possessing an o-hydroquinone residue, namely caffeic acid. Both the
processes of SWCNT functionalization and NADH detection have been studied by combining
electrochemical and spectroelectrochemical experiments, in order to achieve direct evidence of the
electrode modification by the organic residues and to study the electrocatalytic activity of the resulting
material in respect to functional groups present at the electrode/solution interface. Electrochemical
measurements performed at the fixed potential of +0.30 V let us envision the possible use of the
device as an amperometric sensor for NADH detection. Spectroelectrochemistry also demonstrates
the effectiveness of the device in acting as a voltabsorptometric sensor for the detection of this same
analyte by exploiting this different transduction mechanism, potentially less prone to the possible
presence of interfering species.
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1. Introduction

β-Nicotinamide adenine dinucleotide (NADH) is the co-factor of many enzymes belonging to the
class of dehydrogenases [1,2]. For this reason, the development of an amperometric sensor for NADH
detection is the first, mandatory step for the analysis of a wide number of chemical species constituting
the substrate of NADH-dependent enzymes. Furthermore, abnormal levels of NADH in living cells
could indicate altered status of health. As an example, it was observed that NADH concentration in
malignant sites of breast tissue is significantly higher than in the non-malignant sites, whereas the
opposite occurs for malignant and normal tissues from the oral cavity [3].

Oxidation of NADH at conventional electrodes, namely glassy carbon, Pt, and Au, requires
particularly high overpotentials and induces massive passivation of the surface [4–7]. For this reason,
many materials have been developed and studied so far, aiming at realization of efficient amperometric
sensors for the detection of this analyte [8–10]. Among others, carbon nanomaterials are now attracting
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great attention; on the one hand, they can act as the catalysts for NADH oxidation [11–17] and, on the
other hand, they can allow the stable anchoring of a proper redox mediator [14,15,18]. In both cases,
the occurrence of an electrocatalytic oxidation in charge of NADH leads to considerable advantages,
first of all the possibility of obtaining the electrochemical oxidation of this species at low potential
values, possibly improving selectivity and sensitivity of the sensor system [19]. In this framework,
it is widely accepted that the o-quinone/o-hydroquinone redox couple constitutes an effective redox
mediator for NADH oxidation at an anode [8,10,20]. However, stable anchoring on an electrode surface
still constitutes an open problem.

Carbon nanotubes are nanomaterials consisting of rolled up graphene nanosheets, possessing
the typical tubular structure [14,21,22]. It is usual to distinguish between structures consisting of
single graphite sheets, named single-walled carbon nanotubes (SWCNTs), and those characterized
by coaxially wrapped nanosheets, named multi-walled carbon nanotubes (MWCNTs). They possess
an external diameter ranging between 1 and 2 nm in the case of SWCNTs and up to 100 nm for
MWCNTs, and a length in the order of the microscale. One of the most important advantages afforded
by their use in the frame of amperometric sensing is the possibility to stable anchor a high number
of molecules suitable to induce selective recognition of the target analyte in affinity biosensors or to
induce activation of effective redox mediation, in electrocatalytic (bio)sensors [11–14].

In this paper, flexible electrode systems entirely constituted by SWCNTs are proposed as the
sensor platform for NADH detection. Similar systems have been previously tested in electrochemical
and spectroelectrochemical experiments also devoted to quantitative analyses [23–27]. The crosslinking
between SWCNTs present in these devices is at the basis of the good conductivity of the film, necessary
to the use as an electrode platform. The performance of the electrode material was improved
here by functionalizing SWCNTs with catechol residues. To such a purpose, SWCNTs have been
electrochemically oxidized in strong acidic medium [20,28,29] and the resulting SWCNTox film has
been further modified by performing a voltammetric treatment in a caffeic acid (CFA) solution.
The effectiveness of the resulting SWCNTCFA surface in activating electrocatalytic processes in charge of
NADH oxidation has been ascertained by performing both electrochemical and spectroelectrochemical
experiments in absence and in presence of NADH. UV/Vis absorption spectroelectrochemistry has
demonstrated to be a very suitable technique to study electrochemical processes occurring at the
electrode surface [25–27]. These techniques also demonstrate the efficiency of SWCNTCFA in acting as
the sensitive element in optical and voltammetric sensors for NADH detection.

2. Materials and Methods

2.1. Reagents and Materials

CFA (≥98%, Sigma-Aldrich, St. Louis, MO, USA), NADH (98%, Acros Organics, Geel, Belgium),
and H2SO4 (96%, Merck, Darmstadt, Germany) were used as received. Acetate buffer solution (0.1 M,
pH = 4) was prepared with acetic acid (100%, VWR, Radnor, PA, USA) and KOH (Panreac, Barcelona,
Spain), whereas 0.1 M phosphate buffer solution (PBS, pH = 7) was prepared from sodium dihydrogen
phosphate (NaH2PO4·12H2O, VWR, Radnor, PA, USA) and disodium hydrogen phosphate (Na2HPO4,
99%, Acros Organics, Geel, Belgium). All solutions were prepared daily using ultrapure water,
obtained from a Millipore DirectQ purification system provided by Millipore (18.2 MΩ·cm resistivity
at 25 ◦C, Burlington, MA, USA). All reagents were of analytical grade and used as received, without
further purification.

SWCNTs (Sigma Aldrich, St. Louis, MO, USA), 1,2-dichloroethane (DCE, 99.8%, Acros Organics,
Geel, Belgium), polytetrafluoroethylene membranes (Teflon®, filter pore size 0.45 µm, Millipore
Omnipore, Burlington, MA, USA), polyethylene terephthalate film (PET, 175 µm thick, HiFi Industrial
Film, Stevenage, UK), silver conductive paint (Electrolube, Leicestershire, UK) for the electrical
contacts, and Kapton®tape as insulator of the electrical contacts were used to fabricate the flexible
SWCNT electrodes.
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2.2. Instrumentation

In-situ time-resolved UV/Vis absorption spectroelectrochemical experiments were performed
with a customized SPELEC instrument (Metrohm-DropSens, Llanera, Asturias, Spain) with a
halogen/deuterium lamp. DropView SPELEC software (Metrohm-DropSens, Llanera, Asturias, Spain)
was used to control the instrument, allowing us to register real-time spectra synchronized with the
electrochemical data.

An Autolab PGSTAT30 potentiostat/galvanostat (Ecochemie, Utrecht, the Netherlands) controlled
by GPES software has been used to perform amperometric measurements aimed at testing the possible
use of the device as an amperometric sensor for NADH detection.

A tip-sonicator (CY-500, Optic Ivymen System, Sabadell, Spain) was used to disperse the SWCNTs
in DCE.

2.3. Fabrication of SWCNT Flexible Electrodes

SWCNT electrodes were prepared by the filtration-press transfer methodology proposed in
previous works [24,25]. Briefly, it consists of vacuum filtering 1 mL of a SWCNT suspension in DCE
(5 mgL−1), obtained by tip-sonication, through a 0.45 µm pore size Teflon®filter. The obtained SWCNT
film was then transferred on a PET support by simply pressing the coating with the fingers. Afterwards,
the filter was dried at room temperature and separated from the PET support using tweezers, obtaining
a SWCNT film (10 mm diameter) on a flexible PET support. Silver conductive paint was deposited
and dried in an oven at 75 ◦C for 45 min to make the electrical contact. A schematic representation of
the electrode construction is reported in Figure S1 in Supplementary Materials.

2.4. Modification of SWCNT Electrodes

SWCNTs were electrochemically modified by CFA in three consecutive steps, as reported in Figure
S1 in Supplementary Materials: (1) SWCNTox was obtained by immersing SWCNT-based electrodes
in a 1 M H2SO4 solution and by performing 10 consecutive voltammetric cycles between −0.50 and
+1.70 V at 0.10 Vs−1; (2) SWCNTox was electrochemically functionalized by performing 10 successive
voltammetric cycles between −0.10 and +0.90 V at 0.02 Vs−1 in a 10−3 M CFA, 0.1 M acetate buffer
solution (pH = 4); (3) SWCNTCFA was finally obtained by performing 25 voltammetric cycles between
−0.10 and +0.60 V at 0.10 V s−1 in 0.1 M PBS (pH = 7), in order to remove the CFA molecules weekly
adsorbed on the SWCNT surface.

2.5. Amperometric Detection of NADH

Amperometric measurements on SWCNTCFA-based sensors were performed at a fixed potential
of +0.30 V, dipping the electrode in a magnetically stirred solution. The electrochemical cell was
completed, in this case, by a Pt wire counter-electrode and an Ag/AgCl/KCl 3 M reference electrode
(Amel, Milano, Italy). Aliquots of a 10−3 M NADH solution were added to a 0.1 M PBS (pH = 7),
in order to vary the concentration between 0 and 4·10−5 M. The whole calibration procedure was
repeated three times on the same SWCNTCFA electrode in order to evidence possible memory effects
and to test the repeatability of the sensor response. Furthermore, three electrodes realized under the
same conditions were used to perform calibration aiming at testing the reproducibility of the sensor
building up. Repeatability and reproducibility of the sensor response were quantified in terms of
relative standard deviation (%RSD).

2.6. UV/Vis Absorption Spectroelectrochemical Set-up and Measurement Procedures

For spectroelectrochemical measurements, the electrode preparation was completed as reported
in Figure S1 in Supplementary Materials. In particular, two naked 100 µm optical fibers (Ocean
Optics) were fixed on the borders of the electrode surface in order to perform spectroelectrochemical
measurements in the parallel configuration, as shown in Figure 1 and Figure S2 in Supplementary
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Materials). They were aligned with each other, using Kapton®tape that also simultaneously allowed
isolating the electrode’s silver contact and delimiting the geometric area or the electrode. In this cell
configuration, the light beam coming from the halogen/deuterium light source passes throughout the
first optical fiber (OF1) and arrives at the solution layer (100 µm) just adjacent to the SWCNT electrode
surface. The light beam is then directed back to the spectrometer through the second optical fiber
(OF2). This instrumental configuration allowed us to register optical variation occurring inside the
diffusion layer involved in the electrochemical process, i.e., in close proximity of the electrode surface.
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Figure 1. Schematic view of the UV/Vis absorption spectroelectrochemical set-up in parallel
configuration. WE: single-walled carbon nanotube (SWCNT) working electrode, CE: Pt counter
electrode, RE: Ag/AgCl/KCl 3 M reference electrode, OF1: Naked optical fiber that guides the light
beam from the source cell to the solution, OF2: Naked optical fiber that guides the light beam from the
solution to the spectrometer, PET: polyethylene terephthalate.

The spectroelectrochemical measurements were performed dropping 50 µL of the sample solution
onto the SWCNT electrode, acting as the working electrode (WE) of a three-electrode cell. The
sample should cover up the entire SWCNT surface and the two ends of the optical fiber fixed on it.
The electrochemical cell was completed by a home-made Ag/AgCl/KCl 3 M reference electrode (RE)
and a Pt wire counter electrode (CE).

Cyclic voltammetry (CV) combined with the simultaneous registration of the UV/Vis absorption
spectra was chosen as the technique to study the functionalization of SWCNTs and to estimate the
performance of the resulting SWCNTCFA electrodes in NADH detection. These spectroelectrochemical
experiments were performed in the parallel configuration, as shown in Figure 1, by polarizing the
electrode in 0.1 M PBS (pH = 7) in absence and in presence of NADH at concentration values increasing
up to 3·10−4 M. In particular, CV traces were recorded by scanning the potential between −0.10 and
+0.60 V at 0.02 Vs−1 potential scan rate, and by concomitantly registering the UV/Vis spectra in the
200–1000 nm range. Solutions at different NADH concentrations were tested by randomizing the order
of their analysis, aiming at evidencing possible memory effects, especially due to electrode fouling,
or detachment of the chemical functionalization. To test repeatability, three consecutive replicates of
the calibration curves were performed using the same SWCNTCFA electrode and the slopes of the
three calibration models were compared. The reproducibility was tested using three different CFA
modified electrodes, once more comparing the slope of the relevant calibration plots. Also, in this case,
repeatability and reproducibility of the sensor response were defined in terms of %RSD.

3. Results and Discussions

3.1. Spectroelectrochemical Study of Electrochemical Functionalization of SWCNT

The first step toward functionalization consists of the electrochemical oxidation of SWCNTs in a
1 M H2SO4 solution, to achieve, as suggested by the literature [29], partial breakdown of the graphitic
aromatic structure and formation of oxidized residues, namely aldehydic, ketonic, or carboxylic
groups, on SWCNTs. These residues are suitable to stably anchor redox-mediating molecules for
possible electrocatalysis.
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Figure 2a shows the typical CV response registered during the activation step of the SWCNT
electrode. At the highest applied potential, a steep and marked increase of the current intensity can be
observed, ascribable to the superficial oxidation of the SWCNT structure. Concurrently, increase of the
background current occurs scan after scan, as shown in Figure 2b, indicating progressive modification
of the electrode surface. As observed, the highest current increase was observed during the first few
scans, evidencing that SWCNT oxidation mainly takes place in this phase. From the eighth scan
onwards, the increase of the current was significantly lower, suggesting that the oxidation process
occurs to a lower and lower extent.
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Figure 2. (a) Ten consecutive cyclic voltammetry (CV) traces collected during SWCNT oxidation in 1
M H2SO4 at 0.1 Vs−1; (b) evolution of the current intensity at +0.65 V in the forward scan.

The second step of this process consists of the electrochemical modification of SWCNTox by
CFA, which occurs by carrying out 10 successive voltammetric cycles in 10−3 M CFA solution and
0.1 M acetate buffer (pH = 4). During this step, a Michael addition reaction takes place, consisting
of a nucleophilic attack afforded by the carboxylate moieties, generated on the SWCNTs during the
activation step, to the double bond in β to the carboxylic group of the CFA [20,30–32]. The pH value of
the solution has been chosen for the purpose to avoid the competition of other nucleophilic species,
such as hydroxyl ions or deprotonated carboxylic groups of CFA, with carboxylic groups of the
electrode surface in reacting with CFA molecules. On the other hand, a solution at a lower pH value
could induce protonation of the carboxylic groups in the SWCNT surface [31]. CV traces recorded in
this step, as shown in Figure S3 in Supplementary Materials, were consistent with the presence of an
electroactive species that is reversibly oxidized around +0.60 V on the SWCNTOX conducting electrode
surface. The UV-Vis spectra concomitantly recorded in the parallel configuration allow us to obtain
direct evidence of the species present inside the diffusion layer as a consequence of the electrochemical
process, as shown in Figure S4 in Supplementary Materials. During the electrode polarization toward
more positive potentials, the spectra show the decrease of an absorption band at 350 nm, typical of CFA
molecules, indicating consumption of this species at the electrode surface. At the same time, two new
bands at 260 and 410 nm, ascribable to the oxidized quinone form, increased in height; they are due
to oxidized CFA molecules not anchored to the electrode surface. Due to the reversibility of this
electrochemical process, the spectra evolved in the opposite direction in the backward potential scans.

A subsequent stabilization process was carried out in order to remove CFA weakly linked to
the SWCNTCFA electrode surface. Repeated CV scans were performed between −0.10 and +0.60 V at
0.10 Vs−1. The occurrence of the cleaning process was testified by voltammetric responses recorded
in pure electrolyte solution (0.1 M PBS solution, pH = 7) on the electrode previously modified by
CFA, as shown in Figure 3a: the anodic peak current significantly decreased during the first scans,
reaching a stable value of about 2·10−5 A after ca. 20 scans, as shown in the inset of Figure 3a.
Once this stabilization procedure was completed, the SWCNTCFA electrode was suitable to be used
for NADH detection. No significant variation of the current peak, in fact, occurred by performing
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25 further scans in conditions similar to those reported in Figure 3a, and no improvement in NADH
detection was achieved when using SWCNTCFA electrodes obtained after performing this second
stabilization procedure.
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different scans.

The spectra recorded simultaneously to CV traces in Figure 3a only show the growth of the
absorption band centered at ca. 250 nm, as shown in Figure 3b, due to the oxidized form of CFA.
This absorption dramatically increased during the first three scans, owing to desorption of poorly
stable CFA molecules from the electrode that diffused into the solution layer adjacent to it, as shown
in the inset of Figure 3b. In the following cycles, the amount of CFA species present in the diffusion
layer decreased continuously: the diffusion away from the electrode was no more compensated by
desorption from the electrode surface. This indicates that the faradaic contribution to the current
recorded at the end of this stabilization step was only due to electroactive CFA stably anchored on the
electrode surface.

3.2. Study of Electrocatalytic Efficiency of Functionalized SWCNT for NADH Oxidation

The effect of SWCNT functionalization with CFA was firstly investigated by performing CV
experiments with SWCNT, SWCNTOX, and SWCNTCFA electrodes in the pure electrolyte solution,
as shown in Figure 4a. As already outlined, electrochemical oxidation of the carbon-based surfaces in a
strongly acidic medium induces significant variation of the electrode surface, evidenced by the different
values of background current passing from the pristine to the oxidized SWCNTs. Two ill-defined pairs
of peaks ascribable to reversible electrochemical processes were observable around +0.10 and +0.20 V
in the CV curves on SWCNTOX. The latter couple was enhanced by further functionalization by CFA
molecules. On the basis of this result, we can reasonably suggest that the process of electrochemical
activation of SWCNTs induces breaking of carbon aromatic structure and formation of (poly)phenol
residues that can induce reversible redox processes, as in the case of hydroquinone and catechol.
Functionalization of the SWCNT surface by CFA molecules was confirmed by the presence of a
well-defined anodic/cathodic peak system ascribable to the o-quinone/o-hydroquinone redox couple.
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The performance of the three materials in respect to NADH oxidation is compared in Figure 4b.
As observed, the use of SWCNTox led to the remarkable anticipation of the oxidation peak. The peak
was quite broad, suggesting that it was relative to two different electrode processes at potential values
close to those observed in the voltammogram registered in the pure electrolyte. This conclusion is
supported by the electrochemical responses obtained for NADH oxidation at SWCNTCFA: strong
increase of the current peak at +0.25 V was observed, suggesting that catechol residues introduced
by functionalization with CFA were effective in inducing electrocatalytic oxidation of NADH.
In conclusion, the electrochemical results suggest that SWCNTCFA is the most suitable material to act
as the active element of sensors for NADH determination.

3.3. Use of SWCNTCFA as an Amperometric Sensor

On the basis of the previous results, the performance of SWCNTCFA has been tested for the
possible use as an amperometric sensor. To this aim, the electrode was polarized at the fixed potential
of +0.30 V, i.e., at a potential value at which the electrochemical process was limited by the mass transfer
of electroactive species to the electrode surface; the oxidation current was recorded concurrently to
subsequent increases of the NADH concentration in solution, as shown in Figure S5 in Supplementary
Materials. Calibration was replicated three times on the same electrode, using seven concentration
values in each regression, in order to test response repeatability, as shown in Figure 5. The sensor
showed a linear correlation of the current value vs. NADH concentration, with a slope 5.26·10−2

A·M−1. An R2 value of 0.9985 and a regression standard deviation (Sy/x) of 2.5·10−8 A indicate
that the model fits suitably to the experimental data. The accuracy of the calibration model was
evaluated by comparing the true values of different NADH solutions and the predicted ones, obtaining
a linear model with slope and intercept values not significantly different from 1.0 and 0.0, respectively.
This indicates that the calibration model is unbiased.
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Furthermore, the %RSD of the slope values of three regressions on the same electrode (with a
mean value of 5.35·10−2 A·M−1) resulted as 8.7% (n = 3). This value denotes repeatability of the
experiments, indicating that the same electrode can be used in at least 27 consecutive experiments
without significant changes to its surface.

To evaluate the reproducibility of the building up process, three amperometric calibration curves
were computed using three different SWCNTCFA electrodes. The mean of the slopes resulted as
5.56·10−2 A·M−1; a relative standard deviation (RSD) of 9.8% (n = 3) denotes that the overall fabrication
process of SWCNTCFA electrodes is reproducible.

Finally, the NADH concentration in three test samples, the true value being 1.09·10−5 M,
was estimated. The confidence interval resulted as [1.01 ± 0.30]·10−5 M (RSD = 12%, n = 3), indicating
high accuracy and precision.

3.4. Use of SWCNTCFA as a Voltabsorptometric Sensor

SWCNTCFA electrodes were also tested for a possible use as voltabsorptometric sensors for
quantitative determination of NADH. Potential sweep techniques, in fact, are preferred to amperometry
at a constant potential when different electroactive species are present in the same matrix. Even better
selectivity can be reached by recording, at any applied potential, the relevant absorption spectrum.
This approach aims at further improving the selectivity of the sensor system developed here [27].

In order to verify the effectiveness of SWCNTCFA in NADH detection using a potential scan
technique, both electrochemical and spectroscopic signals have been concomitantly acquired in NADH
solutions at different concentrations. Figure 6 displays the spectroelectrochemical responses obtained
during the electrochemical oxidation of 3·10−4 M NADH in 0.1 M PBS, scanning the potential between
−0.10 and +0.60 V at 0.02 Vs−1. The spectra show a band with a maximum at 260 nm, which increased
during the oxidation of NADH. It is related to the π→π* transition of the adenine aromatic ring of
the electrogenerated NAD+. Concomitantly, the absorption band at 340 nm, ascribable to the n→π*
transition of the dihydronicotinamide portion of NADH [33], decreased due to the consumption of this
species at the electrode surface. The same experiment, when carried out in pure 0.1 M PBS, i.e., in the
absence of the analyte, does not show either of these two bands, supporting the explanation given
above, as shown in the inset of Figure 6a.
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Figure 6. (a) Spectra registered during the oxidation of 3·10−4 M NADH and 0.1 M PBS. (b) Comparison
of the linear sweep voltabsorptograms (LSVA) and the derivative voltabsorptogram at 340 nm. Inset in
(a) shows the spectra registered in 0.1 M PBS.

The trend of these two bands is in good agreement with the voltammetric responses, as suggested
by the perfect overlap of electrochemical signal with the derivative voltabsorptogram (DVA) at 340 nm
and at 260 nm, as shown in Figure 6b and Figure S6 in Supplementary Materials, respectively).
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When considering linear sweep voltabsorptograms (LSVA) recorded in the different NADH
solutions, the correlation between the peak current and the NADH concentration was very poor,
as suggested by a correlation coefficient value around 0.75, as shown in Figure S7 in Supplementary
Materials. These results indicate that the voltammetric technique is not appropriate to determine
NADH. This conclusion should be ascribed to the fact that the voltammetric signal actually combines
contributions of both faradic and non-faradic processes, being also very difficult to trace a good
baseline, and, consequently, to properly estimate the height of the anodic peaks.

At variance with voltammetric responses, spectroscopic variations in the UV/Vis spectral region
were only directly ascribable to NADH consumption in the diffusion layer, as shown in Figure 7a,
leading to a better linear relationship between absorbance and NADH concentration. Since DVA
traces were in very good agreement with the electrochemical responses due to NADH oxidation,
spectroscopic absorption can be also used for the quantitative estimation of this species. Figure 7b
shows absorbance variations at 340 nm collected during the LSVA experiments performed in solutions
at different NADH concentrations. Similar behavior was found for the band peaking at 260 nm.
Since absorbance changes at 340 nm are twice those observed at 260 nm, that wavelength was chosen
for more sensitive analyses.
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Figure 7. (a) Spectra at +0.60 V and (b) voltabsorptograms at 340 nm registered during the oxidation of
different concentrations of NADH in 0.1 M PBS.

The calibration procedure was replicated three times with the same electrode, to evaluate the
response repeatability, as shown in Figure 8. Solutions at different NADH concentrations were
randomly tested, in order to minimize the bias induced by possible memory effects. A good correlation
was found with the linear regression model, relating the values of absorbance at 340 nm to the
NADH concentration when the potential applied during the voltabsorptometric experiment was
+0.60 V. The slope of the calibration model was −251.0 M−1 (R2 = 0.9986, Sy/x = 1.02·10−3 M−1).
The repeatability, estimated in terms of %RSD value, resulted as 9.7% (n = 3), indicating that the same
electrode can be used in different calibration procedures.Sensors 2018, 18, x FOR PEER REVIEW  10 of 12 
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To test the reproducibility of the activation-modification procedure of the SWCNT electrode
surface, the mean slope values of three linear regression models were calculated with three different
electrodes. Table 1 displays the figures of merit of these calibration models. Good reproducibility
was estimated on the basis of the RSD value of 2.8% (n = 3) relative to the mean of the three slopes
(−267.3 M−1).

Table 1. Figures of merit of the three linear absorptometric calibration plots obtained by the ordinary
least square regression model from data obtained using three different SWCNTCFA electrodes.

SWCNTCFA-1 SWCNTCFA-2 SWCNTCFA-3

Slope /M−1 −267.7 −259.6 −274.7
Intercept /a.u. 0.0015 0.0011 0.0007

R2 0.9998 0.9986 0.9960
Sy/x 0.4·10−3 1.1·10−3 2.0·10−3

Finally, the concentration of three samples of NADH with a true concentration of 1.25·10−4 M
was estimated. The interval of confidence obtained resulted as [1.24 ± 0.19]·10−4 M (RSD = 6.1%,
n = 3). The mean value found testifies the accuracy, and the RSD value and the low relative error in
the determination of the NADH concentration, resulting lower than 1%, denotes high precision of the
procedure followed.

Reliability of the calibration model was also verified by repeating the previously described
procedure with a further eight NADH solutions. The concentration values predicted by the model
were plotted vs. the true values, exhibiting a linear correlation with slope and intercept values not
significantly different from 1.0 and 0.0, respectively. This analysis indicates the absence of bias.

4. Conclusions

The results reported in this paper demonstrate that SWCNTs electrochemically functionalized
by CFA molecules are suitable to act as the sensing element for detection of NADH. In particular,
the presence of catechol residues as a consequence of the electrochemical functionalization leads to
electrocatalytic oxidation of NADH, inducing significant anticipation of the electrochemical process to
particularly low potential values. Furthermore, deposition of SWCNT on a flexible substrate constitutes
an interesting added value for the possible use of this device in the frame of sensors, especially when
used ‘in the field’. The device can be used both as an amperometric and as a voltabsorptometric sensor,
depending on the analytical frame. In particular, the voltabsorptometric sensor can be of great interest
when analyzing matrices containing different electroactive species that can be oxidized at similar
potential values but absorb radiation in different spectral ranges.

Supplementary Materials: The following material is available online at http://www.mdpi.com/1424-8220/19/
3/518/s1; Figure S1: Schematic representation of electrode fabrication and functionalization of SWCNTs, Figure
S2: Photograph of the UV/Vis absorption spectroelectrochemical set-up, Figure S3: CV trace collected during CFA
deposition on SWCNTox, Figure S4: UV-Vis spectra collected during the first forward scan of CFA deposition on
SWCNTox, Figure S5: Amperometric trace recorded during subsequent additions of NADH in the test solution,
Figure S6: Overlapping of voltammetric and derivative voltabsorptometric trace recorded at 260 nm, Figure S7:
CV traces collected in different NADH solutions and relevant calibration plot.
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